第七章经典力学的哈密顿理论
哈密顿原理
关于哈密顿原理
哈密顿原理
Hamilton principle
适用于受理想约束的完整保守系统的重要积分变分原理。
W.R.哈密顿于1834年发表。
其数学表达式为:
式中L=T-V为拉格朗日函数,T 为系统的动能,V为它的势函数。
哈密顿原理可叙述为:拉格朗日函数从时刻t1到t2的时间积分的变分等于零。
它指出,受理想约束的保守力学系统从时刻t1 的某一位形转移到时刻t2的另一位形的一切可能的运动中,实际发生的运动使系统的拉格朗日函数在该时间区间上的定积分取驻值,大多取极小值。
由哈密顿原理可以导出拉格朗日方程。
哈密顿原理不但数学形式紧凑,且适用范围广泛。
如替换L的内容,就可扩充用于电动力学和相对论力学。
此外,也可通过变分的近似算法,用哈密顿原理直接求解力学问题。
经典力学的哈密顿理论(精)
所以
L p m m( r )
(2 )
p r m
( 3)
则哈密顿函数
H p L 1 1 [m m( r )] [ m 2 m ( r ) m( r ) 2 V (4) 2 2 1 1 m 2 m( r ) 2 V 2 2
2 p 1 1 2 2 2 2 r ) ( ) (r ( pr 2 ) 2m r 2m r r
于是得正则方程
H pr r pr m r 2 ) 2 m ( r 2 r H p (径向运动方程) p r r mr 3 r 2
( 3)
p H p mr 2 p mr 2 常数 (角动量守恒) p H 0
( 4)
[例2] 写出粒子在等角速度转动参考系中的H函数和正则方程。 解:取图7.3所示的转动参考系。粒 子的L函数为(参见5.12式)
故H是p、q、t的函数,表征体系的状态,称为哈密顿函数。 若L不显含t,并且约束是稳定的,体系的能量守 恒,则
H=E=T+V
(2)哈密顿正则方程 哈密顿函数H=H(p,q,t)的全微分为
s H H H dH dp dq dt p q t 1 1 s
7 经典力学的哈密顿理论
内容: · 哈密顿正则方程 · 哈密顿原理 · 正则变换
· 哈密顿—雅可比方程
重点: ·哈密顿正则方程
· 正则变换
难点: · 正则变换
经典力学的哈密顿理论课件
7.1 哈密顿函数和正则方程
(1)哈密顿函数
拉格朗日函数是 q , q 和t的函数:
L L(q , q,, t它) 的全微分为
dL
s
1
L q
dq
s 1
L q
dq
L dt t
将广义动量和拉格朗日方程:
第2页,共30页。
p
L q
设曲线AB方程为y=y(x),质点沿曲 线运动速度为
2gy ds
(dx)2 (dy)2
1 y'2 dx
dt
dt
dt
质点自A沿曲线y(x)自由滑至B点所需的时间
J
xBdt
xB
1 y'2 dx
xA
xA 2gy
(7.6)
第8页,共30页。
显然J的值与函数y(x)有关,最速落径问题就是求J的极值问题,即y(x)取什么 函数时,函数J[y(x)]取极小值。J[y(x)]称为函数y(x)的泛函数。J[y(x)]取极值
(3)哈密顿原理
一个具有s自由度的体系,它的运动由s个广义坐标 q (t ) 来描述。 在体系的s维位形空间中,这s个广义坐标的值确定体系的一个位形点, 随着时间的变动,位形点在位形)空,间描绘出体系的运动轨道。设在时刻
t1 和 t 2 体系位于位形空间的 P1 点和 P2 点,相应的广义坐标为
q (t1 ) 和 q (t 2 )(或缩写为 q(t1 ) 和 q(t2 ) 由 P1 点通向和 P2 点有多种可能的轨道(路径),但体系运动的真实 轨道只能是其中的一条。如何从众多的可能轨道中挑选出体系运动的 真实轨道?即在 t1 ~ t2 时间内,为何确定体系的s个广义坐标 q(t )?
哈密顿原理
§7-4 哈密顿原理人们为了追求自然规律的统一、 和谐, 按照科学的审美观点, 总是力图用尽可能少的原理(即公理)去概括尽可能多的规律.牛顿提出的三个定律, 是力学的基本原理. 由这些基本原理出发, 经过严格的逻辑推理和数学演绎, 可以获得经典力学的整个理论框架.哈密顿原理是分析力学的基本原理, 它潜藏着经典力学的全部内容并把这门学科的所有命题统一起来. 也就是说, 由它出发, 亦可得到经典力学的整个框架.哈密顿原理是力学中的积分变分原理. 变分原理提供了一个准则, 使我们能从约束许可条件下的一切可能运动中, 将力学系统的真实运动挑选出来. 变分原理的这一思想, 不仅在力学中, 而且在物理学科的其他领域中, 都具有重要意义.一、变分法简介1. 函数的变分.自变量为x 的函数表示为)(x y y =.函数的微分x y y d d ′=是由自变量x 的变化引起的函数的变化.函数的变分也是函数的微变量, 但它不是因为自变量x 的变化, 而是由于函数形式的变化引起的.这种由于函数形式变化造成的函数的变更称为函数的变分, 记作y δ.与函数y 邻近但形式与y 不同的函数有许多, 这些函数可以表示如下:)()0,(),(*x x y x y εηε+= 其中ε是任意小的参数, ()x η是任意给定的可微函数. 因0=ε时()()x y x y =0,, 所以函数形式的变化决定于上式的第二项. 因此, 函数的变分写成()()()x x y x y y εηε=−=0,,δ*在自由度为1的力学系统中讨论变分的概念. 设广义坐标为q , )(t q q =. 建立以t q ,为轴的二维时空坐标系(又称事件空间), 曲线I 是)(t q q =的函数曲线, 代表了系统的真实运动.q t d d →函数的微分.在曲线I 附近, 存在着许多相邻曲线, 这些曲线都满足力学系统的约束条件, 称为可能运动曲线,它们的方程表示为()()()t t q t q εηε+=0,,*在t 不变的情况下, 函数形式的改变也能引起函数的变化, 这种变化纯粹是由函数形式变化引起的, 它就是函数的变分q δ,()()()t t q t q q εηεδ=−=0,,*与q d 不同, q δ与时间变化无关, 称为等时变分. r δ和αq δ都是等时变分.