有机化学第6章
合集下载
有机化学第六章烯烃

CH3
CH2CH3
CC
H
H
顺-2-戊烯
H
CH2CH3
CC
CH3
H
反-2-戊烯
Z式:双键碳原子上两个较优基团或原子处于双键同侧。
E式:双键碳原子上两个较优基团或原子处于双键异侧。
(优)CH3 C
H
CH2CH3(优)
CH3
C
C
CH3
(优)CH3CH2
CH(CH3)2(优) C
CH2CH2CH3
(Z)- 3-甲基-2-戊烯 (E)- 3-甲基-4-异丙基-3-庚烯
68% 17%
Br + C6H5CH CHCH3
-Br 环正离子
C6H5CH=CHCH3 Cl2
+ Cl C6H5CH CHCH3 Cl-
*
碳正离子
Cl- Cl
+
C6H5CH CHCH3
离子对
一般情况,加溴通过环正离子中间体 进行。
加氯通过环正离子中间体、碳正离子 或离子对进行。
立体选择性反应(stereoselective reaction)
0.33 0 /10-30 c.m 4oC -138.9oC
反式异构体对称性较高,熔点高于顺式异构体。 顺式异构体极性较强,沸点高于反式异构体。
第五节 化学反应
(一)催化氢化 (二)亲电加成反应 (三)自由基加成反应 (四)硼氢化反应 (五)氧化反应 (六) -氢卤代反应 (七) 聚合反应
(一) 催化氢化
顺式烯烃
H
H
C C Br2
CH3
CH3
H
H
Br
CH3
a Br-
CH3 b
Br
有机化学第六章芳香烃

Y
可见,凯库勒式并不能确切地反映苯的真实情况
现代物理方法(射线法、光谱法、偶极距的测定)表明,苯分子是 一个平面正六边形构型,键角都是120°,碳碳键长都是0.1397nm。图 示如下:
杂化轨道理论解释
苯分子中的碳原子都是以sp2杂化轨道互相沿对称轴方向重叠形成6个C-Cσ键组成一个 正六边形,每个C各以一个sp2杂化轨道分别与H的1s轨道沿对称的方向重叠,形成六 个C-Hσ键,由于是sp2杂化,所以键角都是120。所有原子均在同一平面上。 每个C还有一个未参与杂化的垂直于与碳环平面σ键的P轨道,彼此侧面重叠,形成一 个封闭的共轭体系,每个P轨道上有一个P电子,组成了π66大π键。由于共轭效应使π 电子高度离域,电子云完全平均化,故无单双键之分。 因此,苯的电子云是一个整体,分布在环的上、下方,并且是完全平均的,所以苯分 子中每个C-C键都有π键的性质,并且是完全相同的,故邻位二元取代物也应当只有一 种。 应当注意且要牢记,苯环中并没有一般的C-C单键和C=C双键。
( 2 )体系能量降低,氢化热(208.5 kJ·mol-1)比环己烯氢 化热的三倍低得多( 3×119.3-208.5 = 149.4 kj·mol-1 ),这 149.4 kj·mol-1即为苯的共轭能。
苯现在的表达方式
价键式
分子轨道离域式
共振式
自旋偶合价键理论 (1986年Copper等提出)
+ Cl2 + Br2
Fe 或 FeCl3 55~60℃
Fe 或 FeBr3 55~60℃
+ 2Cl2 Fe 或 FeCl3
反应历程:
Cl
+ HCl
Br
+ HBr
Cl
+
《有机化学(第二版)》第6章:立体化学基础

19:21
第六章
立体化学基础
19:21
第一节 顺反异构 一、顺式和反式 二、Z—型和E—型 三、顺反异构的性质
19:21
第一节 顺反异构
1、 顺反异构
重点介绍顺反异构体的Z/E标记法。 哪些化合物存在顺反异构体:
(1). 含有 C =C 、 C =N 、 N =N 双键的化合物。
(2). 环状化合物。
顺反异构现象。
顺反异构体的命名方法: 1. 顺/反标记法:
相同的原子或基团位于双键(或环平面)的同侧为“顺 式”; 否则为“反式”。
a C=C b b b a a C=C a b b b b a a a
19:21
b a
_ 顺式 (cis )
