行列式的性质与计算
§12行列式的性质与计算
§1.2 行列式的性质与计算行列式是线性代数中的基本概念之一,它是一种特殊的方阵,由一个方阵中的所有元素按照一定规则构成。
行列式具有一些重要的性质和计算方法,以下是关于行列式的性质与计算的介绍。
一、行列式的性质1.行列式的行和列具有相同的独立性。
即对于一个n阶行列式,它的行和列都是n个独立的元素,可以独立进行变换,而不影响其他元素的位置。
2.行列式的行和列具有相同的代数余子式。
即对于一个n阶行列式,它的行代数余子式和列代数余子式都是n阶行列式,可以通过伴随矩阵的方式求得。
3.行列式的行和列具有相同的转置矩阵。
即对于一个n阶行列式,它的行转置矩阵和列转置矩阵都是n阶矩阵,可以通过转置矩阵的方式求得。
4.行列式的行和列具有相同的逆矩阵。
即对于一个n阶行列式,它的行逆矩阵和列逆矩阵都是n阶矩阵,可以通过逆矩阵的方式求得。
5.行列式的行和列具有相同的特征值。
即对于一个n阶行列式,它的行特征值和列特征值都是n个独立的特征值,可以通过特征多项式的方式求得。
二、行列式的计算1.按照定义计算。
行列式的定义是一个由方阵中的元素按照一定规则构成的多项式,可以按照定义直接计算。
2.化简计算。
行列式中的元素可以进行化简和约分,使得计算更加简便。
3.公式计算。
行列式有一些常用的公式,可以通过这些公式进行计算。
4.软件计算。
现在有很多数学软件可以用来计算行列式,例如MATLAB、Mathematica等等。
三、特殊行列式的计算1.二阶行列式的计算。
二阶行列式只有两个元素,可以通过交叉相乘的方式计算。
2.三阶行列式的计算。
三阶行列式有六个元素,可以按照展开式的公式进行计算,也可以通过软件计算。
3.n阶行列式的计算。
对于n阶行列式,可以使用Laplace展开式进行计算,也可以使用软件进行计算。
四、行列式的应用1.在解线性方程组中的应用。
通过求解线性方程组的系数矩阵和常数向量,可以得到方程组的解。
而系数矩阵就是一个n阶行列式,因此行列式在解线性方程组中有着重要的应用。
§1.2 行列式的性质与计算
上节例4 0 例1 上节例 中 计算四阶行列式 1 1 1
用性质计算行列式
1 0 1 1 解: 0 2 5 1 ( 1)r1 + r3 D= 1 x 2 3 0 3 0 1
1
1 1 0 2 5 1 0
0 0
x 3
3 2 0 1
2 5 1 3 5 5 1 3c3 + c1 1+ 1 x 6 3 2 3 2 +6 x 展开1( 1) 0 0 1 0 3 0 1 3
… … …
→1 →i → j
i、 j行互换,行列式变号 行互换, 、 行互换 行列式变号.
2 4 2 2 1 1 1
ai 1 D= ain
2 4
… … →i →j
= D
D= 0
性质1.2.4 把行列式的某一行(列)中的各元素都乘以同一常 性质 把行列式的某一行( 乘此行列式的值. 数 k , 等于用数 k 乘此行列式的值 推论1.2.2 符号外面. 符号外面. 推论1.2.3 若行列式中有两行(列)元素对应成比例,则此行列 若行列式中有两行( 元素对应成比例, 推论 式值为零. 式值为零. 行列式中某一行( 行列式中某一行(列)的公因子可以提到行列式
D=
a a
b a+b
c a+b+c
d a+b+c+d
r3 + r4 = r2 + r3
a b c d 0 a a+b a+b+c 0 0 0 0 a a 2a + b 3a + b
r3 + r4 =
a b
c
d
0 a a+b a+b+c 0 0 a 2a + b 0 0 算 例2 解:1
线性代数行列式的性质与计算
下页
2 1 3 1
例1. 计算行列式 D = 3 1 0 7 1 2 4 2 1 0 1 5
解:
1 0 1 5 r2 3r1 1 0 1 5
r3 +r1
r1r4 3 1 0 7 0 1 r4 2r1 3 8
D =
=
1 2 4 2
02 3 3
2 1 3 1
0 1 1 11
令Aij=(1)i+jMij, Aij称为元素aij的代数余子式.