变分的运算法则在形式上与微分运算法则相同. 下面列出几条变分法则.设1y 和2y 是自变量x 的两个函数, 则()2121δδδy y y y +=+()122121δδδy y y y y y +=22211221δδδy y y y y y y −= 现给出第3式的证明:()22222211122122211121*2121δηεηεηεηεηε+−=−++=− =y y y y y y y y y y y y y y22211221δδδy y y y y y y −= 等时变分还有两个重要性质:(1)变分与微分的运算可以交换, 即δ和d 的运算可交换;(2)变分和微商在运算上可以交换, 即δ和t d /d 的运算可交换.首先证明性质(1):设力学系统的1=s ,q . 曲线 I 表示系统的真实运动, 曲线 II 表示与曲线I 邻近的系统的可能运动.Q Q P ′→→, Q ′点的纵坐标为()q q q q d δd +++. Q P P ′→′→, Q ′点的纵坐标成为()q q q q δd δ+++. 于是 ()()q q q q q q q q δd δd δd +++=+++()()q q δd d δ=证明完毕.下面证明性质(2): 因为()()()()2d d δd d δd d d δt t q q t t q −=由于等时变分, ()()0δd d δ==t t . 所以上式可写成()()q t t q t q δd d d d δd d δ==证明完毕.在变分法中, 除等时变分外, 还有全变分. 全变分是由于函数自变量和函数形式的共同变化引起的, 用q ∆表示.()()0,,*x y x x y y −∆+=∆εx xy y y ∆+=∆d d δ 2. 泛函的变分与泛函取极值的条件---欧拉方程.若变量J 由一组函数()x y y i i =, n i ,,2,1 =的选取而确定, 则变量J 称为函数()t y y i i =的泛函, 记作()()()],,,[21x y x y x y J n .泛函J 由n 个函数的形式确定, 是函数形式的函数.泛函与函数的概念不同, 函数中的自变量是数; 而对于泛函, 处于自变量地位的是可以变化的函数的形式.举例说明:Oxy 平面中有B A ,两个固定点, 连接两固定点间的曲线的长度L 由下式确定, ()x x y L AB x x d d /d 12∫+= 显然, L 依赖于函数()x y y =的选取, 若函数()x y 的形式发生变化, 则曲线的形状随之变化, 曲线的长度也跟着改变. 长度L 就是函数()x y的泛函.研究形式最简单的泛函及其变分, 该泛函只依赖一个函数()()[]x x x y x y F J x x d ,,10∫′= 或 ()()()()()[]x x x x y x x y F J x x d ,0,,0,10∫′+′+=ηεεηε 其中()()x x y x y d d =′被积函数()()[]x x y x y F ,,′的形式是已知的, 积分的上下限是固定的. 当函数()x y 在形式上发生变化时, 泛函就会发生变化, 这种由于函数形式的变化引起泛函的变化(线性部分)称为泛函的变分,记作J δ.现将被积函数()()()()[]x x x y x x y F F ,0,,0,ηεεη′+′+=在0=ε处展开(只保留线性部分)()()()()[]x x x y x x y F ,0,,0,ηεεη′+′+()()[]()()x y F x y F x x y x y F ηεεηεε′ ′∂∂+ ∂∂+′===00,, 可见函数的变分为()()()()[]()()[]x x y x y F x x x y x x y F F ,,,0,,0,δ′−′+′+=ηεεη()()x y F x y F ηεεηεε′ ′∂∂+ ∂∂===00 y y F y y F ′ ′∂∂+ ∂∂===δδ00εεF 的变分是在0δ=x 的情况下进行的. 在力学中, x 为时间t , 这种变分是等时变分.现将J δ写成()()()()[]()()[]∫∫′−′+′+=1010d ,,d ,0,,0,δx x x x x x x y x y F x x x x y x x y F J ηεεη ()()()()[]()()[]{}∫′−′+′+=10d ,,,0,,0,x x x x x y x y F x x x y x x y F ηεεη∫=10d δx x x F 上式表明当积分变量与变分无关时, 变分算符和积分算符可以交换.在数学中, 变分法的基本问题是通过求泛函的极值(极大值, 或极小值, 或稳定值)去寻找函数)(x y . 泛函中的函数)(x y 的形式需不断改变, 直到J 达到极值. 当J 为极值时, )(x y 就是我们所要寻找的函数.泛函取极值的必要条件是满足欧拉方程. 推出欧拉方程:与函数极值条件类似, 处于极值的泛函, 其变分一定为零, 即()()[]x x x y x y F J x x d ,,δδ10∫′= ()()[]x x x y x y F x x d ,,δ10∫′= 0d δδ10= ′′∂∂+∂∂=∫x y y F y y F x x 考虑到()y x y δd d δ=′, 并对上式中的第二项采用分部积分法()x y y F x y y F x x y x y F x y y F x x x x x x d δd d δd d d δd d d δ101010∫∫∫ ′∂∂− ′∂∂=′∂∂=′′∂∂ 积分上下限是固定的, 即要求各函数曲线有相同的端点, 0δδ10==x x y y , 所以上式第一项 0δd δd d 1010=′∂∂= ′∂∂∫x x x x y y F x y y F x 故0d δ)d d (10=′∂∂−∂∂∫x y y F x y F x xεη=y δ, 由于η是任意函数, 所以y δ也是任意的. 