两个基本计数原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一对一授课教案
学员姓名:年级:所授科目:
(一)两个计数原理内容
1、分类计数原理:
完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+……+m
种不同的方法.
n
2、分步计数原理:
完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n 种不同的方法.
(二)例题分析
例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
现要配成一荤一素一汤的套餐。
问可以配制出多少种不同的品种?
分析:1、完成的这件事是什么?
2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤)
3、它们属于分类还是分步?(是否独立完成)
4、运用哪个计数原理?
5、进行计算.
解:属于分步:第一步配一个荤菜有3种选择
第二步配一个素菜有5种选择
第三步配一个汤有2种选择
共有N=3×5×2=30(种)
例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。
(1)从书架上任取一本书,有多少种不同的取法?
(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?
(1)分析:1、完成的这件事是什么?
2、如何完成这件事?
3、它们属于分类还是分步?(是否独立完成)
4、运用哪个计数原理?
5、进行计算。
解:属于分类:第一类从上层取一本书有5种选择
第二类从下层取一本书有4种选择
共有N=5+4=9(种)
(2)分析:1、完成的这件事是什么?
2、如何完成这件事?
3、它们属于分类还是分步?(是否独立完成)
4、运用哪个计数原理?
5、进行计算.
解:属于分步:第一步从上层取一本书有5种选择
第二步从下层取一本书有4种选择
共有N=5×4=20(种)
例3、有1、2、3、4、5五个数字.
(1)可以组成多少个不同的三位数?
(2)可以组成多少个无重复数字的三位数?
(3)可以组成多少个无重复数字的偶数的三位数?
(1)分析:1、完成的这件事是什么?
2、如何完成这件事?(配百位数、配十位数、配个位数)
3、它们属于分类还是分步?(是否独立完成)
4、运用哪个计数原理?
5、进行计算.
略解:N=5×5×5=125(个)
(2)(3)(4)师生共同完成
(三)巩固练习
1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?
2、有一个班级共有46名学生,其中男生有21名.
(1)现要选派一名学生代表班级参加学校的学代会,有多
少种不同的选派方法?
(2)若要选派男、女各一名学生代表班级参加学校的学代
会,有多少种不同的选派方法?
思考:有0、1、2、3、4、5六个数字.
(1)可以组成多少个不同的三位数?
(2)可以组成多少个无重复数字的三位数?
(3)可以组成多少个无重复数字的偶数的三位数?
(五)及时训练
1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通。
从甲地到丙地共有多少种不同的走法?
2.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
3.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为() A. 180 B. 160 C. 96 D. 60
若变为图二,图三呢?
5.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种? 一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,
先排末位共有13C 然后排首位共有1
4C
最后排其它位置共有
3
4A
由分步计数原理得
113434288C C A =
练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有
522522480A A A =种不同的排法
图一
图二
图三
4
4
3
练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的
6个元素中间包含首尾两个空位共有种4
6A 不同的方法,由分步计数原理,节目的不同顺序共有54
56A A 种
练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30
四.定序问题倍缩空位插入策略
例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行
排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:
7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4
7A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4
7A 种方法。
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法
练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
510C
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有6
7种不同的排法
允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素
的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种
练习题:
某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42
2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法8
7
六.环排问题线排策略
例6. 8人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此
位置把圆形展成直线其余7人共有(8-1)!种排法即7!
A
B C D E A
E H G F
七.多排问题直排策略
例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排
后4个位置上的特殊元素丙有1
4A 种,其余的5人在5个位置上任意排列有55
A 种,
则共有215
44
5A A A 种
练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复
合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有
24
54C A 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆
形排列共有1m
n A n 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研
练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种
例1 有12个人,按照下列要求分配,求不同的分法种数. (1)分为两组,一组7人,一组5人;
(2)分为甲、乙两组,甲组7人,乙组5人; (3)分为甲、乙两组,一组7人,一组5人; (4)分为甲、乙两组,每组6人; (5)分为两组,每组6人;
(6)分为三组,一组5人,一组4人,一组3人;
(7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人; (8)分为甲、乙、丙三组,一组5人,一组4人,一组3人; (9)分为甲、乙、丙三组,每组4人; (10)分为三组,每组4人.
(教师慢速连续读一遍例1,同时要求学生审清题意,仔细分析,周密考虑,独立地求解. 这是一个层次分明的排列、组合题,涉及非平均分配、平均分配和排列组合综合.各小题之 间有区别、有联系,便于学生分析、比较、归纳,有利于学生加深理解,提高能力) 师:请一位同学说一下各题的答案(只需要列式).
生:(1),(2),(3)都是55712C C ;(4),(5)都是6
6
612C C ;(6),(7),(8) 都是3347512C C C ;(9),(10)都是44
48412C C C 师:从这个同学的解答中,我们可以看出他对问题的考虑分先后次序,用位置法求解是掌握 了的.但是还请大家审清题意,看(3)与(1),(2);(5)与(4);(8)与(6), (7);(10)与(9)是否分别相同,有没有出现“重复”和“遗漏”的问题. (找班里水平较高的一位学生回答)
生:(3)和(1),(2);(5)和(4);(8)和(6),(7);(10)和(9)并不相 同.(3),(5),(8),(10)的答案都错了,既出现了“重复”也出现了“遗漏”的问题.(3)的答案是2
255
312
P C C ;
(5)是2266612P C C ;(8)是3
33347512P C C C (10)是3
34
448412P C C C。