例如,求4阶行列式中a32的代数余子式
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44
M32=
A32= (1)3+2M32 = M32
a11 a13 a14 a21 a23 a24 a41 a43 a44
下页
范得蒙(Vandermonde)行列式
1
a1 a12 Dn = a1n3 a1n2 a1n1
下页
1
1
0
Dn
=
0
0
0
a2 a1 a22 a1a2
a2n2 a1a2n3
a2n1 a1a2n2
1
a3 a1 a32 a1a3
a3n2 a1a3n3 a3n1 a1a3n2
1
an a1
an2 a1an
ann2 a1ann3
ann1 a1ann2
a2 a1 a22 a1a2
按第二列展开
D=a12A12 +a22A22 +a32A32
=0 (1)1+2 1 3 +1 (1)2+2 1 2 +3 (1)3+2 1 2
线性代数行列式的性质与计算
线性代数行列式的性质与计算线性代数中的行列式是一种非常重要的数学工具,它在各个领域的数学和物理问题中都具有广泛的应用和重要性。
行列式是一个数,它与矩阵的元素有关,在许多情况下可以通过一些算法进行计算。
一、行列式的性质1.行列式有可加性:若A为n阶方阵,有两列完全相同,则行列式的值为0;若A为n阶方阵,交换两列,行列式的值变号。
2.行列式有因子约束:若A的其中一行或其中一列的元素是两个数之和,则A的行列式等于这两个数的和的行列式之和。
3.行列式有数乘的性质:若将A的其中一行或其中一列的元素都乘以k,则A的行列式等于k乘以这个行列式。
4.行列式对其中一行与另一行的代换变号,对其中一列与另一列的代换变号,换行、换列对行列式无影响。
5.方阵A与其转置矩阵A'行列式相等,即,A,=,A'。
6.若A为可逆的方阵,则,A,≠0;若A的其中一行全为0,则,A,=0。
二、行列式的计算1.二阶行列式的计算:设A为二阶方阵。
2.三阶行列式的计算:设A为三阶方阵a11a12a1A=,a21a22a23a31a32a33.高阶行列式的计算:a)拉普拉斯展开法:以行或列为基准进行展开,逐步减小行列式的阶数,直至计算到二阶行列式。
b)三角形矩阵法:若A为上(下)三角矩阵,则A的行列式等于对角元素的乘积。
c)伴随矩阵法:设A为n阶方阵,A的伴随矩阵的转置矩阵为A*,则,A,=,A*,=A*A^-1d)特征值法:设A的特征值为λ1,λ2,…,λn,则,A,=λ1λ2…λn.e)克拉默法则:若Ax=b为线性方程组,其中A为n阶方阵,且,A,≠0,则方程组有唯一解x=A^-1b.总之,行列式作为一种数学工具,在线性代数中具有重要的地位和作用。
它不仅可以帮助我们判断矩阵的可逆性,还可以求解线性方程组、计算矩阵的秩、判断矩阵的相似性等。
行列式的性质和计算方法可以帮助我们更好地理解和应用线性代数的相关知识。
行列式的性质与运算法则
行列式的性质与运算法则行列式是线性代数中的一个重要概念,它在矩阵运算中起着至关重要的作用。
行列式的性质和运算法则是我们学习和应用行列式的基础,本文将围绕这一主题展开阐述。
一、行列式的定义和基本性质行列式是一个数,它是一个方阵中元素的一种特殊组合。
对于一个n阶方阵A,它的行列式记作det(A)或|A|,其中n表示方阵的阶数。
行列式具有以下基本性质:1. 方阵A的行列式等于其转置矩阵A^T的行列式,即det(A) = det(A^T)。
2. 对调方阵A的两行(或两列),其行列式的值不变,即行列式具有行对换性质。
3. 如果方阵A的某一行(或某一列)的元素全为0,则行列式的值为0。
4. 行列式的值与方阵的行列式的值成正比,即如果一个方阵的某一行(或某一列)的元素都乘以一个常数k,那么行列式的值也将乘以k。
二、行列式的运算法则行列式的运算法则包括加法法则、数乘法则、乘法法则和转置法则。
1. 加法法则对于两个n阶方阵A和B,它们的行列式之和等于行列式分别取和的结果,即det(A + B) = det(A) + det(B)。
2. 数乘法则对于一个n阶方阵A和一个数k,方阵A的行列式乘以k等于行列式乘以k的结果,即det(kA) = k^n * det(A)。
3. 乘法法则对于两个n阶方阵A和B,它们的乘积的行列式等于行列式分别取乘积的结果,即det(AB) = det(A) * det(B)。
4. 转置法则对于一个n阶方阵A,它的转置矩阵A^T的行列式等于原方阵A的行列式,即det(A^T) = det(A)。
三、行列式的应用行列式的应用广泛,它在线性代数、微积分、几何学等领域都有重要的应用。
1. 判断方阵的可逆性一个n阶方阵A可逆的充要条件是其行列式不等于0,即det(A) ≠ 0。
利用这一性质,我们可以通过计算方阵的行列式来判断其可逆性。
2. 求解线性方程组对于一个n元线性方程组,我们可以将其系数矩阵表示为一个方阵A,并将常数项表示为一个列向量b。
行列式的性质与计算方法
行列式的性质与计算方法行列式是线性代数中非常重要的概念,是矩阵的一个标量。
它可以用来描述线性方程组的解的情况,也可以用来判断矩阵是否可逆等。
在本文中,我们将探讨行列式的性质和计算方法。
一、行列式的性质1. 行列式与转置矩阵矩阵的转置是指将矩阵的行和列调换,得到的新矩阵称为原矩阵的转置矩阵。
如果行列式的元素都是实数,那么它的值不会受转置操作的影响,即$\left|A\right|=\left|A^{T}\right|$2. 行列式的行列互换行列式的行列互换是指将行列式的任意两行或两列互换位置,得到的新行列式称为原行列式的行列互换。
行列互换会改变行列式的符号,即$\left|A\right|=-\left|A_{i j}\right| \text { , } i \neq j$其中$A_{i j}$表示将矩阵$A$的第$i$行和第$j$列删除后得到的$(n-1)\times(n-1)$矩阵的行列式。