可见, 要使上式成立, 必须0d d =′∂∂−∂∂y F x y F 这就是欧拉方程.可推广到多个函数为变量的泛函中去, 该泛函取极值的欧拉方程为0d d =′∂∂−∂∂ββy F x y F l ,,2,1 =β l 代表函数的个数.3. 变分问题.凡是与求泛函极值有关的问题都称做变分问题. 下面列举3个曾在变分法的发展中起过重要影响的变分问题.(1) 最速落径问题. 通过求泛函极值, 得知竖直平面内不在同一铅垂线上的两个固定点之间的多条曲线中, 能使质点以最短时间从高位置点到低位置点自由滑下的曲线是旋轮线(又称摆线).(2) 短程线问题. 已知曲面方程, 用求泛函极值的方法, 可得出曲面上两固定点之间长度最短的线.(3) 等周问题. 将泛函求极值, 可得知一平面内, 长度一定的封闭曲线, 所围面积最大的曲线是圆.例题6 最速落径问题.(有兴趣者自学)二、哈密顿原理1. 位形空间、 真实运动曲线和可能运动曲线.在分析力学中, 由s 个广义坐标s q q q ,,,21 组成的s 维空间称为位形空间.系统某一时刻的位形(即由广义坐标确定的系统的位置)与该空间中的一点相对应. 当位形随时间变化时(时间t 为参数), 位形点就会发生变化而形成一条曲线.用位形空间研究完整系的运动, 不用顾及约束对系统运动的影响. 因为空间由s 个广义坐标轴组成, 每一个广义坐标都可以自由变化. 位形空间中的任何一条曲线, 都表示系统在完整约束下的一种可能的运动过程.设s t q q ,,2,1),( ==ααα代表系统的真实运动, 则由它们决定的曲线称为真实运动曲线.由于函数)(t q q αα=形式发生变化而在真实曲线邻近出现的曲线称为可能运动曲线.2. 完整有势系统的哈密顿原理.哈密顿原理是分析力学中的积分变分原理, 它巧妙地运用泛函求极值的方法, 将真实运动从约束允许的一切可能运动中挑选出来.哈密顿原理是一条力学公理.首先, 定义一个称为作用量的泛函:()∫=10d ,,t t t t q q L S αα 式中的L 称为拉格朗日函数, 定义为V T L −=T 是力学系统相对惯性系的动能),,(t qq T T αα =; 势能),(t q V V α=. 拉格朗日函数是ααqq ,和t 的函数, ),,(t qq L L αα =. 假定位形空间中有两个固定点A 和B , 与A 点相对应的时刻是0t , 与B 点相对应的时刻是1t .两个固定点之间, 存在着由s t q q ,,2,1),( ==ααα决定的真实运动曲线.两固定点B A ,间还存在许多与真实运动曲线邻近的可能运动曲线, 它们是由q q q δ*+=αα s ,,2,1 =α0δδ10====t t t t q q αα s ,,2,1 =α决定的.作用量是依赖于函数)(t q α的泛函. 在位形空间的两个固定点间有许多可能运动轨道, 其中有一条是真实的. 哈密顿原理就是通过变分法中求泛函(在此指作用量)极值的方法, 将真实运动从这许多的可能运动中挑选出来的.哈密顿原理的内容是: 受完整约束的有势系, 在位形空间中, 相同时间内通过两位形点间的一切可能运动曲线中, 真实运动曲线使作用量取极值. (极值为极小值, 故此原理又称为哈密顿最小作用量原理)在哈密顿原理中, 一切可能运动必须具有以下共同的特点:(1) 都是同一系统在相同的约束条件下的可能运动;(2) 都是在时刻0t 和时刻1t 之间相同时间间隔内完成的运动;(3) 在位形空间中有相同的起点和终点, 即 0δδ10====t t t t q q ααs ,,2,1 =α哈密顿原理的数学表述:在位形空间内, 当s q q t t t t ,,2,1,0δδ10 =====ααα时, 对于受完整约束的有势系, 其真实运动使 ()0,,δδ10==∫t t t q q L S αα 综上所述, 当作用量泛函取极值时, 与该作用量所对应的位形空间曲线就是真实运动的曲线, 描绘该曲线的s 个函数)(t q q αα=就是真实运动的运动学方程.拉格朗日函数V T L −=是力学系统的特征函数.如果确定了系统的拉格朗日函数, 则通过哈密顿原理, 就可导出力学系统的动力学方程.由欧拉方程可以得到分析力学中有势系的普遍方程---拉格朗日方程, 我们将在下一章讨论这个问题.[拉格朗日函数不是惟一确定的. 设f 是一个任意广义坐标和时间的函数, 即),(t q f f α=, 设),(d d t q f tL L α+=′, 则∫∫=′1010d d t t t t t L t L δδ. 证明了在原有拉格朗日函数上加上一项广义坐标和时间的任意函数对时间的全微商, 是不会改变系统的运动方程的. 这种不变性称做规范变换不变性, 它对于现代理论物理的研究有重要意义.]例题 7 质量为m 的质点, 在重力场中以与水平线成α角的初速率v 抛射, 根据哈密顿原理, 求质点的运动微分方程.解 在抛射体运动的平面内, 以铅垂方向为y 轴, 建立直角坐标系Oxyz , 以y x ,作为质点的广义坐标. 拉格朗日函数为()mgy y x m L −+=2221 作用量为()t mgy y x m t L S t t t t d 21d 101022∫∫ −+== 根据哈密顿原理, 真实运动使()[]0d δδδδ10=−+=∫t y mg y y m x x m S t t ()∫∫∫−==10101010d δδd δd d d δt t t t t t t t t x x m x x m t x tx m t x x m ()∫∫∫−==10101010d δδd δd d d δt t t t t t t t t y y m y y m t y ty m t y y m 由于在10,t t 时刻, 0δδ==y x , 因此 ()[]∫=+−−=100d δδδt t t y mg y m x x m S 又因x δ和y δ是相互独立的, 所以要使上式成立, 必须0=xm 0=+mg ym 3. 