八年级平面几何最值问题

合集下载

平面几何的最值问题及求法

平面几何的最值问题及求法
5 一
数 学教 学
21 年第 5 00 期
平 面几何 的最值 问题 及 求法
55 21 3 0广东 省东莞市常 学( 部 平中 高中 )陈 洪波


利用三角形的性质
利用三 角形 “ 两边之和大 于第三边, 两边之
设正 △AB 的边长为 2 M 是 J 边上的中点, , E ; j是边B [ ) 上的任意一点, +P 的最大值 P M 和最小值分别记为s , 和t 则求 s 一t的值. 解: 如图 2 . P ≤ ,’ ,F ≤ M, ’ J ) PA+ PM ≤ CA+ CM = 2+ 、3 /. /
所 以P P = xOp 2 / ' +O " P
例2 ( 0 年全国初中数学联合竞赛试题) 2 0 0
21 年第 5 00 期
=  ̄ OP2+ OP2= 1 v - / 0 / 2

数 学教 学
52 —5
解: 以点 为旋转 中心, ABC 将 E按顺时针 方向旋转 6 。 ABG 连结 EF, AB 0到 F, 则 EF为
A1

‘ \ ,

、 \\ M 、1 ^

3 。 0 .
j、 、 ‘ , N
图4
设 正方 形 边 长 为 , BG = , 则 GH = - , 4 x
B 日 : 日 :
( ) + .
由G H 十 日 =AG , 得
1 2 +
分析: 因河宽一定的, 以桥 M Ⅳ 的长度一 所 定, 只须使 M +BⅣ 最短即可. 可平移 M ( 或
于 B. ’Rc . △DD G中, DG. 。DD . DD > . .

M 连结 CM 则 . , M = 9 。 所以 0, M xA +C = / C2 = 、7 . = 、 . /,’ / .£ / / 7 从而 8 一t =( 十 ) 一7 4 . 。 。 2 。 =4 5 二、 利用对称变换 例3 (00 20 年黄 冈初 中数学竞赛试题) 如图 3 , (B = 4 。 二 ) 5 角内有一 点P, PO = 1, 0 在 角的两条 边上有两点 Q 均不 同于点 D, 、 求 AP R的周长的最小值. Q

八年级几何最值问题

八年级几何最值问题

八年级几何最值问题(一)将军饮马问题。

1.如图,在平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.(二)找中点,找不变线段。

例:如图,∠ACB=90°,BC=8,AC=6,点P为AC上一动点,连BP,CM⊥BP,求AM的最小值。

练习:如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A. B. C. 2 D.3(三)构造全等三角形练习:如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,△AMB≌△ENB。

求证:(1)①当M点在何处时,AM+CM的值最小。

②当M点在何处时,AM+BM+CM的值最小,并说明理由。

(2)当AM+BM+CM的最小值为√3+1时,求正方形的边长。

课后习题1.如图,在边长为2的菱形ABCD中,∠ABC=60°,若将△ACD绕点A旋转,当AC′、AD′分别与BC、CD 交于点E、F,则△CEF的周长的最小值为()2A.2 B.32 D.4C.32.如图,正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E ,若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值是________.3.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .26C .3D 64.如图,已知正方形ABCD 的边长为3,点E 在AB 边上,且BE =1,点P ,Q 分别是边BC ,CD 上的动点(均不与顶点重合),求四边形AEPQ 的周长的最小值为.5.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°6.如图,在Rt △ABC 中,∠C =90°,BC =3,AC =4,M 为斜边AB 上一动点,过点M 作MD ⊥AC 于点D ,过点M 作ME ⊥CB 于点E ,求线段DE 的最小值.ADEPB CABMN。

初中几何中的最值问题解析

初中几何中的最值问题解析

初中几何中的最值问题解析在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P 初中物理,使PA+PB最小。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗? 分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

(完整版)初中几何最值问题(最新整理)

(完整版)初中几何最值问题(最新整理)
【巩固】设正三角形 ABC 的边长是 2, M 是 AB 边上的中点, P 是边 BC 上任意一点,则 PA+PM 的最
大值为_______,最小值为________
【例3】如图,已知等边△ABC 的边长为 1,D、E、F 分别是 AB、BC、AC 边上的点(均不与点 A、B、C 重合),
记△DEF 的周长为 p .若 D、E、F 分别是 AB、BC、AC 边上任意点,则 p 的取值范围是
y
B
C
y
B
C
D
D
O E Ax
O
Ax
D (Ⅱ)若 E 、 F 为边 OA 上的两个动点,且 EF 2 ,当四边形 CDEF 的周长最小时,求点 E 、 F 的坐标.
【巩固】已知点 A(3,4),点 B 的坐标为(﹣1,1)时,在 x 轴上另取两点 E,F,且 EF=1.线段 EF 在 x 轴上平移,线段 EF 平移至何处时,四边形 ABEF 的周长最小?求出此时点 E 的坐标.
【例9】已知直线 y 1 x 1 与 y 轴交于点 A,与 x 轴交于点 D,抛物线 y 1 x2 bx c 与直线交于 A、E
2
2
两点,与 x 轴交于 B、C 两点,且 B 点坐标为(1,0).
(1)求该抛物线的解析式;
(2)在抛物线的对称轴上找一点 M,使| AM MC | 的值最大,求出点 M 的坐标。
【 例 2】 AB CD 是 半 径 为 5 的 A O 的 两 条 弦 , AB 8 , CD 6 , MN 为 直 径 , AB MN 于 点 E , CD MN 于点 F , P 为 EF 上任意一点,则 PA+PC 的最小值为_________
A C
M
E