3. 行列式的元素线性组合如果一个行列式的某一列(或某一行)减去另一列(或行)的$k$倍,得到的新行列式的值等于原行列式的值乘以$k$,即$\left|\begin{array}{cccc}{a_{1}} & {a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{i}} & {a_{i}} & {\cdots} & {a_{i}}+k a_{j} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{j}}& {a_{j}} & {\cdots} &{a_{j}}\end{array}\right|=\left|\begin{array}{cccc}{a_{1}} & {a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{i}} & {a_{i}} & {\cdots} & {a_{i}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{j}} & {a_{j}} & {\cdots} &{a_{j}}\end{array}\right|+k\left|\begin{array}{cccc}{a_{1}} &{a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{i}} & {a_{i}} & {\cdots} & {a_{j}} \\ {\vdots} & {} & {\vdots}& {\vdots} \\ {a_{j}} & {a_{j}} & {\cdots} &{a_{j}}\end{array}\right|$4. 行列式的行列成比例如果一个行列式的某两行或某两列成比例,那么该行列式的值为$0$,即$\left|\begin{array}{cccc}{a_{1}} & {a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {k a_{i 1}} & {k a_{i 2}} & {\cdots} & {k a_{i n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\{a_{j}} & {a_{j}} & {\cdots} & {a_{j}}\end{array}\right|=0$其中$\left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)$和$\left(a_{j 1},a_{j 2}, \cdots, a_{j n}\right)$是比例行列式的两行,$k$是一个非零实数。
2.2 行列式的性质与计算
a n1
an 2 ann
a n1
an 2 ann
10
a11
a12 an 2 a12 a1n bi 2
a1n
性质5 bi 1 ci 1
an1 a11 bi 1 an1
bi 2 ci 2 bin cin a11 an1 ann a12 a1n ci 2 cin
例9 证明范德蒙行列式(n≥2).
1 x1
2 Vn x1
1 x2
2 x2
1 x3
2 x3
1 xn
2 xn ( xi x j ),
n x1 1
n x 2 1
1 j i n
n n x 3 1 x n 1
证 n = 2:
1 x1
1 x2
x2 x1 , 结论成立.
2r1 r2 r1 r3
1
2
3
0 2 3 0 1 2
1 r2 r3 2
1
2
3 3 1 1 2
0 2 0 0
21
x
y x y
y y x
y x y
y y x
例7 计算 Dn
y y
.
x ( n 1) y
y y x
9
性质4 行列式中如果有两行(列)元素成比例,
则此行列式为零.
a11 ai 1
a12 a1n ai 2 ain
a11 ai 1
a12 a1 n ai 2 ain
k 0 ai 1 ai 2 ain kai 1 kai 2 kain
线性代数1.3 行列式的性质与计算
123
2 3 4 0
357
但是,该行列式并没有一 行(列)为0、两行(列) 相同或两行(列)成比例.
(3)使用消元法可以把行列式化为三角行列式的形式,从 而方便地求出行列式的值.此方法叫做化上(下)三角形法. (注意“1”的作用:消元时不产生分数。若没有“1”,有时 可通过消元法造出“1”)
《线性代数》精品课程
0 2a 2b 2c 2d xyza
《线性代数》精品课程
性质5
如果行列式的某一行(列)元素都是两数之和, 那么可以把行列式表示成两个行列式的和。
a11
a12 L
a1n
a11 a12 L a1n a11 a12 L a1n
L
L
L LL
L LL
L
D bi1 ci1 bi2 ci2 L bin cin bi1 bi2 L bin ci1 ci2 L cin
《线性代数》精品课程
三、分块三角行列式的计算
a11 a12 L a1n 0 0 L 0
a21 a22 L a2n 0 0 L 0
MM
MMM
M
D an1 an2 L ann 0 0 L 0 c11 c12 L c1n b11 b12 L b1m
c21 c22 L c2n b21 b22 L b2m
11 1 1r2 r3
0 1r2 r4 1 0 5
1
111Biblioteka 0 4 3r3
r4
5 0
1 0
0 0 12 1
01 5 1
0 0 16 2
00
《线性代数》精品课程
1 5
r3
2 1
11 1
12 1 40
02 3
行列式的性质及计算
am1 … amm b11 … b1n
,
… …
… …
D2 =
bn1 … bnn
,
证明: D = D1D2.