一般完整系的哈密顿原理.对一般完整系, 主动力常含有非有势力, 上述哈密顿原理不再适用, 但可以将有势系的哈密顿原理的表达式经修改后推广到一般完整系中:即在位形空间中, 一般完整系的真实运动使0d δδ101= +∫∑=t q Q T t t S ααα 式中T 是系统的动能, αQ 是与广义坐标αq 对应的广义力.[ααq r F Q i ni i ∂∂⋅=∑= 1] 在下一章里, 我们将会根据一般完整系的哈密顿原理, 推导出一般完整系普遍适用的动力学方程, 即一般形式的拉格朗日方程.在物理学的研究中, 对于我们重要的是有势系的哈密顿原理.哈密顿原理具有统一的、简洁完美的形式, 即具有坐标变换的不变性, 从而使哈密顿原理具有很大的普适性.哈密顿原理——有限自由度——无限自由度.哈密顿原理——物理学其他领域.哈密顿原理还可用于创建新的理论, 根据实验结果和假设构造出拉格朗日函数, 便可用哈密顿原理导出运动方程, 其正确性由实践检验.哈密顿原理是作为公理提出的, 并未推证. 它们的正确性由原理演绎出的推论在实践中的检验而得到证实. ——完全不依赖牛顿定律, 它的适用条件也完全不受牛顿定律适用条件的限制, 其普适性比牛顿的运动定律大得多.。
哈密顿原理推导运动方程
哈密顿原理推导运动方程引言:物理学中,哈密顿原理是描述系统运动的一种方法。
它通过将系统的运动路径与作用在系统上的力学量相联系,从而推导出系统的运动方程。
本文将以哈密顿原理为基础,推导出运动方程,并对其进行详细的阐述和解释。
一、哈密顿原理的基本概念哈密顿原理是基于变分原理的一种方法,它是由数学家威廉·哈密顿提出的。
它描述了一个力学系统的运动路径应当使作用在系统上的作用量取极值。
作用量是一个函数,描述了系统在其运动过程中所受到的作用力。
根据哈密顿原理,系统的运动路径可以通过使作用量取极值来确定。
二、哈密顿原理的数学表达在哈密顿原理中,作用量可以表示为一个积分形式:S = ∫L(q, q', t) dt其中,S表示作用量,L表示拉格朗日量,q表示广义坐标,q'表示广义速度,t表示时间。
三、推导过程为了推导运动方程,我们需要使用变分法。
变分法是一种数学方法,可以求解函数的极值问题。
我们假设系统的运动路径为q(t),然后对作用量进行变分,使其取得极值。
我们将作用量进行变分:δS = ∫(∂L/∂q δq + ∂L/∂q' δq') dt根据变分法的定义,我们可以将上式中的δq和δq'看作是独立的变量,因此可以分别对其进行求导:∂S/∂q = ∂L/∂q - d/dt(∂L/∂q')∂S/∂q' = ∂L/∂q'根据哈密顿原理,作用量的变分应当为零,即δS = 0。
因此,我们可以得到以下两个方程:∂S/∂q = 0∂S/∂q' = 0根据以上两个方程,我们可以得到两个重要的运动方程:∂L/∂q - d/dt(∂L/∂q') = 0∂L/∂q' = 0第一个方程又被称为欧拉-拉格朗日方程,它描述了系统的运动轨迹。
第二个方程则是哈密顿原理的直接结果,它描述了广义动量的守恒。
四、运动方程的物理解释欧拉-拉格朗日方程描述了系统在运动过程中的力学行为。
哈密顿力学课件
x
y
F 0 F C
y
y
例4 捷线
T
1
b
1 y2
2g
a
dx y
F 1 y2 F 0 y x
F y F
1
1
y
y 1 y2
2C1
dy 2C1 y
dx
y
y C1 1 cos
dx
2C1 sin2
2
d
C1 1
cos
d
x C1 sin C2
y
C1
1
cos
旋轮线
C1,C2 由边界条件决定
A
F F
sin2 2 sin2
cos0 const.
d sin2 d
tan2 0 cot2
d
d cot
0
tan2 0 cot2
arccos cot0 cot 0 const.
第19页/共57页
cos cos0 sin sin0 cot cot0 0 Rsin sin0 eq. xsin0 cos0 y sin0 sin0 z cos0 0
p,t ,t
p
q,
p,t
力学状态参量变换 q,q q, p
找到新的特征函数,通过对 q, p 的偏导生成力学方程。
第2页/共57页
1.Legendre变换
f f x, y
df f dx f dy x y
udx vdy
d ux xdu vdy
g g u, y
u
f x
u
x,
y
b a
b
a
s 1
F y
d dx
F y
δy dx
简单的论述哈密顿原理
简单的论述哈密顿原理简单的论述哈密顿原理摘要:证明⼒积分变量与变分⽆关的情况下积分运算与变分运算次序的可交换性,从不同⾓度论述了哈密顿原理的含义。
关键词:哈密顿原理,拉格朗⽇函数,变分,拉格朗⽇⽅程1.引⾔哈密顿原理是分析⼒学中⼏个重要原理之⼀,但它不是⼀个独⽴原理,它可已从其他原理推导出来,因⽽可以从不同⾓度说明它的物理含义。
⼀般理论⼒学教材都是在拉格朗⽇⽅程两边同时乘以虚位移求所有⾃由度下的虚功之和,然后再求从位形1即(到位形2,即(之间或时间⾄之间的作⽤量得出,最后变换成,并没有说明最后⼀步为什么要那样做,也没有说明那样做的意义。
本⽂先证明当积分变量与变分⽆关的条件下积分运算与变分运算次序的可交换性,然后再从不同⾓度论述哈密顿原理的意义。
2.理论2.1变分运算与积分运算次序的可交换性假定变量由⼀个或⼀组函数的选取⽽确定,则变量称为函数的泛函,记作[]。
泛函由n个函数的形式确定,是函数的“函数”。
泛函与函数的概念略有不同,函数中的变量是可以变化的数值,⽽对于泛函处于⾃变量地位的是形式可以变化的函数。
