八年级平面几何最值问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级平面几何最值问题

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用其它知识求最值。

1、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。

2、如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm 。

3、在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .

4、如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .

5、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】

A . 1

B .3

C . 2

D .3+1 6、如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,

点B 的坐标为【 】

A.(0,0)

B.(2

1-,21

-) C.(22,22-) D.(22-,22-)

7、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为【 】 A 、1 B 、2 C 、3 D 、4

8、如图,等腰梯形ABCD 中,AD ∥BC ,AD=AB=CD=2,∠C=60°,M 是BC 的中点.

(1)求证:△MDC 是等边三角形;

(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.

9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角 坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA

十QB 的值最小的点,则OP OQ ⋅= .

答案:1.4 2.15 3.1

9.5

相关文档
最新文档