_ 反式 (trans )
_ 顺式 (cis )
_ 反式 (trans )
2. Z / E标记法:
该法是1968年IUPAC规定的系统命名法。
规定按“次序规则”,若优先基团位于双键的同侧为 Z
式(德文Zusammen的缩写,中文意为‘在一起’);否
a C=C b (Z)
c d
a c
b d
a C=C b (E)
d c
19:21
应用举例: 含C=C双键的化合物:
H Cl _ C=C H Cl H Cl C=C Cl H
翻 转
CO O H HO H C H3
翻 转
(2) 可以旋转n180。(n>=1),但不能旋转90。或270。。
19:21
CO O H H OH C H3
旋 转180
C H3 。 HO H CO O H
19:21
旋转180 。
CO O H H OH C H3
第六章
立体化学基础
19:21
第一节 顺反异构 一、顺式和反式 二、Z—型和E—型 三、顺反异构的性质
19:21
第一节 顺反异构
1、 顺反异构
重点介绍顺反异构体的Z/E标记法。 哪些化合物存在顺反异构体:
(1). 含有 C =C 、 C =N 、 N =N 双键的化合物。
(2). 环状化合物。
顺反异构现象。
顺反异构体的命名方法: 1. 顺/反标记法:
相同的原子或基团位于双键(或环平面)的同侧为“顺 式”; 否则为“反式”。
a C=C b b b a a C=C a b b b b a a a
19:21
b a
_ 顺式 (cis )
_ 反式 (trans )
_ 顺式 (cis )
_ 反式 (trans )
2. Z / E标记法:
该法是1968年IUPAC规定的系统命名法。
规定按“次序规则”,若优先基团位于双键的同侧为 Z
式(德文Zusammen的缩写,中文意为‘在一起’);否
a C=C b (Z)
c d
a c
b d
a C=C b (E)
d c
19:21
应用举例: 含C=C双键的化合物:
H Cl _ C=C H Cl H Cl C=C Cl H
翻 转
CO O H HO H C H3
翻 转
(2) 可以旋转n180。(n>=1),但不能旋转90。或270。。
19:21
CO O H H OH C H3
旋 转180
C H3 。 HO H CO O H
19:21
旋转180 。
CO O H H OH C H3
有机化学 第06章 卤代烃

乙烯型卤代烃,由于 P-π共轭,C-X键间的电子 密度比卤代烷中的有所增 加,也就是氯与碳的结合 比在卤代烷中牢固,所以 卤原子的活性比卤代烷中 的卤原子差。
亲核取代反应的立体化学
1. SN2的立体化学
亲核试剂Nu-并不是简单地替代离去团(L-),而是在它原位置 背面进攻中心碳原子,并造成C* 的构型反转,就象大风吹翻一把雨 伞。这种反转关系称为构型翻转式叫瓦尔登(Walden)转化。
不同卤代烃对亲核取代反应的活性比较:
H2C CH CH2 X CH2X H2C CH
( CH2 )n X
H2C
CH
X X
(
)>
n≥ 2 (RX)
>(
乙烯型卤代烃
)
烯丙型卤代烃
卤代烷及X与=远隔型卤代烃
这三类卤代 烃对于取代 反应的活性 差异是由分 子中的电子 效应决定的:
烯丙型卤代烃,由于取代 反应中形成的中间离子(烯丙 基正离子CH2=CH2—CH2+)的 碳正离子上的空P轨道与C=C上 的P轨道共轭,使其上的正电 荷得以分散,因而烯丙基正离 子格外稳定。
本章主要内容
卤代烃的分类、命名 卤代烃的性质 亲核取代反应历程 重要的卤代烃
卤代烃的分类、命名
一、分类
卤代烷 如:R-X 伯卤代烷 :RCH2-X 仲卤代烷 :R2CH-X 叔卤代烷 :R3C-X
一卤代烃
卤代烯
如: R-CH = CH X
分 类
多卤代烃
卤代芳香烃 如: 如: CHCl3
x
二、命名
1. 饱和卤代烃