下⾯举例说明,如图1中有,两个固定点,连接两个固定点之间的曲线的长度由下式确定,即显然,依赖于函数的选取,若函数的形式发⽣变化,则曲线的形状随之变化,曲线的长度也随之变化。
长度就是的泛函。
下⾯证明变分运算与积分运算顺序的可交换性,该泛函只依赖⼀个函数,即⾃变量为的函数表⽰为。
函数的变分是函数的微变量,它与函数的微分有本质有本质的不同,函数的微分,粗略的讲,它是由⾃变量的变化引起的。
⽽函数的变分不是因为⾃变量的变化,它是来⾃函数形式的变化引起,这种由于函数形式变化造成的函数的变化称为函数的变分,记作。
与函数临近但形式与不同的函数有许多。
假设这些函数可以表⽰为如下的形式:其中是⾮常⼩的参数,是任意给定的可微函数,因时,函数形式的变化决定于上式的第⼆项。
因此函数的变分写成引⼊(2)式的记法(1)可记为被积函数的形式是已知的,积分的上下限是固定的。
7经典力学的哈密顿理论
H*
H
F3
t
(7.19)
④ 第二类正则变换
( p dq P dQ ) (H * H )dt dF3 (q, Q, t )
p
F3 , q
P
F3 Q
(7.15)
满足正则变换(7.15)式的具体条件(证明见P.256-257)是:
( p dq P dQ ) (H * H )dt dF (q, Q,(t ) 7.16)
式中F为正则变换母函数。
由(7.16)式可得
p
F q
,
P
F Q
,
1,2,, s
p
F2 q
,
P
F2 Q
,
1,2,
H*
H
F2
t
③ 第二类正则变换
( p dq P dQ ) (H * H )dt dF3 (q, Q, t )
p
F3 q
,
P
F3 Q
,
1,2,
p r
m
(3)
(2)
则哈密顿函数
H p L
[m m( r)] [1 m 2 m ( r) 1 m( r)2 V (4)
2
2
1 m 2 1 m( r)2 V
2
2
(3)式代入(4)式,得
q
p
H p
H q
Q
1,2,s
哈密顿正则方程常用来建立体系的运动方程。
哈密顿力学
dH ∂H = dt ∂t
也就是说,哈密顿函数 中不显含时间 中不显含时间t, 也就是说,哈密顿函数H中不显含时间 , ∂H =0 ∂t 则有 dH =0 H = h 表示一积分常数 dt 广义能量守恒 由拉格朗日动力学可知 稳定约束: 稳定约束:
H = T + V 体系机械能守恒
不稳定约束: 不稳定约束: H = T2 − T0 + V 广义能量守恒
d ∂L ∂L − =0 & dt ∂q ∂q
& qα , pα , t ⇒ L = L[qα , qα (q, p, t ), t ]
s & ∂qβ ∂L & = pα + ∑ pβ ∂qα ∂qα β =1
s & ∂qβ ∂L = ∑ pβ ∂pα β =1 ∂pα
qα , pα , t ⇒ H [qα , pα , t ]
s ∂H ∂H ∂H dH = ∑ dqα + ∑ dpα + dt ∂t α =1 ∂qα α =1 ∂pα s
& H = ∑ pα qα − L
α =1
s
& & dH = ∑ pα dqα + ∑ qα dpα − dL
s s ∂L ∂L ∂L & & & = ∑ pα dqα + ∑ qα dpα − ∑ dqα + ∑ dqα + dt & ∂t α =1 α =1 α =1 ∂qα α =1 ∂qα s s
s & ∂qβ ∂L = ∑ pβ ∂pα β =1 ∂pα
∂ & ∑1 pβ ∂q = ∑1 ∂q ( pβ qβ ) β= β= α α
哈密顿原理和拉格朗日
哈密顿原理和拉格朗日哈密顿原理和拉格朗日哈密顿原理和拉格朗日是经典力学中的两个重要概念,它们是描述物理系统运动的基本原理。
哈密顿原理和拉格朗日的提出,为研究物理系统的运动提供了一种新的方法,使得研究者可以更加深入地了解物理系统的本质。
哈密顿原理是经典力学中的一个基本原理,它描述了物理系统在所有可能的路径中,真实路径是使作用量取极小值的路径。
作用量是一个物理量,它描述了物理系统在某个时间段内所受到的所有作用的总和。
哈密顿原理的提出,使得研究者可以通过求解作用量的极小值来确定物理系统的真实路径,从而更加深入地了解物理系统的运动规律。
拉格朗日是经典力学中的另一个重要概念,它是描述物理系统运动的一种方法。
拉格朗日的提出,使得研究者可以通过求解拉格朗日方程来确定物理系统的运动规律。
拉格朗日方程是一个微分方程,它描述了物理系统在某个时间段内的运动状态。
通过求解拉格朗日方程,研究者可以确定物理系统的运动轨迹和运动规律,从而更加深入地了解物理系统的本质。
哈密顿原理和拉格朗日的提出,为研究物理系统的运动提供了一种新的方法,使得研究者可以更加深入地了解物理系统的本质。
哈密顿原理和拉格朗日的应用范围非常广泛,它们不仅被应用于经典力学中,还被应用于量子力学、相对论等领域。
在物理学的研究中,哈密顿原理和拉格朗日是不可或缺的工具,它们为研究者提供了一种新的思路和方法,使得研究者可以更加深入地了解物理系统的本质。
总之,哈密顿原理和拉格朗日是经典力学中的两个重要概念,它们为研究物理系统的运动提供了一种新的方法,使得研究者可以更加深入地了解物理系统的本质。
哈密顿原理和拉格朗日的应用范围非常广泛,它们不仅被应用于经典力学中,还被应用于量子力学、相对论等领域。
在物理学的研究中,哈密顿原理和拉格朗日是不可或缺的工具,它们为研究者提供了一种新的思路和方法,使得研究者可以更加深入地了解物理系统的本质。
分析力学第七章正则方程
知 必须满足条件:
由此得出重要推论:
当不显含t时, 为运动常数的充要条件是:
3. 泊松定理
如果函数
和函数
分,则函数[f , g]也是正则方程的初积分。
证:由于是f和g正则方程的初积分,得
是正则方程的两个初积
由雅克比恒等式: 得 于是有 即得到:
因此[f,g]=C也是正则方程的初积分.