几何最值问题常用解法初二

几何最值问题常用解法初二

几何最值问题常用解法初二几何最值问题是指在给定的几何条件下,求解出某个量的最大值或最小值。

这类问题在数学竞赛和应用问题中经常出现,对学生的综合能力和解题能力提出了要求。

下面将介绍几何最值问题常用的解法。

一、勾股定理求解最大值勾股定理是几何最值问题中应用最广泛的方法之一。

根据勾股定理,对于任意一个直角三角形,斜边的平方等于两直角边的平方和。

因此,当已知两条边的长度时,可以通过勾股定理求解另一条边的最大值或最小值。

例题1:在直角三角形ABC中,已知AB=3,BC=4,求AC的最大值。

解法:根据勾股定理,AC的平方等于AB的平方加BC的平方,即AC^2=3^2+4^2=9+16=25。

所以AC的最大值为5。

例题2:在直角三角形ABC中,已知AB=5,AC=13,求BC的最小值。

解法:根据勾股定理,BC的平方等于AC的平方减去AB的平方,即BC^2=13^2-5^2=169-25=144。

所以BC的最小值为12。

二、三角形面积法求解最大值三角形面积公式是几何最值问题中常用的方法之一。

根据三角形面积公式,三角形的面积等于底边乘以高的一半。

因此,当已知底边和高的一半时,可以通过三角形面积公式求解三角形面积的最大值或最小值。

例题3:已知一个三角形的底边长是6,高的一半是5,求这个三角形的最大面积。

解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即面积=6*5=30。

所以这个三角形的最大面积是30。

例题4:已知一个三角形的底边长是10,面积是24,求这个三角形的最小高。

解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即24=10*高/2,解得高=4.8。

所以这个三角形的最小高是4.8。

三、相似三角形属性求解最大值相似三角形属性是几何最值问题中常用的方法之一。

相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的边长之比等于对应边的比值,面积之比等于对应边长的平方的比值。

例题5:已知两个相似三角形的面积分别是16和25,求这两个相似三角形的边长之比。

初中数学几何最值存在性问题(word版+详解答案)

初中数学几何最值存在性问题(word版+详解答案)

几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。

几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。

【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

(完整)八年级平面几何最值问题

(完整)八年级平面几何最值问题

八年级平面几何最值问题解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用其它知识求最值。

1、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是。

2、如图,圆柱底面半径为2cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为cm 。

3、在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是.4、如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是_.5、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【】A . 1B.3C . 2D .3+16、如图,点A 的坐标为(-1,0),点B 在直线yx 上运动,当线段AB 最短时,点B 的坐标为【】A.(0,0)B.(21,21) C.(22,22) D.(22,22)7、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为【】A 、1B 、2C 、3D 、4 8、如图,等腰梯形ABCD 中,AD ∥BC ,AD=AB=CD=2,∠C=60°,M 是BC 的中点.(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC ′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB 的值最大的点,Q 是y 轴上使得QA十QB 的值最小的点,则OP OQ =.答案:1.4 2.15 3.1<AD<4 4.3 5.B 6.B 7.B 8.2+9.5。

初中数学-平面几何的最值问题

初中数学-平面几何的最值问题

平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值.PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB 为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算: 路线1:l 12=AC 2= ;路线2:l 22=(AB +BC )2= .∵ l 12 l 22,∴l 1 l 2 ( 填“>”或“<”),所以应选择路线 (填“1”或“2”)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率.NMEDAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值.1ABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.。

几何最值36问(附详解)