2 3 4 5 以烃为母体命名,按照烃的命名法编号 5 4 3 2 1
CH3CH2CHCH2CH2CH3
有机化学第六章(高职高专)

键体系。
α 8
β7
α 1
2β
β6 5 α
3β 4α
萘的一元取代物只有两种,二元取代物两取代 基相同时有10种,不同时有14种。
2.萘及衍生物的命名
C2H5
CH3
C2H5
SO3H
1,6-二乙基萘 ; 4-甲基-1-萘磺酸
Br Br
1-溴萘 2-溴萘 α-溴萘 β-溴萘
3.萘的性质
(1) 取代反应 萘的取代反应较易发生在α位。
⑤烷基化试剂也可是烯烃或醇。例如:
+ CH2 CH2 AlCl3 + CH2CHCH3 H+
OH
C2H5 CH(CH3)2
(2) 酰基化反应
O + CH3C
Cl
AlCl3
O CH3 + CH3 C O AlCl3
CH3 C O
C CH3 + HCl O
CH3
C CH3 + CH3COOH
O 甲基对甲苯基酮
环的α位。如:
NO2
混酸
ห้องสมุดไป่ตู้NO2 NO2
NO2
+
NO2
二、其它稠环芳烃
8 91
7
2
9 10
8
1
6
37
2
5 10 4
65 43
芘
3,4-苯并芘
蒽
菲
所以,也可用下式表示苯的结构:
第四节 单环芳烃的物理性质
苯和同系物一般为无色液体,不溶于水,易溶 于有机溶剂,相对密度大多为0.86~0.93。
熔点除与相对分子质量有关外,还与结构的对 称性有关,通常结构对称性高的化合物,熔点较高。 芳香烃一般都有毒性,长期吸入它们的蒸气,会损 害造血器官及神经系统。
有机化学 第六章芳香烃

例如:
CH CH 2
C
CH
5 CH 3
4 CH 2
CH 3 3 1 2 CH CH CH 3
苯乙烯
苯乙炔
2-甲基-3-苯基戊烷
下一页
第六章 芳香烃
第一节 芳香烃的结构、异构和命名
三、单环芳烃的命名
4.如果侧链为两个及两个以上不饱和烃基,则仍然以 苯环作为母体来命名。 例如:
CH CH 2
苯环上去掉一个氢原子剩下的基团叫做 苯基( ),常用ph-表示。
OH
NH 2
CHO
COOH
SO3H
苯酚
苯胺
苯甲醛
苯甲酸
苯磺酸
下一页
第六章 芳香烃
第一节 芳香烃的结构、异构和命名
四、芳烃衍生物的命名
3.苯环上连有多个官能团
当苯环上连有两个或两个以上不同官能团时,就需按官
能团的优先次序来确定哪个官能团可作母体,哪个(些) 官能团作取代基。一些常见官能团的优先次序如下:
相对密度都小于1,比水轻 5. 溶解性 不溶于水,可溶于醇、醚,特别易溶于二甘醇、环 丁砜和N,N-二甲基甲酰胺等溶剂,因此常用这些 溶剂来萃取芳烃。 芳烃易燃,燃烧时产生浓烟。其蒸气有毒。
下一页
第六章 芳香烃
二、化学性质
第二节 单环芳烃的性质
单环芳烃的化学反应主要发生在苯环上。在
一定条件下,苯环上的氢原子容易被其他原子或 基团取代,生成许多重要的芳烃衍生物。在强烈
芳烃具有特殊的性质,本节课我们就来学习单
环芳烃的性质。
有 机 化 学
第六章
芳 香 烃
第二节 单环芳烃的性质
一、物理性质 1.物态 常温下,苯及其同系物都是无色具有芳香气味的液体。 2.沸点 随C数目↑而↑ 二甲苯的三个异构体的沸点很接近,难于分离 例如: 原因:侧链的位置对其没有大的影响 下一页
有机化学 第六章 芳香烃

第六 章 芳烃 芳香性
(一) 芳烃的构造异构和命名 (二) 苯的结构 (三) 单环芳烃的来源 (四) 单环芳烃的物理性质 (五) 单环芳烃的化学性质 (六) 苯环上取代反应的定位规则 (七) 稠环芳烃 (八) 芳香性 (九) 富勒烯
第六章 芳烃 芳香性
• 芳烃——芳香族碳氢化合物。含有苯环的一 大类C、H化合物。 “芳香”二字的含义:
1,2,4,5-四甲苯
(2) 命名
命名时,一般以芳环为取代基,也可以芳环为母体。具
体情况,具体对待:
CH=CH2
CH=CH2