泊松定理指出: 由正则方程的两个已知的初积分, 可不断地求出新的初 积分.
那么有
;于是得到:
(即在该四种正则变换中哈密顿量保
持不变).
此时正则变换条件变为下列形式:
。
例1.寻求常数 ,使变换
解:由于此变换不显t,有
是正则变换。
即
, 由于q的任意性,得
因此有变换:
该变换被彭家莱应用于天体力学中
例2. 证明变换 关的四类母函数。 解:
是正则的,并求出与该变换相
因此该变换是正则的。其母函数为:
,其中
是n+1个任意常数。
另外,如果我们已知
,其中
是n+1个任意常数。同样可以得到哈密顿—雅克比偏微
分方程:
——这是哈密顿在当时推证所用的方法。 利用哈密顿—雅克比方程求出
---这样就能得到正则方程的全部积分。
由
及哈密顿正则方程
若力学体系的哈密顿函数H中不显函时间t,即 (h是积分常数)。
;则
当约束又是稳定的,则动能可表示为
2n个代数方程是相互独立的,所以可以解出逆变换为:
若通过变量的变换,使得正则方程的形式保持不变,即:
我们把这种变换叫做正则变换。 当取第二类母函数 则正则变换的条件: 变为:
令
ቤተ መጻሕፍቲ ባይዱ
哈密顿原理的应用
哈密顿原理的应用什么是哈密顿原理?哈密顿原理是经典力学中的一种基本原理,用于描述自然界中物体在运动过程中所遵循的原理。
哈密顿原理可以简单地表述为:物体在运动过程中,其真实路径是使作用量(或称为作用积分)取得极值的路径。
哈密顿原理的数学表述从数学角度上看,哈密顿原理可以通过积分方程来表述。
假设一个运动系统的Lagrange函数为L(q, \dot{q}, t),其中 q 为广义坐标,\dot{q} 为广义速度,t 为时间。
那么,根据哈密顿原理,系统的状态将会沿着满足以下方程的路径运动:\delta \int L(q, \dot{q}, t) dt = 0这个方程是一个变分问题,通过对方程求驻点来得到系统的真实路径。
其中,\delta 表示变分(即微小变化)。
哈密顿原理的应用哈密顿原理在物理学、工程学等领域有着广泛的应用。
下面列举几个典型的应用:1.经典力学:哈密顿原理是经典力学中最基本的原理之一。
它可以用来推导出Lagrange方程和Hamilton方程,从而描述物体在运动过程中所遵循的规律。
通过哈密顿原理,我们可以得到物体在势能场中的运动方程,并进一步研究力的作用和能量的变化规律。
2.量子力学:哈密顿原理在量子力学中也有重要的应用。
量子力学中的体系可以使用波函数描述,而波函数的演化过程可以通过哈密顿算符来描述。
哈密顿原理可以用来推导量子力学中的薛定谔方程,从而描述量子体系的演化规律。
3.优化问题:哈密顿原理的变分问题求解方法可以应用于优化问题中。
通过建立适当的Lagrange函数,并使用哈密顿原理进行求解,我们可以得到优化问题的最优解。
这在工程学、经济学等应用中都有重要的作用。
4.控制理论:哈密顿原理在控制理论中有着广泛的应用。
控制理论研究的是如何通过给定系统的模型和特定的控制策略来使系统达到预期的状态。
哈密顿原理可以提供一种优雅的数学框架,用于描述控制系统的演化过程,并求解最优控制问题。
总结哈密顿原理是一种基本的物理原理,在经典力学、量子力学、优化问题和控制理论等领域得到了广泛的应用。
《哈密顿原理》PPT课件
则 d , H 0
dt t
反之,若 , H 0 则 C
t
是正则方程的一个运动积分,因为有
dt
dq1 H
dq2 H
p1 p2
dqs H
dp1 H
dp2 H
ps
q1
q2
dps H
2q3 s
q
(1)c, 0, c为常数 (2), , 0
n
n
(3)如 j ,则, , j
振动解要求 l 为纯虚数,要做到这一点势能V>0. 令 l il
s
q Aleilt Aleilt , 1, 2, , s
l 1
s
q al coslt bl sinlt , 1, 2, , s
l 1
上式中 l 叫简正频率,共有s个。
6
3.简正坐标
T
1 2
s
a q q
1
V
V0
s 1
V q
q 0
1 s 2V 2 1 q q
1
q q
0
高级项
取 V0 0 对保守系 V 0
q
略去高级项
1 s 2V
1s
V
2
1 1
q
q
q q 0
2 1 c q q
1
2
在稳定约束下,动能只是速度的二次函数
T
1 2
s
a q q
1
1
也展开为泰勒级数
j 1
j 1
(4), ,
(5)
t
,
t
,
,
t
(6) ,, ,, , , 0
1,如
(7) q , p 0,如
哈密顿力学
哈密顿力学哈密尔顿力学是哈密尔顿于1833年建立的经典力学的重新表述。
它由拉格朗日力学演变而来,那是经典力学的另一表述,由拉格朗日于1788年建立。
但它可以使用辛空间不依赖于拉格朗日力学表述。
关于这点请参看其数学表述。
哈密顿力学-简介哈密顿力学是标准的“伽利略加速点运动几何学”的一种力学。
不幸的是,后人将其称作是“新几何力学”,这多多少少显示了后人的数学知识和物理学思想的一种令人遗憾的欠缺。
哈密顿系统可以理解为时间R上的一个纤维丛E,其纤维Et,t∈R是位置空间。
拉格朗日量则是E上的jet丛(射流丛)J上的函数;取拉格朗日量的纤维内的勒让德变换就产生了一个时间上的对偶丛的函数,其在t 的纤维是余切空间T*Et,它有一个自然的辛形式,而这个函数就是哈密顿量。
任何辛流形上的光滑实值函数H可以用来定义一个哈密顿系统。
函数H称为哈密顿量或者能量函数。
该辛流形则称为相空间。
哈密顿量在辛流形上导出一个特殊的向量场,称为辛向量场。