几何最值36问(附详解)
【答案】83
C
【解析】如图,取△AEF 的外心 O,连接 OA、OF、OE,
则 OA=OE=OF,且∠FOE=2∠FAE=60°,
∴△OEF 为等边三角形,
过 O 作 OG⊥EF 于点 G,交 AB 于点 H,
F
G
E
设 EF=2x,则 HD=GE=x,AH=4-x,而 OA=2x,
由“斜垂大法”可知 OA≥AH,
Q
∴PQ= 2PF,∴PQ+PD≥DQ=4,
∴ 2PF+PD=PQ+PD≥DQ=4.
F
或由托勒密不等式可得:
P
PF·AD+AF·PD≥AP·DF,而 AD= 2AF= 2DF,
∴ 2PF+PD≥AP=4.
A
B
D
(14)若∠CAE=30°,AD=4,过 E 作 EF∥AD 交 AC 于点 F,求 EF 的最小值;
【答案】2 6+2 2
C
【解析】如图,把△DPC 绕点 D 顺时针旋转 60°至△DQR,连接 PQ,AR,
则 QR=PC,且△PDQ 为等边三角形,
∴PQ=PD,
R
Q
∴PA+PD+PC=PA+PQ+QR≥AR,
P
过 R 作 RS⊥AB 于点 S,
则 RS=12RD=2,DS= 3RS=2 3,
A
D
过点 E 作 EG⊥CF 于 G,过点 A 作 AS⊥CF 于 S,则 EG=12CE,
∴AS+EG≤AE,
∴AE-EG≥AS,
I
H
G
∴ID=3 = 43 3,
∴AI=AD-ID=6-43
∴AS=
3
AI=3
2
D
A
∵AD=6,CD=4,

初中数学平面几何最值问题培优专题训练

初中数学平面几何最值问题培优专题训练

初中数学平面几何最值问题培优专题训练1. 引言平面几何最值问题是初中数学中的一个重要概念,它涉及了数学中的最大值和最小值的求解。

本文旨在为初中生提供一些培优专题训练,帮助他们更好地理解和掌握平面几何最值问题的解题方法。

2. 训练题目下面是一些平面几何最值问题的训练题目,供初中生进行练和思考:1. 计算等边三角形的最大面积。

2. 求一个正方形的最小周长。

3. 在一个给定的圆内,找出一个长方形的最大面积。

4. 在一个长方形的周长固定的情况下,如何确定它的最大面积?5. 如何证明:对于一个给定的周长,圆是能够围成最大面积的图形。

3. 解题思路在解决平面几何最值问题时,可以采用以下简单的策略:- 利用几何图形的对称性。

常常可以通过找到几何图形的对称性来简化问题,并找到最值点。

- 利用几何图形的性质和公式。

根据几何图形的性质和公式,可以建立方程或关系,从而求解最值问题。

- 利用数学推理和证明。

通过数学推理和证明,找到最值问题的解题方法和结论。

4. 例题解析下面是几个例题的解析,以帮助初中生更好地理解解题思路和方法:例题1:等边三角形的最大面积解析:等边三角形的面积由边长决定,所以要找最大面积,就需找到最长的边长。