证明: 对D1施行ci+kcj 这类运算, 把D1化为下三 角形行列式:
a11 … a1m
… D1 = am1 … amm ... = = p11 … pmm , pm1 … pmm …
p11
第一章 矩阵
§1.6 方阵的行列式
对于n元线性方程组
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 a n1 x1 a n 2 x 2 a nn x n bn
第一章 矩阵
§1.6 方阵的行列式
二. 行列式的性质
性质1. 互换行列式中的两列, 行列式变号.
推论. 若行列式 D 中有两列完全相同, 则 D = 0. 性质2. (线性性质) (1) det(1, …, kj, …, n) = kdet(1, …, j, …, n); (2) det(1, …, j+j, …, n) = det(1, …, j, …, n) + det(1, …, j, …, n).
第一章 矩阵
§1.6 方阵的行列式
前面我们得到, a11 a12 a13 a21 a22 a23 = a31A31 + a32A32 + a33A33. a31 a32 a33
下面来看a11A31 + a12A32 + a13A33 = ? 容易看出
a11 a12 a13 a11A31 + a12A32 + a13A33 = a21 a22 a23 = 0. a11 a12 a13
§2 行列式的性质与计算
j (1) ( j j j ) a1 j (aij j j
1 2 n 1 1 2 n
i
biji ) anjn
a11 a12 a1n a11 a12 a1n ( 1) ( j j j ) a1 j aij anj j j j ai 1 ai 2 ain bi 1 bi 2 bin ( j j j ) ( 1) a1 j bij anj j j j an1 an 2 ann an1 an 2 ann
a1 p1 aip j a jpi anpn
p p (1) p p
( p1 p j pi pn )
D
§2 行列式的性质与计算
推论1 如果行列式中有两行(列)相同,那么
该行列式为零. 比如:
1 2 3 1 2 3 4 5 6
r1 r2
1 2 3 1 2 3 4 ห้องสมุดไป่ตู้ 6
3、再用同样的方法处理除去第一行和第一列后余下 的低一阶行列式; 4、如此继续下去,直至使它成为上三角形行列式, 这时主对角线上元素的乘积就是所求行列式的值.
§2 行列式的性质与计算
二、应用举例
例1. 计算行列式
0 1 D 1 2 2 2 0 0
1 1 2 1
1 0 1 1
2 2 0 0 1 1 1 3 0 1 1 1 2 2 2 4
§2 行列式的性质与计算
a b c d a ab abc abcd r3 r2 ( 1) 0 a 2a b 3a 2b c 0 a 3a b 6a 3b c
a 0 r2 r1 ( 1) 0 0
a r4 r3 ( 1) 0 0 0
2.2 行列式的性质与计算
1 2 例 计算 D 4 3 7 解 2 D 0 3
4 1 4 1 4 3 2 3 11 0 9 2
0 17 8 7 17 8 1 4 3 ( 1) 2 2 0 5 5 0 5 5 3 9 2 0 9 2
7 17 8 0 5 5 3 9 2
a1 n ain a jn kain ann
a1 n ain kain ann
det A k 0 det A
a11 ( 3) a j1 det A3 ai 1 an1 a11 ai 1 a j 1 ai 1 an1
2.2
2.2.1. 2.2.2.
行列式的性质与计算
行列式的性质 行列式的计算
2.2.3
方阵乘积的行列式
2.2.1
行列式的性质
性质1 行列式按任一行展开,其值相等,即 det A ai 1 Ai 1 ai 2 Ai 2 a in Ain ,
其中 Aij ( 1)
4 0 例 2 1 D 0 0 7 4
b
A E1 E2 E s
det( A ) det( Es E2 E1 )
T
T
T
T
(det Es )(det E2 )(det E1 )
(det Es )(det E2 )(det E1 ) det( E1 E2 Es )
det A
T
T
T
说明
行列式的性质对行成立的,对列也同样成立.