该辛向量场,称为哈密顿向量场,导出一个流形上的哈密顿流。
该向量场的一个积分曲线是一个流形的变换的单参数族;该曲线的参数通常称为时间。
该时间的演变由辛同胚给出。
根据刘维尔定理每个辛同胚保持相空间的体积形式不变。
由哈密顿流到处的辛同胚的族通常称为哈密顿系统的哈密顿力学。
哈密顿向量场也导出一个特殊的操作,泊松括号。
泊松括号作用于辛流形上的函数,给了流形上的函数空间一个李代数的结构。
当余度量是退化的时,它不是可逆的。
在这个情况下,这不是一个黎曼流形,因为它没有一个度量。
但是,哈密顿量依然存在。
这个情况下,在流形Q的每一点q余度量是退化的,因此余度量的阶小于流行Q的维度,因而是一个亚黎曼流形。
这种情况下的哈密顿量称为亚黎曼哈密顿量。
每个这样的哈密顿量唯一的决定余度量,反过来也是一样。
这意味着每个亚黎曼流形由其亚黎曼哈密顿量唯一的决定,而其逆命题也为真:每个亚黎曼流形有唯一的亚黎曼哈密顿量。
亚黎曼测地线的存在性由Chow-Rashevskii定理给出。
哈密顿原理的应用方面
哈密顿原理的应用方面哈密顿原理是经典力学中一种重要的动力学原理,它可以用来描述一般的广义力学体系,如质点系、弹性体系、连续介质力学等。
除了力学,哈密顿原理还在电动力学、光学和量子力学等领域有广泛的应用。
以下是哈密顿原理在不同领域中的应用方面:1.力学:在经典力学中,哈密顿原理可以用来推导出运动方程。
通过将系统的拉格朗日函数表示为广义坐标和广义速度的函数,然后应用哈密顿原理,可以得到系统的哈密顿函数,并且根据哈密顿函数可以得到运动方程。
这种方法比拉格朗日方程更加简便和直观,特别适合于处理含有约束的力学系统。
2.泛函分析:泛函是函数的函数,即函数空间中的点,而泛函分析是研究泛函空间和其上定义的连续线性泛函的理论。
哈密顿原理是泛函极值问题的基础。
通过对泛函的变分,即对其自变量做微小变化,然后应用哈密顿原理,可以得到泛函的最小值条件,从而得到泛函的极值问题。
3.统计力学:在统计力学中,哈密顿原理用于推导统计物理量的期望值。
通过将系统的哈密顿函数写为广义坐标和广义动量的函数,然后应用带有拉格朗日乘子的哈密顿原理,可以得到统计物理量的平均值和涨落,从而用统计的方法描述宏观的热力学性质。
4.电动力学:在电动力学中,哈密顿原理可以用来描述电磁场的运动。
通过将电磁场的拉格朗日函数写为电场和磁场的函数,然后应用哈密顿原理,可以得到电场和磁场的运动方程,并且得到电磁场的能量和动量。
5.光学:在光学中,哈密顿原理用于求解光的传播问题。
通过将光的传播路径表示为波前面的波动函数的形式,然后应用哈密顿原理,可以得到光传播路径的最小作用量以及光的折射和反射定律。
6.量子力学:在量子力学中,哈密顿原理可以用来推导量子力学体系的运动方程,即薛定谔方程。
通过将粒子的哈密顿函数写为广义坐标和广义动量的函数,并将广义坐标和广义动量换成算符形式,然后应用哈密顿原理,可以得到系统的薛定谔方程。
总结起来,哈密顿原理是一种十分重要的动力学原理,在力学、泛函分析、统计力学、电动力学、光学和量子力学等领域都有广泛的应用。
第七章哈密顿正则方程
H p q j dt 0 j t0 j1 q j
t1 k
对于完整系统,由于δqj 是相互独立的,且可取任何值, 则 H
j p
j
即得关于变量
q , p , t
j
q j
的Hamilton正则方程
t1
k t1 k k j H Qj q j dt L Qj q j dt p j q t0 t0 j j j 1
H H j p j p j q j q qj p j Qj q j dt t0 q j p j j 1
H j p Q j q j
j
1,2, ,k
其中Qj 为系统的非有势力对应于广义坐标 qj 的广义力。
例7-1 试用Hamilton正则方程求出水平弹簧质量振动 系统的运动微分方程 解:单自由度系统, x为广义坐标
L T V
1 2 1 2 1 2 kx L mx V kx 2 2 2 px L x mx 构造H函数 p x m x 1 2 1 2 L px x mx kx H Px x 2 2 px 2 1 2 kx H x, px 2m 2
t1 t1
对上式进行变分运算,得
H H p q q p p q dt 0 j j j j j j t0 p q j 1 j j
t1 k
将上式中的第一项改写成
d j p j q j p j q dt j 1 j 1
j H p j q j H q j p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)哈密顿原理 一个具有s自由度的体系,它的运动由s个广义坐标 q (t ) 来描述。
在体系的s维位形空间中,这s个广义坐标的值确定体系的一个位形点, 随着时间的变动,位形点在位形)空,间描绘出体系的运动轨道。设在时刻
t1 和 t 2 体系位于位形空间的 P1 点和 P2 点,相应的广义坐标为
q (t1 ) 和 q (t 2 )(或缩写为 q(t1 ) 和 q(t2 ) 由 P1 点通向和 P2 点有多种可能的轨道(路径),但体系运动的真实 轨道只能是其中的一条。如何从众多的可能轨道中挑选出体系运动的 真实轨道?即在 t1 ~ t2 时间内,为何确定体系的s个广义坐标 q(t )?
对于非保守系,正则方程形式为
q
H p
p
H q
Q
1,2, s
哈密顿正则方程常用来建立体系的运动方程。
[例1] 写出粒子在中心势场 V 中的哈密顿函数和正则方程。
r
解:粒子在中心势场中运动的特点、自由 度、广义坐标如何?