根据等边三角形的性质,可以知道三个边长相等,因此最长的边长是三边中的任意一条边长。

所以等边三角形的最大面积是以任意边长为边长的正三角形。

例题2:正方形的最小周长解析:正方形的周长由边长决定,所以要找最小周长,就需找到最短的边长。

正方形的四条边相等,因此最短的边长是四条边中的任意一条边长。

所以正方形的最小周长是以任意边长为边长的正方形。

例题3:长方形的最大面积(固定周长)解析:长方形的周长固定,设为2L+2W。

要求最大面积,可以使用数学推理。

根据不等式性质,当L=W时,面积最大。

因此,最大面积的长方形是正方形。

例题4:圆的最大面积(固定周长)解析:圆的周长固定,设为2πr。

要求最大面积,可以使用数学证明。

初中几何最值问题的常用解法

初中几何最值问题的常用解法

初中几何最值问题的常用解法
初中几何最值问题的常用解法有以下几种:
1. 利用图形的性质和特点:根据所给的几何图形,利用其性质和特点推导出最值问题的解答。

例如,利用等腰三角形的性质,可以求解最短路径问题;利用圆的性质,可以求出最大面积问题等。

2. 利用相似三角形:当给定的几何图形不易直接求解时,可以通过构建相似三角形来求解最值问题。

通过建立相似三角形的比较关系,可以求得所需的未知数,并得到最值问题的解答。

3. 利用变量法:将所给的几何图形进行变量代换,将问题转化为代数问题。

通过对新的代数表达式进行求导或求极值的方法,可以求解最值问题。

4. 利用平面几何基本定理:平面几何基本定理是初中几何学中的核心理论,其中包括了如角等分线定理、平行线性质定理、正弦定理、余弦定理等。

利用这些定理,可以有效地解决几何最值问题。

总之,初中几何最值问题的解决方法需要深入理解几何图形的性质和运用几何定理,同时也需要灵活运用代数方法和应用数学思维来解决问题。

第二十三讲 平面几何的定值与最值问题(含解答)-

第二十三讲  平面几何的定值与最值问题(含解答)-

第二十三讲平面几何的定值与最值问题【趣题引路】传说从前有一个虔诚的信徒,他是集市上的一个小贩.••每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,•而周围上的点都是供信徒朝拜的顶礼地点如图1.这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,•然后再到集市的路程最短呢?(1) (2)解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.证明如图2,在圆周上除P点外再任选一点P′.连结BP•′与切线MN•交于R,AR+BR>AP+BP.∵RP′+AP′>AR.∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.不过,用尺规作图法求点P的位置至今没有解决.•“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.【知识延伸】平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1如果△ABC的外接圆半径R一定,求证: abcS是定值.(S表示△ABC的面积)解析由三角形面积S=12absinC和正弦定理sincC=2R,∴c=2RsinC.∴abcS=2sincC=4sinsinR CC=4R是定值.点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值.平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,•某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,•这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式).例2 如图,已知⊙O的半径R=33,A为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是多少?解析当O′落在OA的连线段上(即⊙A与线段OA的交点B时)OO′最短,且最短长度为33-3 ;当O′落在OA的延长线上(即⊙O与OA的延长线交点C时)OO′最长,且最长的长度为33+3 .点评⊙O′是一个动圆,满足条件的⊙O′有无数个,但由于⊙O′过A点,所以⊙O′的圆心O′在以A为圆心半径为3的⊙A上.【好题妙解】佳题新题品味例1 如图,已知P为定角O的角平分线上的定点,过O、P•两点任作一圆与角的两边分别交于A、B两点.求证:OA+OB是定值.证明连结AP、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.•另记x1=OA,x2=OB.对△POA应用余弦定理,得x12+OP2-2OP·cos∠AOP·x1=r2.故x1为方程x2-2OP·cos 12∠AOB·x+(O P2-r2)=0的根,同理x2亦为其根.因此x1,x2为此方程的两根,由韦达定理,得x1+x2=2OP(12∠AOB)是定值.点评当x 1=x 2时,x 1+x 2为此定值,事实上此时OP 一定是直径.例2 如图,在矩形ABCD 中,AB=8,BC=9,⊙O 与外切,且⊙O 与AB 、BC•相切.⊙O ′与AD 、CD 相切,设⊙O 的半径为x,⊙O 与⊙O ′的面积的和为S,求S•的最大值和最小值. 解析 设⊙O ′的半径为y,过O 与O ′分别作CD 与BC 的垂线OH,O ′F,•垂足分别为H,F,OH 、O ′F 交于点E,则有:O ′E=8-(x+y),OE=9-(x+y) 由勾股定理可得:(x+y)2=[8-(x+y)]2+[9-(x+y)]2. 整理,得(x+y-29)(x+y-5)=0,由题意知1≤x ≤4,∴x+y=5,y=-x+5,∴S=πx+πy=π(2x-10x+25),=2π[(x-52)2+254], 故当x=52时,S min =252π; 当x=4时,S=17π.点评先由已知求出⊙O ′的半径也⊙O 的半径x 之间的关系,然后再根据面积公式写出S 与x 之间的关系,这个关系就是一个函数关系,再通过函数的性质得解.中考真题欣赏例 (南京市中考题)如图,⊙O 1与⊙O 2内切于点P,又⊙O 1切⊙O 2•的直径BE 于点C,连结PC 并延长交⊙O 2于点A,设⊙O 1,⊙O 2的半径分别为r 、R,且R ≥2r.•求证:PC ·AC 是定值.解析 若放大⊙O 1,使⊙O 1切⊙O 2的直径于点O 2(如图), 显然此时有PC ·AC=PO 2·AO 2=2r ·R(定值). 