D a n 1b
a n 1b
a n 1b a n 1b
b a b b
a ( n 1)b 1 1
行列式的运算法则公式
行列式的运算法则公式1.行列式的性质:(1)交换定理:对于n阶行列式,将其行与列调换,则行列式的值不变。
(2)对角线法则:对于n阶行列式,行标和列标的和为偶数,则行列式的值为主对角线上各元素的乘积之和;行标和列标的和为奇数,则行列式的值为主对角线上各元素的乘积之差。
2.行列式的递推公式:(1)二阶行列式:对于2阶行列式,行列式的值等于左上角元素乘以右下角元素,减去右上角元素乘以左下角元素。
(2)三阶行列式:对于3阶行列式,行列式的值等于三个主对角线上元素的乘积之和,减去三个副对角线上元素的乘积之和。
3.行列式的初等变换:(1)行(列)交换:交换两行(列),行列式的值不变。
(2)行(列)倍乘:将其中一行(列)的元素乘以k,行列式的值乘以k。
(3)行(列)倍加:将其中一行(列)的k倍加到另一行(列)上,行列式的值不变。
4.行列式的倍数的性质:(1)行(列)成比例:若有两行(列)是成比例的,则行列式的值为0。
(2)带公因子:若行(列)中存在公因子,可提出公因子,行列式的值等于公因子乘以去掉公因子的行列式的值。
5.行列式的秩:(1)非零行列式:对于非零行列式,如果有r行(列)成线性相关,则行列式的值为0。
(2)对角行列式:对于对角行列式,主对角线上的元素均不为0,则行列式的值等于主对角线上各元素的乘积。
6.行列式的乘改定义:(1) 行列式的乘积定义:两个行列式A和B的乘积定义为C=AB,其中C的元素为C_ij = ∑(A_i1*B_1j),即A的第i行与B的第j列对应元素的乘积之和。
(2)顺序可交换:行列式的乘法满足顺序可交换,即AB=BA。
7.行列式的乘积规则:(1)两个行列式的乘积的维数:如果A是m×n的矩阵,B是n×p的矩阵,则AB的维数为m×p。
(2)AB的行列式的值:如果AB的行列式的值存在,且A的行行列式的值不为0,B的列行列式的值不为0,则AB的行列式的值等于A的行列式的值乘以B的行列式的值。
1.2 行列式的性质与计算
由性质 2 有 D D, 即得 D 0 .
11
§1.2 行列式的性质与计算 第 推论2 若行列式中有两行(列)的元素对应成比例,则行列式 一 P10 推论3 的值为零. 章 a11 a12 a1n 证明 a11 a12 a1n 行 列 ai 1 ai 2 ain a i 1 a i 2 a in 式 k 0.
a1n a2 n , 其转置行列式为 P6 ann
不妨 记为
a11
D
T
a12 a1n
a 21 a n1 a22 a n 2 a 2 n ann
~ T ~ a , M M 特点 a ij ji ij ji .
2
§1.2 行列式的性质与计算 第 一、行列式的转置 一 1. 转置行列式的概念与特点 章 2. 性质及其意义 行 T D D. 性质 行列式与它的转置行列式相等,即 列 式 P 7 性质1
§1.2 行列式的性质与计算 第 四、关于代数余子式的重要性质 一 a11 a12 a13 章 引例 已知 a11 A11 a 21 A21 a 31 A31 a 21 a 22 a 23 , a 31 a 32 a 33 行 列 式
4 a12 a13 5 a 22 a 23 ; 问 (1) 4 A11 5 A21 3 A31 ? 3 a 32 a 33 b1 a12 a13 b2 a 22 a 23 ; ( 2) b1 A11 b2 A21 b3 A31 ? b3 a 32 a 33 a12 a12 a13 a 22 a 22 a 23 0 . ( 3) a12 A11 a 22 A21 a 32 A31 ? a 32 a 32 a 33
意义 行列式中的 “行” 与 “列” 具有同等的地位,
行列式的性质与计算
1b bb
a (n 1)b
ab
ab 0
0 ab
a (n 1)b(a b)n1.
a0 1 1
1
1 a1 0
0
例 求行列式的值 D 1 0 a2
0
100
an
解
D
c1
(
1 a1
)c2
(
1 an
)cn1
a0
1 a1
0
0
0
1 an
1 a1 0
0
1 0 a2
0
1 0 0
an
(a0
3
2 2
0 0 0 1 0 0 0 2 2 2
1 1 2 3 1
0 2 1 5 3 r5 2r3 0 0 1 1 2
0 0 0 1 0 4
0 0 0 4 6
1 1 2 3 1
0 2 1 5 3
r5 4r4 0 0 1 1 2 2 1 6 12.