粒子的拉格朗日函数为
L 1 m(r2 r 22 )
2
r
广义动量
H=E=T+V
(2)哈密顿正则方程 哈密顿函数H=H(p,q,t)的全微分为
dH
s
H
1 p
dp
s
H
1 q
dq
H t
dt
(7.3)
比较(7.2)和(7.3)式,得
q
H p
p
H q
1,2, s
(7.4)
H L t t
(7.5)
(7.4)式称为保守系哈密顿正则方程,它是2s个一阶微分方程,形式对 称,结构紧凑。
(3)
H p
p mr 2
p
H
0
p mr 2 常数 (角动量守恒)
(4)
[例2] 写出粒子在等角速度转动参考系中的H函数和正则方程。
解:取图7.3所示的转动参考系。粒 子的L函数为(参见5.12式)
L 1 m 2 m• ( r) 1 m( r)2 V (1)
2
2
所以
p L m m( r)
1
s
p dq
1
L dt t
(7.1)
式中
,
s
h p q L H( p,q, t)
(7.2)
1
是体系的广义能量。由
p
L q
p (q,q, t)
可以解出 q
q ( p, q, t )
故H是p、q、t的函数,表征体系的状态,称为哈密顿函数。
若L不显含t,并且约束是稳定的,体系的能量守 恒,则
(x 0)
(7.8)
(2)变分问题的欧拉方程 求泛函J[y(x)]的变分δJ = 0的条件: 为普遍起见,将(7.6)式改写
J[
y(
x)]
x2 x1
f
(
y,
y',
x)dx
(7.9)
对上式求变分,令δJ=0:
J
x2 x1
f
( y,
y',
x)dx
x2f x1
( y,
y',
x)dx
[x2 f
x1 y
设曲线AB方程为y=y(x),质点沿曲
线运动速度为
2gy ds
(dx)2 (dy)2
1 y'2 dx
dt
dt
dt
质点自A沿曲线y(x)自由滑至B点所需的时间
J
xBdt
xB
1 y'2 dx
xA
xA 2gy
(7.6)
显然J的值与函数y(x)有关,最速落径问题就是求J的极值问题,即y(x) 取什么函数时,函数J[y(x)]取极小值。J[y(x)]称为函数y(x)的泛函数。 J[y(x)]取极值的条件为
(1)
pr
L r
mr,
r pr m
p
L mr 2,
p mr 2
(2)
哈密顿函数
H T V (Why ?)
1 2m
(r2
r 22 ) ( r
)
1 2m
( pr2
p2 r2
) r
于是得正则方程
r
H pr
pr m
pr
H r
p 2 mr 3
r2
m(r r2 )
(径向运动方程)
r2
y
f y'
y)dx
[x2 x1
f y
y
d dx
(
f y'
y)
d dx
(
f y'
y)]dx
f y
y'
x2 x1
(x2 d
x1 dx
f y'
f )ydx
y
(x2 x1
d dx
f y'
f y
)ydx
0
因此,
d f f 0 dx y' y
(7.10)
(7.10)是泛函J[y(x)]取极值时函数y(x)必须满足条件,称为欧拉方程, 思考:欧拉方程形式上与拉格朗日方程有无区别?
δJ = 0
(7.6)
算符δ称为变分记号。
变分运算法则和微分运算法则相似:
(
y1
y2
)y1ຫໍສະໝຸດ y2( y1 • y2 ) y1y2 y2y1
(
y1
)
y2
y2y1 y1y2
y
2 2
( xy) ky
(dy) d(y)
( dy ) dx
d dx
(y)
t2 ydt
t1
t2ydt
t1
m
m
r
m
m
r
F
ma
F
m
(
r)
2m
7.2 哈密顿原理 (1)最速落径问题和变分法
数学上的变分法是为了解决最速落径这一力学问题而发展起来的。
如图7.4所示,铅直平面内在所有连接两个定点A和B的曲线中,找出 一条曲线来,使得初速度为零的质点,在重力作用下,自A点沿它无摩 擦地滑下时,以最短时间到达B点。
第七章 经典力学的哈密顿理论
• 内容: · 哈密顿正则方程
•
· 哈密顿原理
•
· 正则变换
•
· 哈密顿—雅可比方程
• 重点: ·哈密顿正则方程
•
· 正则变换
• 难点: · 正则变换
在经典力学中,力学体系的运动可用各种方法来描述。用牛顿运动定律 描述,常常要解算大量的微分方程组,对约束体系更增强了问题的复杂 性。1788年拉格朗日用s个广义坐标来描述力学体系的运动,导出了用广 义坐标表出的拉格朗日方程,其好处是只要知道体系的动能和所受的广 义力,就可写出体系的动力学方程。1834年以后哈密顿提出用s个广义坐 标和s个广义动量(称为正则共轭坐标)描述体系的运动,导出了三种不 同形式的方程:哈密顿正则方程、哈密顿原理和哈密顿——雅可比方程, 称为经典力学的哈密顿理论。哈密顿理论和拉格朗日理论、牛顿理论是 等价的。哈密顿理论的优点在于便于将力学推广到物理学其他领域。
p r
m
(3)
(2)
则哈密顿函数
H p• L
[m
m( r)] [1 m 2 2
m• ( r)
1 m( r)2 2
V
(4)
1 m 2 1 m( r)2 V
2
2
(3)式代入(4)式,得
H p2 p• ( r) V
2m
正则方程为
H P
p m
( r)
p
H r
p
V r
(5) (6)
将 p m m r 代入上式中的第二式,可得粒子的动力学方程
7.1 哈密顿函数和正则方程 (1)哈密顿函数
拉格朗日函数是 q , q 和t的函数: L L(q ,q,, t )它的全微分为
dL
s
1
L q
dq
s 1
L q
dq
L dt t
将广义动量和拉格朗日方程:
p
L q
d L L 0 dt q q
代入上式,得
s
d ( p q
1
s
L) q dq