苯乙烯
对二乙烯基苯 CH=CH2
CH2Cl
CH2OH
苯氯甲烷 氯苄
苯甲醇 苄醇
• C6H5- 苯基(Ph-) ;
C6H5CH2- 苄基 ;
Ar- 芳基(芳环上去掉一个氢后,所剩下的原子团);
O
慢
H
SO3-
快 HSO4-
+
σ-络合物
SO3- 快
H3O+
SO3H + H2O
(丁) 烷基化反应机理
苯环烷基化反应中,AlCl3的作用是与卤烷起反应, 加速R+的生成:
RCl + AlCl3
R+ + AlCl4-
亲电试剂
+ R+
R
+H
σ-络合物
AlCl4-
R + HCl + AlCl3
苯环烷基化反应时,产生异构化的原因:
Br
p-二溴苯
注意:第二个卤素原子进入第一个卤素原子的邻、对位。
(乙) 硝化
+ HNO3
浓H2SO。4
50-60 C
(一) 芳烃的构造异构和命名 (二) 苯的结构 (三) 单环芳烃的来源 (四) 单环芳烃的物理性质 (五) 单环芳烃的化学性质 (六) 苯环上取代反应的定位规则 (七) 稠环芳烃 (八) 芳香性 (九) 富勒烯
第六章 芳烃 芳香性
• 芳烃——芳香族碳氢化合物。含有苯环的一 大类C、H化合物。 “芳香”二字的含义:
1,2,4,5-四甲苯
(2) 命名
命名时,一般以芳环为取代基,也可以芳环为母体。具
体情况,具体对待:
CH=CH2
CH=CH2
苯乙烯
对二乙烯基苯 CH=CH2
CH2Cl
CH2OH
苯氯甲烷 氯苄
苯甲醇 苄醇
• C6H5- 苯基(Ph-) ;
C6H5CH2- 苄基 ;
Ar- 芳基(芳环上去掉一个氢后,所剩下的原子团);
O
慢
H
SO3-
快 HSO4-
+
σ-络合物
SO3- 快
H3O+
SO3H + H2O
(丁) 烷基化反应机理
苯环烷基化反应中,AlCl3的作用是与卤烷起反应, 加速R+的生成:
RCl + AlCl3
R+ + AlCl4-
亲电试剂
+ R+
R
+H
σ-络合物
AlCl4-
R + HCl + AlCl3
苯环烷基化反应时,产生异构化的原因:
Br
p-二溴苯
注意:第二个卤素原子进入第一个卤素原子的邻、对位。
(乙) 硝化
+ HNO3
浓H2SO。4
50-60 C
有机化学 第六章 卤代烃

+
+
H2 O ( C 2 H5 O H)
( C 2 H 5 O -)
第六章 卤代烃
36 15:49
单分子历程(E1)(续)
OH-、C2H5O-作为亲核试剂与碳正离子结合,生成醇或醚
R1 HOR C H2 R1 R2 R C H2 C+ R2 C 2H5OR C H2 C R2 O C 2H5 醚 R1 C OH 醇
E2表示。
第六章 卤代烃
34 15:49
单分子历程(E1)
首先生成碳正离子中间体:
R1 慢 R C H2 C R2 X R C H2 C+ R2 R1
+
X
下一步反应可能有两种情况: 第六章 卤代烃
35 15:49
单分子历程(E1)(续)
OH-、C2H5O-作为碱由-碳原子上夺取一个氢,生成烯
H HOR1 快 RCH C+ R2 RCH C R2 R1
9 15:49
亲核取代反应:起始于亲核试剂的进攻而发生的取代 反应(99页)※
Nu:-
+
+
R C
X R C : Nu
+
:X
亲核试剂
底物
离去基团
※三个概念:亲核试剂、底物、离去基团(99页) 第六章 卤代烃
10 15:49
①:被羟基取代:NaOH或KOH水溶液中共热, 生成醇。该反应被称为卤代烃的水解。
21 15:49
在化学动力学中,反应速率决定于反应中最慢的一步,反
应分子数则由决定反应速率的一步来衡量。上述历程
中第一步是决定反应速率的一步,而这一步决定于C-X
键的断裂,与作用试剂无关,所以叫做单分子历程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.. Br : Fe Br3 ..