0 0 0 1 0
0 0 0 0 6
ni j1
x1n1 x2n1 xnn1
证 用数学归纳法
1 D2 x1
1
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
假设(1)对于 n 1 阶范德蒙德行列式成立,
11
1
x1 x2
xn
Dn x12
x22
xn2
x x n1
n1
1
2
x n1 n
rn ( x1 )rn1 1 rn1 ( x1 )rn2 0
1 16 81 256 625
解 D5 是 5 阶范德蒙行列式
D5
(xi xj )
行列式的性质与计算
行列式的性质与计算行列式是线性代数中的基本概念之一,它是一个非常重要的工具,在数学和许多其他领域中都有广泛的应用。
行列式的性质和计算是学习线性代数的基础之一。
一、行列式的定义行列式是由n个数字aij(i=1,2,n;j=1,2,n)组成的矩形表格,通常用大写字母D表示。
这些数字按照一定的规则排列,形成一个n阶方阵。
行列式D的值是一个与方阵有关的唯一的数,它反映了方阵线性变换的性质。
二、行列式的性质1.行列式的行和列具有相同的地位,因此行列式的性质可以按照行或列来描述。
2.交换两行或两列的位置,行列式的值不变。
即,如果i≠j,那么Dij=Dji。
3.行列式的某一行或某一列中所有元素的公因子可以提取出来,提取后剩余的元素按照原来的相对位置排列组成的行列式与原来的行列式相等。
即,如果k为常数,那么Dk=kD。
4.行列式中两行或两列对应元素相同,行列式的值为零。
即,如果i=j,那么Dij=0。
5.行列式可以按照某一行或某一列展开,展开后得到的行列式与原来的行列式相等。
6.行列式可以按照主对角线进行展开,展开后得到的行列式与原来的行列式相等。
7.行列式可以按照某一行或某一列进行递推展开,展开后得到的行列式与原来的行列式相等。
8.行列式可以按照某一行或某一列进行递归展开,展开后得到的行列式与原来的行列式相等。
三、行列式的计算行列式的计算是线性代数中的基本技能之一,也是解决许多问题的关键步骤。
下面介绍几种常见的计算方法:1.利用定义计算根据行列式的定义,我们可以直接计算行列式的值。
对于n阶方阵A,其行列式的定义为D=a11A11+a12A12+.+anAn,其中Aii是元素aij的代数余子式。
利用这个公式,我们可以直接计算任意一个n阶方阵的行列式。
2.利用性质计算利用行列式的性质,我们可以简化行列式的计算。
例如,根据行列式的交换律,我们可以将两行或两列交换位置;根据行列式的倍数律,我们可以将一行或一列乘以一个常数;根据行列式的零律,我们可以将一行或一列中所有元素设置为零;根据行列式的展开律,我们可以将行列式按照某一行或某一列展开等等。
线性代数之行列式的性质及计算
第二节 行列式的性质与计算 §2.1 行列式的性质考虑111212122212n n n n nna a a a a a D a a a =将它的行依次变为相应的列,得112111222212n n T nnnna a a a a a D a a a =称T D 为D 的转置行列式 .性质1 行列式与它的转置行列式相等.(T D D =)事实上,若记111212122212n n T n n nnb b b b b b D b b b =则(,1,2,,)ij ji b a i j n ==1212()12(1)n n p p p T p p np D b b b τ∴=-∑1212()12(1).n n p p p p p p n a a a D τ=-=∑说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行(i j r r ↔)或两列(i j c c ↔),行列式变号.例如123123086351.351086=-推论 若行列式D 有两行(列)完全相同,则0D =。
证明: 互换相同的两行, 则有D D =-, 所以0D =.性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即111211112112121212nn i i in i i in n n nnn n nna a a a a a ka ka ka k a a a a a a a a a = 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) D 中某一行(列)所有元素为零,则0D =;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和。
这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 。
行列式的性质和计算
i+ j
4 0 0 1 4 0 0 2 1 3 1 = 22 1 3 = 2×4 1 3 D= 4 3 0 0 0 2 7 4 3 7 4 3 2
= 2×4 ×(15)
例 计算 解
a11 a12 a1n a22 a2n Dn = 0 a1,n1 a2,n1 ann
Dn = ann
证
不可逆时: 当A不可逆时 设 不可逆时
初等行变换 A R(最后一行的元全为零) →
即存在初等矩阵 E1, E2, ..., Et, A = E1E2 Et R
det R = 0 det A = (det E1 )(det Et )(det R) = 0.
不可逆 又A不可逆 AT不可逆 不可逆 所以 det AT = 0.
2 A ≠ 2A
k An×n = k A ≠ k A .
n
初等矩阵与任一方阵A乘积的行列式: 初等矩阵与任一方阵 乘积的行列式: 乘积的行列式
det(Eij A) = det A = (det Eij )(det A), det(Ei (c) A) = c(det A) = (det Ei (c))(det A),
det(Eij (c) A) =det A = (det Eij (c))(det A).
对任一初等矩阵 E , det( EA ) = (det E )(det A )
设E1 , E2 ,, Et为初等矩阵,则 为初等矩阵, det( E1 E2 Et A) = (det E1 )(det Et )(det A)
1 7 5 r3 + ( 3 )r1 0 10 3 0 15 5 1 7 5 r3 + 3 r3 0 5 2 0 0 1
1 r2 r3 0
行列式的性质与计算行列式的性质有哪些行列式的计算方法
一、行列式的性质有哪些
(1) 行列式行列互换,其值不变;
(2) 互换两行(列),行列式的值变号;
(3) 某行(列)有公因子,可将公因子提出;
(4) 某行(列)的每个元素为两数之和,可以将行列式拆为两个行列式之和;
(5) 某行(列)的k倍加另一行(列),其值不变.