再证明如图的情况:连结C O 1,PO 2,• 则PO 2•必过点O 1,•且O 1C ⊥BE,得CO 2=22121O O O C -=22R Rr -,从而BC=R+22R Rr -,EC=R-22R Rr -.所以PC ·AC=EC ·BC=2Rr,故PC ·AC 是定值. 点评解答几何定值问题时,可先在符合题目条件的前提下用运动的观点,从特殊位置入手,找出相应定值,然后可借助特殊位置为桥梁,完成一般情况的证明.竞赛样题展示例1 (第十五届江苏省初中数学竞赛题)如图,正方形ABCD的边长为1,•点P为边BC 上任意一点(可与点B或点C重合),分别过点B、C、D作射线AP的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的最大值和最小值.解析∵S△DPC= S△APC =12 AP·CC′,得S 四边形BCDA= S△ABP+ S△ADP+ S△DPC= 12AP(BB′+DD′+CC′),于是BB′+CC′+DD′=2 AP.又1≤AP≤2,故2≤BB′+CC′+DD•′≤2,∴BB′+CC′+DD′的最小值为2,最大值为2.点评本题涉及垂线可考虑用面积法来求.例2 (2000年“新世纪杯”广西竞赛题)已知△ABC内接于⊙O,D是BC•或其延长线上一点,AE是△ABC外接圆的一条弦,若∠BAE=∠CAD.求证:AD.AE为定值.证明如图 (1),当点D是BC上任意一点且∠BAE=∠CAD时,连结BE,则∠E=∠C,∠BAE=∠CAD,∴△ABE∽△ADC.∴AB AEAD AC=,即AD·AE=AB·AC为定值.如图 (2),当点D在BC的延长线上时,∠BAE=∠CAD.此时,∠ACD=∠AEB.∴△AEB∽△ACD,∴AB AE AD AC=即AD·AE=AB·AC为定值.综上所述,当点D在BC边上或其延长线上时,只要∠CAD=∠BAE,总有AD·AE为定值. 点评先探求定值,当AD⊥BC,AE为圆的直径时,满足∠BAE=∠CAD这一条件,•不难发现△ACD ∽△AEB,所以AD·AE=AB·AC,因为已知AB,AC均为定值.•再就一般情况分点D•在BC上,点D在BC的延长线上两种情况分别证明.全能训练A级1.已知MN是⊙O的切线,AB是⊙O的直径.求证:点A、B与MN的距离的和为定值.2.已知:⊙O与⊙O1外切于C,P是⊙O上任一点,PT与⊙O1相切于点T.求证:PC:PT是定值.3.⊙O 1与⊙O 2相交于P 、Q 两点,过P 作任一直线交⊙O 1于点E,交⊙O 2于点F.求证:∠EQF 为定值.4.以O 为圆心,1为半径的圆内有一定点A,过A 引互相垂直的弦PQ,RS.求PQ+RS 的最大值和最小值.5.如图,已知△ABC 的周长为2p,在AB 、AC 上分别取点M 和N,使MN•∥BC,•且MN 与△ABC 的内切圆相切.求:MN 的最值.CABMNA 级(答案)1.定长为圆的直径;2.利用特殊位置探求定值(当PC 构成直径时)是两圆的半径). 3.因∠E,∠F 为定角(大小固定)易得∠EQF 为定值.4.如图,设OA=a(定值),过O 作OB ⊥PQ,OC ⊥RS,B 、C 为垂足, 设OB=x,OC=y,0≤x ≤a,(0≤y ≤a),且x 2+y 2=a 2. 所以所以∴(PQ+RS)2=4(2-a 2+而x 2y 2=x 2(a 2-x 2)=-(x 2-22a )2+44a . 当x 2=22a 时,(x 2y 2)最大值=44a .此时;当x 2=0或x 2=a 2时,(x 2y 2)最小值=0,此时(PQ+RS )最小值=2(). 5.设BC=a,BC 边上的高为h,内切圆半径为r. ∵△AMN ∽△ABC,2MN h r BC h -=,MN=a(1-2rh),• 由S △ABC =rp,∴r=2ABC S ahp p∆=, ∴MN=a(1-a p )=p ·a p (1-a p )≤p 2(1)2aa p p⎡⎤+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=4p ,当且仅当a p =1-a p ,即a=2p 时,取等号,∴MN 的最大值为4p.B级1.如图1,已知正方形ABCD的边长为3,点E在BC上,且BE=2,点P在BD上,则PE+PC的最小值为( )A.23B. 13C. 14D.15E D CAB PSQA B PM(1) (2) (3)2.用四条线段a=14,b=13,c=9,d=7.作为四条边构成一个梯形,•则在所构成的梯形中,中位线长的最大值是__________.3.如图2,⊙O的半径为2,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB•延长线上任一点,QS⊥OP于S,则OP·OS=_______.4.已知,如图3,线段AB上有任一点M,分别以AM,BM为边长作正方形AMFE•、•MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O′交于M、N两点,则直线MN的情况是( •)A.定直线B.经过定点C.一定不过定点D.以上都有可能5.如图,已知⊙O的半径为R,以⊙O上一点A为圆心,以r为半径作⊙A,•又PQ与⊙A 相切,切点为D,且交⊙O于P、Q.求证:AP·AQ为定值.6.如图,⊙O 1与⊙O 2相交于A 、B 两点,经过点B•的一直线和两圆分别相交于点C 和D,设此两圆的半径为R 1,R 2.求证:AC:AD=R 1:R 2.B 级(答案)1.B.∵A 、C 关于BD 对称,连结AE 交BD 于P,此时PE+PC=AE 最短.2.11.5 (1)当上底为7,下底分别为14,13,9时,中位线长分别为10.5,10,8; (2)当上底为9和13时,均构不成梯形.3.连结OQ 交AB 于M,则OQ ⊥AB.连结OA,则OA ⊥AQ. ∵∠QMP=∠QSP=90°,∴S,P,•Q,M 四点共圆,故OS ·OP=OM ·OQ. 又∵OM ·OQ=OA 2=2,∴OS ·OP=2.4.B.由图可知直线MN 可看作⊙O 和⊙O ′的割线, 当M 在点A 时,直线MN 变为⊙O•′的切线, 当M 在点B 时,直线MN 变为⊙O 的切线.这两种情况是以AB•为直角边的等腰直角三角形的两直角边所在的直线,交点是第三个顶点M.M 是AB 的中点时,MN 是AB•的垂直平分线,也过第三个顶点,所以选B. 5.如图,作⊙O 的直径AB,连结AD. ∵PQ 切⊙A 于D,∴AD ⊥PQ, ∴AP ·AQ=AD ·AB.•而AD=r,AB=2R,∴AP ·AQ=2Rr 为定值.6.作AN ⊥CD,垂足为点N,连结AB,有AC.AB=AN.2R1,① AB ·AD=AN ·2R 2 .② ①÷②,得12R AC AD R ,∴AC:A D=R 1:R 2.。