慢
+ Fe Br4-
Br
Br
+
Fe Br4
快 + HBr + Fe Br3
烷基苯的取代反应
CH3
Br 2 Fe ,
CH3 Br
CH3
+
Br
硝化
• 以硝酸和浓硫酸(混酸)与苯共热,苯环上氢 被硝基取代生成硝基苯。
NO2
+
HO NO 2
H2S O4 50-60 C
o
第6章 芳香烃
芳香烃的概论
• 芳香烃最初是指从天然香树脂、香精油中提取 出来的具有芳香气味的物质,所以叫芳香烃。 • 芳香烃:是指符合Hü ckel规则的碳环化合物及 其衍生物的总称。
• Hü ckel规则:成环原子共平面的环状共轭多烯 化合物,当其分子中л电子数符合4n+2(n=0, 1, 2, 3,…正整数)时,体系具有芳香性。
H2O
+
+
NO 2 + HS O4+
H3O
总反应 2H2S O4
+
HNO3
H
H3O
NO2
+
+
NO 2 + 2HS O 4
+
+
H
+
+ NO 2
慢
NO2
NO2
+ HS O4-
快 + H2S O4
磺化
SO3H
+
H2S O4 (98%)
+
H2O
CH3
CH3
CH3 SO3H
+
H2S O4
+
SO3H
浓 H2S O4 , 70 - 80oC 或10%发烟 H2S O4 , 25oC
序号 基团 1 2 3 4 5 6 -COOH -SO2H -COOR -COX -CONH2 -CN 词头名称 羧基 磺酸基 烃氧羰基 卤甲酰基 氨基甲酰 基 氰基 词尾名称 酸 磺酸 酯 酰卤 酰胺 腈 序号 9 10 11 12 13 14 基团 -OH -OH -NH2 -OR -R -X (F, Cl, Br, I) 词头名称 羟基 羟基 氨基 烃氧基 烃基 卤代 词尾名称 醇 酚 胺 醚
SO3H SO3Na
+ (强有机酸)
NaO H
+
H2O
SO3H
ONa
共熔 + NaO H(固体) 300 C
ONa OH
o
+
Na2S O4
+
HC l
Friedel-Crafts反应(傅氏反应)
• 在无水三氯化铝等Lewis酸的催化下,苯可以 和卤代烷反应,生成烷基苯,这个反应叫 Friedel-Crafts反应或傅氏反应,是芳环上引 入烷基的方法之一。
Br
+
Br 2
Fe 或 Fe X3 + 溴苯 HBr
Br
Br
Br Br
+
Br 2
Fe +
Br
+
HBr
反应机理
3Br2 .. : Br .. + .. Br : .. 2Fe 2FeBr3 .. : Br .. .. Br : Fe Br3 ..
H Br
+
+ Fe Br3
.. + : Br ..