(6) 两行(列)成比例,其值为零;
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。
无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。
或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
二、行列式的计算方法是什么
1.若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
2.化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
这是计算行列式的基本方法重要方法之一。
因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。
3.原则上,每个行列式都可利用行列式的性质化为三角形行列式。
但对于阶数高的行列式,在一般情况下,计算往往较繁。
因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。
行列式性质及其计算方法
目录页
Contents Page
1. 行列式基本定义与性质 2. 行列式的基本运算规则 3. 行列式的展开定理证明 4. 特殊行列式的计算方法 5. 行列式与矩阵的关系 6. 行列式在线性方程组中的应用 7. 行列式的几何意义解释 8. 行列式计算实例与解析
行列式性质及其计算方法
行列式与矩阵的关系
▪ 行列式与矩阵在计算科学中的实现
1.在计算机中,可以通过编写程序来实现行列式和矩阵的计算 。 2.常用的计算行列式的方法包括:化三角形法、按行(列)展 开法等。 3.对于大型矩阵,可以采用一些高效算法来计算行列式,例如 LU分解法、QR分解法等。
行列式性质及其计算方法
行列式在线性方程组中的应用
行列式的基本运算规则
▪ 拉普拉斯定理
1.在n阶行列式中,取定k行(列),由这k行(列)的元素所 构成的一切k阶子式与其代数余子式的乘积的和等于行列式。 2.拉普拉斯定理亦称按k行展开定理,是行列式计算的重要工 具之一,可以用于化简和计算行列式。在使用拉普拉斯定理时 ,需要选择合适的k行(列)进行展开,并注意计算过程中的 符号变化。 以上内容仅供参考,建议查阅线性代数书籍或咨询专业人士获 取更全面和准确的信息。
行列式性质及其计算方法
行列式的基本运算规则
行列式的基本运算规则
▪ 行列式基本性质
1.行列式与其转置行列式相等。 2.互换行列式的两行(列),行列式变号。 3.行列式的某一行(列)的所有的元素都乘以同一数k,等于 用数k乘此行列式。 行列式的基本性质是行列式计算的基础,必须熟练掌握。这些 性质表明了行列式的一些基本特性和变化规律,为行列式的计 算和化简提供了重要的依据和方法。在利用性质进行计算时, 需要注意性质的适用条件和范围,以及计算过程中的符殊行列式的计算方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an1 an2 L ann
行列式的某一行中所有的元素都乘以同一数k, 等于用数k乘此行列式.
推论1 行列式中某一行的所有元素的公因子可以提到行列式符号外面.
推论2 某行元素全为零的行列式其值为零.
例
①
2 5
4 10
6
1
525 1
2 2
3 1
3 1 4
3 1 4
②
2 0
4 0
6
0 0
3 1 4
M
L
1
a2 a1
L L M
an a1 an (an a1)
M
按第1列展开 a2 (a2 a1) M
a3 a1
L
a3(a3 a1) L
M
0
an2 2
(a2
a1 )
L
an2 n
(an
a1 )
an2 2
(a2
a1)
an2 3
(a3
a1)
an a1
an (an a1) M
n
D ai j Ai j a1 j A1 j a2 j A2 j L anj Anj ( j 1, 2,K , n) i 1
按第2列展开
例
1 23 D 4 05
1 0 6
2
4 1
5 6
0
1 1
3 6
0
1 4
3 5
229 58
D
1 4 1
2 0 0
1 1L 1
例1.2.5
计算范德蒙行列式:Dn
a1 a12
M
a2 L
an
a22 L
an2
MMM
.
a n 1 1
a n 1 2
L
a n 1 n
解 对 Dn 依次作如下运算: rn a1rn1, rn1 a1rn2 ,…,r2 a1r1, 则
1 0 Dn 0 M
1 a2 a1 a2 (a2 a1)
1 a1 1
1 1
1 1 a2 1 1
练习3计算n阶行列式 D 1 1 1 a3 1
1
1
1 1 an
其中ai均不为零。
思考题
设n阶行列式 123 n 120 0
Dn 1 0 3 0 100 n
求第一行各元素的代数余子式之和
7 1 c1 c3 2 4 1 3 1 c2 3c3 0 0 1
6 15 4
2 3 4
按第2行展开(1)23 2
4 2
2 3
0 1 1L 1
12 0L 0
例1.2.4 计算 D 1 0 3 L 0
MMM
M
10 0L n
注: 此方法可推广到一般的爪型行列式计算.