八年级数学几何最值问题(北师版)(专题)(含答案)

八年级数学几何最值问题(北师版)(专题)(含答案)
利用三线合一BP⊥AC,BP平分∠ABC,故BP=1,∠CBP=60°,
再根据直角三角形斜边上的中线等于斜边的一半,得PN=BN,
所以△BNP为等边三角形,PN=BP=1,那么M′N=2PN=2.
故选B.
试题难度:三颗星知识点:略
5.如图,已知∠AOB=α,P是∠AOB内部的一个定点,且OP=2,点E,F分别是OA,OB上的动点.若△PEF周长的最小值等于2,则α=( )
根据题意,要求EF+CF最小,E,C是定点,F为动点,
动点在定直线AD上运动,这是轴对称最值问题,考虑作定点
关于定直线的对称点,由于点C与点B关于AD对称,考虑
作C的对称点,连接BE与AD的交点即为点F,如图所示,
此时EF+CF=BE,取得最小值.
因为AE=2,等边三角形ABC的边长为4,所以点E是AC中点;
此时有 ,
即 ,
解得 ,
即CE的最小值为3,
∴CM+MN的最小值为3.
试题难度:三颗星知识点:略
9.如图,C是线段AB上一动点,AB=6,分别以AC,BC为边,在AB的同侧作等边三角形ACP和等边三角形BCQ,则PQ的最小值为( )
A.6 B.8
C.10 D.12
答案:C
解题思路:
如图,连接AD.
∵EF垂直平分AC,
∴AM=CM
∴△CDM的周长为CD+DM+CM=CD+DM+AM=CD+AD
∵D是BC边的中点
∴AD⊥BC
∵ ,
∴AD=8
∵CD=2
∴△CDM的周长为8+2=10,选C.
试题难度:三颗星知识点:略
4.如图,在等腰三角形ABC中,AB=BC,∠B=120°,M,N分别是AB,BC边上的中点.若△ABC的边AC上的高为1,点P是边AC上的动点,则MP+NP的和最小为( )