H
+
单环芳烃的化学性质
• 取代反应及其机理
A
取代反应
+
A B
+
H B
反应机理 A B A+ + BH A
+ +
H
A
+
A
+
碳正离子中间体
H
+
σ-配合物
A
A
B
-
+
H B
卤代反应
• 苯与氯、溴在一般情况下不发生反应,但在铁或铁 盐等的催化下加热,苯环上的氢可被氯或溴取代。 • 在比较强烈的条件下,卤苯可继续与卤素作用,生 成二卤苯,主要为邻、对位取代物。
7
8
-CHO
-CO-
甲酰基氧 代
氧代
醛
酮
15
16
-NO2
-NO
硝基
亚硝基
• 若两个取代基不同,按表1中列出顺序,先出 现的功能团为主功能团,与苯环一起作为母 体,另一个作为取代基。
Cl COOH CHO NH2 OH NO2
对硝基氯苯
间羟基苯甲酸
邻氨基苯甲醛
OCH3 Cl
OCH3 OH
邻氯苯甲醚
2-甲氧基苯酚
SO3H
SO3H
10%发烟 H2S O4 200 - 245oC
SO3H
磺化反应机理
2H2SO4+ຫໍສະໝຸດ SO3 Oδ+
H3O
+
HSO4-
Oδ
+
δ+ S
O
-
慢
H
+
SO3-
Oδ
O δ
O
δ+S
O
-
+S
O
-
δSO3-
δ-
O
H
+
SO3-
快 + HSO4+ H2SO4
SO3+
快
SO3H
+
H3 O
+
H2O
苯酚的一种制备方法
• 若苯环上的三个取代基相同,常用“连” (vic)、“偏” (unsym) 、 “均” (sym)表 示相对位置。
CH3 CH3 CH3 H3C CH3 H3C CH3
CH3
CH3
1,2,3-三甲苯 (连三甲苯)
1,2,4-三甲苯 (偏三甲苯)
1,3,5-三甲苯 (均三甲苯)
芳香烃的物理性质
• 不溶于水
+
H 2O
NO2
NO2
+
发烟 HO NO 2
H2S O4 100oC
NO2
+
H 2O
CH3
+
HO NO 2
30 C
o
CH3 NO2
CH3
+
NO2
甲苯比苯易于硝化,硝基苯比苯难于硝化
硝化反应机理
HO NO 2
+
+ H2S O4
+
H2O
NO 2 + HS O4+
H2O H2O
NO 2 + H2S O4
1 6 5 4 对 (p) 2 邻 (o) 3 间 (m)
CH3 CH3
CH3
CH3
CH3
CH3
邻二甲苯 (o-二甲苯) 1,2-二甲苯
COOH
间二甲苯 (m-二甲苯) 1,3-二甲苯
NH2 NH2
对二甲苯 (p-二甲苯) 1,4-二甲苯
COOH
对苯二甲酸 (俗称对酞酸)
邻苯二胺
表1 常见官能团的词头、词尾名称
• 溶于有机溶剂,如乙醚、四氯化碳、石 油醚等 • 沸点随分子量升高而升高 • 熔点除与分子量有关外,还与结构有关
苯分子的结构
• 苯分子中的碳原子都是sp2杂化,6个碳原子和6个氢 原子都在同一平面上,其中6个碳原子构成平面正六 边形。 • 分子中碳碳键长相等,均为0.140nm,比碳碳单键短 (0.154nm),比碳碳双键长(0.134nm);所有键角都是 120o。
苯分子中p轨道及大л键示意图
苯的共振式
(c) (d) (e)
(a)
(b)
• 真实分子(共振杂化体)的能量低于任何一个极限结构 的能量,这个能量差称为共振能(离域能)。 • 等价共振式所构成的体系具有最大的共振稳定作用, 对共振杂化体贡献最大。 • 参加共振的极限结构式愈多,化合物分子中电子离域 的可能性愈大,分子就愈稳定。 • 键长、键角变形较大的极限结构对共振杂化贡献小。
单环芳烃的命名
• 以苯环为母体,称为某烷(基)苯。
CH3 CH(CH )2 3 CH3
CH3
苯
甲苯
异丙苯
对二甲苯
• 以苯环为取代基
O CH CH2 C CH C H H2C COOH
苯乙烯
苯乙炔
苯甲醛
苯乙酸
苯二取代物的命名
• 苯二取代物有三种异构体,命名时用邻或 o(ortho)、间或m(meta)和对或p(para)来表 示两个取代基的相对位置。邻、间、对也可 以用1,2-、1,3-、1,4-表示。