注意: a1 b1 a2 b2 ? a1 a2 a3 b3 a4 b4 a3 a4
b1 b2 b3 b4
a1 b1 a2 b2 a1
a2 b1
b2
a3 b3 a4 b4 a3 b3 a4 b4 a3 b3 a4 b4
a1 a3
a2 a1 a4 b3
x2 )(x4
x2 )(x4
x3 )
x13 x23 x33 x43
a b b b b a b b
练习1计算n阶行列式 D b b a b
b b b a
1 2 2L 2 2 2 2L 2
练习2计算n阶行列式 D 2 2 3 L 2
M M MO M 2 2 2L n
246 ② 6 2 8 0
3 1 4
练习解方程
1123 1 2 x2 2 3
0 231列式D的某一行的各个元素乘以同一个数然后加到 另一行对应的元素上去,行列式的值不变.即
a11 M ai1 ka j1 M an1
a12
L
M
ai2 ka j2 L
性质2
a11
a12 L a1n
a11 a12 L a1n a11 a12 L a1n
MM
M MM M MM M
ai1 bi1 ai2 bi2 L ain bin ai1 ai2 L ain bi1 bi2 L bin
MM
M MM M MM M
an1
an2 L ann
an1 an2 L ann an1 an2 L ann
线性代数
金融数学教研室
1.2 行列式的性质与计算
一. n 阶行列式的性质 二. 计算行列式的常用方法 三、小结
一. n阶行列式的性质
性质1
a11 a12 L a1n
MM
M
a11 a12 L a1n
MM
M
kai1 kai2 L kain k ai1 ai2 L ain
MM
M MM
M
an1 an2 L ann
an2 n
(an
a1)
1 1L 1
a2
a3 L
an
每列提出公因子 (a2 a1)(a3 a1)L (an a1) a22
a32
L
an2
M MMM
an2 2
an2 3
L
an2 n
=(a2 a1)(a3 a1)L (an a1)Dn1
=(a2 a1)(a3 a1)L (an a1)(a3 a2 )(a4 a2 )L (an a2 )Dn2
2 8 6 8
例1.2.1 计算 D 3 9 5 10
3 0 1 2 1 4 0 6
(三角形法 )
1 4 3 4 3 9 5 10
解 D2
3 0 1 2 1 4 0 6
r2 3r1 1 4 3 4
r3 3r1 r4 r1
0 2
3 4 2
0 12 10 10
0 0 3 2
1 4 3 4
1 4 3 4
r3 4r2
0 2
3
4
2
r4
1 2
r3
0
2
3 4 2
0 0 6 2
0 0 6 2
.
0 0 3 2
000 1
213(6)1 36
练1. 计算行列式
0 1 1 2
D
1 1
1 2
0 1
2 0
2 1 10
1 1 0 2
意义 :行列式中的行与列具有同等的地位;
注:以上对行的性质对 列 也成立.
n
n
性质8 行列式D可按第1列展开,即 D ai1 Ai1 ai1(1)i1 Mi1
. i1
i 1
a11
Dn
a21 M
a22 MO
an1 an2 L ann
a11 a12 a1n 0 a22 a2n 0 0 ann
rj kri (c j kci )
定义1.2.1
a11 a12 L a1n
a11 a21 L an1
记 D a21 a22 L a2n , DT a12 a22 L an2
MM
M
MM
M
an1 an2 L ann
a1n a2n L ann
行列式DT称为行列式D的转置行列式.
性质7 行列式D与其转置行列式 DT 相等.
解D:r1
r2
0 1
1 2
1 1
2 0
2 1 10
r3 r1 1 1 0 2
r4 2r1
0 0
1 1
1 1
2 2
0 3 1 4
r3 r2
1
r4 3r2
0 0
1 1 0
0 1 2
2 2 4
1 1 0
r4 r3
0 0
1 0
1 2
2 2 4
an1 ann an1 ann
an1 ann
性质3 行列式的两行对换,行列式的值反号. 性质4 行列式中两行对应元素全相等, 其值为零.
性质5 行列式中两行对应元素成比例, 其值为零.
2 4 6 246 例 ① 5 10 5 3 1 4
3 1 4 5 10 5
6 6
3 1
1 3
11 1 61
3 1
1 3
1
r3 r1 r4 r1
0 6
1
0
2 0
0 2
0 48
0
6113 1113
0002
注:此方法可推广到一般的行和或列和相同的行列式求解问题
计算行列式的常用方法:
②降阶法: 将某行(某列)变换成只有一个元素不为0, 其 余元素均为0, 再按那行(列)展开, 降阶成低阶的行列式.
二、 行列式的计算
①三角形法
1、先将第一行与其它行交换使得第一列第一个元素 不为0 ,如为1; 2、然后把第一行分别乘以适当的数加到其它各行, 使得第一列除第一个元素外其余元素全为0;
3、再用同样的方法处理除去第一行和第一列后余下 的低一阶行列式;
4、如此继续下去,直至使它成为上三角形行列式, 这时主对角线上元素的乘积就是所求行列式的值.
L (aj ai ) 1i jn .
范德蒙行列式应用:
111 x1 x2 x3 (x2 x1)(x3 x1)(x3 x2 ) x12 x22 x32
1111
x1 x12
x2 x22
x3 x32
x4 x42
(x2