初中几何中的最值问题

初中几何中的最值问题

初中几何中的最值问题初中几何中的最值问题是指在几何图形中寻找某个量的最大值或最小值的问题。

这些问题通常涉及到面积、周长、角度等几何量。

一般来说,解决初中几何中的最值问题需要掌握以下基本方法:1. 利用代数方法求解有时候,我们可以将几何图形转换为代数式,然后通过求导或者求平方等方法来求解。

例如,在矩形中,当周长一定时,面积最大;当面积一定时,周长最小。

我们可以设矩形的长为x,宽为y,则周长为2(x+y),面积为xy。

当周长一定时,即2(x+y)=k(k为常数)时,可以将y表示成x的函数:y=k/2-x,则面积S=x(k/2-x)=kx/2-x^2。

对S求导得到S'=k/2-2x=0,则x=k/4。

因此,在周长一定时,矩形的长和宽相等时面积最大。

2. 利用平均值不等式平均值不等式是一个重要的不等式,在初中几何中也经常被使用。

该不等式表明对于任意两个正实数a和b,有(a+b)/2>=sqrt(ab)。

例如,在三角形ABC中,如果要求最小的边长,则可以利用平均值不等式:设三角形边长分别为a、b、c,则有a+b>c,b+c>a,c+a>b。

将这三个不等式相加得到2(a+b+c)>a+b+c,则a+b+c>0。

因此,(a+b+c)/3>=sqrt(abc),即(a+b+c)>=3sqrt(abc)。

因此,当三角形的面积一定时,其边长之和最小。

3. 利用相似性质有时候,在几何图形中,我们可以利用相似性质来求解最值问题。

例如,在等腰三角形ABC中,如果要求最大的高,则可以利用相似三角形的性质:设高线AD与BC交于点E,则有AE/ED=BE/EC=AB/BC=2/1。

因此,AE=2ED,BE=2EC。

又因为AD是等腰三角形的高线,所以BD=DC。

则DE=BD-BE=(1/3)BC。

因此,在等腰三角形ABC中,高线对应底边的比值为2:1时,高线最大。

综上所述,在初中几何中解决最值问题需要掌握代数方法、平均值不等式和相似性质等基本方法,并且需要在实际问题中灵活应用这些方法来求解各种复杂的问题。

八上几何最值问题详解

八上几何最值问题详解

八上几何最值问题详解
几何最值包含以下几种类型:
1、垂线段最短类——1定1动或1定2动;
主要动点轨迹为直线类。

主要由定点朝定直线作垂线。

2、动点三角形类——2定1动或2定多动;
有动点轨迹为直线类,动点轨迹为圆类。

主要画出动点运动轨迹,并证明。

3、将军饮马类——2定1动或1定2动或2定2动,动点轨迹为直线类。

主要依据对称构造,产生动点三角形最值模型。

4、建桥选址类——2定2动
主要依据平行构造,合并动点,聚集动点线段,组成动点三角形最值模型。

5、拼接全等类——1定2动
主要构造全等,合并动点,产生动点三角形最值模型。

大赞勤学早大培优,分类太详细了,编者的初中数学修养太高了。

唯一不足之处就是没有详细的解析,鉴于此,我个人出于兴趣,也出于生存,制作详细解析电子档。

也许我的解析一定有不足之处,但是我敢说,现行市面上很少有如此详细深入的解析。

懂的朋友仔细看后,就知道,我不光是在解题,我是在教怎么认识题,怎么去解同一类所有题。

静下心来,把题目真正搞懂,真的好开心,你们也会有这样的感觉的。

(平面几何最值问题的几种求解方法)

(平面几何最值问题的几种求解方法)

平面几何最值问题的几种求解方法曹永启 (深圳清华实验学校 518126)平面几何最值问题在近几年数学竞赛中频频出现。

第十六届希望杯数学全国邀请赛初二2试最后一题就是一例。

此类问题求解方法多,涉及知识面广,这对于初涉平面几何的初中学生来说,处处受限,难度较大。

本文旨在通过实例介绍几种初中生能接受的求解方法。

一,平移法平移法一般是寻求特殊位置的几何图形,结合图形的平移来解决问题。

其基本依据有:两点之间线段最短,(三角形两边之和大于第三边,两边之差小于第三边)。

直角三角形中斜边大于直角边,(从直线外一点到直线的所有线段中垂线段最短等)。

例1,(一个古老的问题)假设河岸为两条平行线,在河岸两侧有A 村和B 村,要在河上架一座垂直河岸的桥,使A 村到B 村路程最短,如何确定架桥的位置? 解:设河岸为L 1、 L 2,则L 1∥L 2,两岸距离为d ,过A 点作AA ′⊥L 1,且AA ′=d,连结BA ′交L 2于D ,过D 作CD ⊥L 2交L 1于C ,则CD 即为架桥的位置。

(如图1)由作法可知,四边形AA ′DC 是平行四边形,(AA ′∥DC 且AA ′=DC )所以AC= A ′D.即AC+BD= A ′B ,而A ′、B 两点以A ′B 最短,故AC+CD+BD 为最短。

例2,在XOY 的边OX 、OY 上分别取一点A 、B ,使OA+OB 为定长L ,试证:当OA=OB 时AB 的长最短。

(如图2)分析:设OA=OB ,OA+OB=L (定长)为了证明AB 的长最短,可在OX 和OY 上分别另取一点A ′、B ′,使O A ′+OB ′=L ,连A ′B ′,则问题变为证明AB <A ′B ′。

证明:把A ′B ′平移到AC ,则A ′B ′CA 为平行四边形 ∵OA+OB=O A ′+OB ′ ∴A A ′=BB ′而A A ′=CB ′∴BB ′=CB ′ ∠B ′BC=∠B ′CB ∴∠ B ′BC=XOY Y CB ∠=∠2121' ∴∠B ′BC+∠OBA=90˙∴∠ABC=90˙ ∴AB <AC=A ′B ′(直角三角形斜边大于直角边) 二,反射法反射法主要可解决以下两个类型问题。

几何最值问题常用解法初二

几何最值问题常用解法初二

几何图形中常见最值问题的解法平面几何图形中的最值问题是近几年中考常见的题型,此类问题常让学生无从下手,特别是新市民子女,由于他们数学知识的短缺、题目信息采集不够、综合应用能力弱、数学思维紊乱,课本知识理解不到位等原因造成错误为此我在平时教学中注重对这类问题的归类整理,在教学中对他们进行必要的专题拓展训练,引导他们归纳、总结、获得解决这类问题的基本技能,培养他们的思维习惯.一、轴对称变换—最短路径问题1.书本原型:(1)点A 、点B 在直线l 两侧,在直线l 找一点P ,使PA PB +值最小.分析根据两点之间线段最短.点P 既在直线l 上,又在线段AB 上,PA PB +值最小.解连接AB ,交直线l 于点P ,点P 就是所要求作的点.(2)点A 、点B 在直线l 同侧,在直线l 找一点P ,使PA PB +最小.分析利用轴对称的性质找一个点1B ,使得1PB PB =,因而1PA PB PA PB +=+,要使PA PB +最小,只要1PA PB +最小,只要A 、P 、1B 三点共线.解作点B 关于l 的对称点1B ,连接1AB 交l 于点,点P 就是所要求作的点.(也可以作点A 关于l 的对称点1A ,连接1A B 交l 于点P ,点P 就是所要求作的点).2.应用例1在右图中,以直线l 为x 轴,以O 为坐标原点建立平面直角坐标系,点(1,2)A 、(4,1)B .(1)在x 轴上找一点P ,使PA PB +最小,请在图中画出点P ,并求出点PA PB +的最小值.分析作A 、B 两点中的一点关于x 轴的对称点,连接这个对称点与另一点的线段交x 轴于点P .PA PB +的最小值实际上就是线段1AB 的长3.∴PA PB +的最小值是3.(2)在y 轴上找一点C ,在x 轴上找一点D ,使四边形ACDB 的周长最小,则点C 的坐标为,点D 的坐标为.分析本题两个动点C 、D ,要使四边形ACDB 的周长最小,只要AC CD BD AB +++的值最小,而AB 是一个定值,只要AC CD BD ++最小.作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,则1AC A C =,1BD B D =,AC CD +11BD A C B D CD +=++,只要1A 、C 、D 、1B 共线,则11A C B D CD ++最小,从而AC CD BD ++最小.解作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,连接11A B .交y 轴于点C ,交x 轴于点D .设直线11A B ,的解析式为y kx b =+, 点A (1,2)关于y 的对称点1(1,2)A -, 点B (4,1)关于x 轴的对称点1(4,1)B -,241k b k b -+=⎧∴⎨+=-⎩,解得3/57/5k b =-⎧⎨=⎩,∴直线11A B 的解析式为37.55y x =-+∴点C 的坐标为7(0,5,点D 的坐标为7(,0)3.二、垂线段最短—最短路径问题1.书本原型在灌溉时,要把河中的水引到农田P 处,如何挖渠使渠道最短.分析根据垂线段最短,P 到直线l 最短的距离是点P 到直线l 的垂线段的长.解过点P 作直线河岸l 的垂线段,垂足为点A ,线段PA 就是最短的渠道.2.应用例3如图,在平面直角坐标系xOy 中,直线AB 经过点(4,0)A -、(0,4)B ,⊙O 的半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线,PQ Q 为切点,则切线长PQ 的最小值为.分析因为PQ 是⊙O 的切线,连接OQ ,则90PQO ∠=︒.由勾股定理得222PQ PO OQ =-.因为⊙O 的半径1OQ =,要使PQ 最小,只要PO 最小,从而转化为求PO 的最小值,当PO AB ⊥时,PO 最小值为2.PQ ∴.四、平面展开图—最短路径问题我们常常遇到蚂蚁从一个几何体的一个侧面上一个点,绕过侧面走到另一个点,怎样走最近的问题.通常将曲面展平,转化为两点之间线段最短、垂线段最短问题,从而将曲面的最短路径问题转化为平面最短路径问题例5如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是.分析这是一个蚂蚁爬行的最短路径问题,将圆柱的侧面展平,得到一个矩形.蚂蚁从容器外壁爬到容器内壁最短,就是蚂蚁沿圆柱侧面爬到容器顶经过某一点P ,再爬到点A 的最短路径,实际上就是在一边DE 上找一点P ,使1PA PB +最小.根据轴对称—最短路径问题的作图步骤得蚂蚁沿线段2BA 最短,根据勾股定理可得2BA 的长.解在21Rt A B B ∆中,2112A B = cm ,15BB =cm由勾股定理得,222221114425169A B A B BB =+=+= ,213A B ∴=cm.所以蚂蚁爬行的最短路线长是13cm.学生觉得难以解决的几何最值问题,我在平时的教学中注重把书本原型跟学生讲透;让学生理解书本上的原理:两点之间线段最短、垂线段最短、三角形两边之和大于第三边,两边之差小于第三边,让学生感受到数学中的化归思想、数形结合思想,让学生有章可循,有法可用.授人以鱼不如授人以渔,对于新市民子女的数学学习,主要是提高他们数学学习兴趣,学会解题技能,让他们感受到学习数学乐趣,让他们想学数学、能学数学、学好数学,从而爱上数学,真正实现《新课程标准》所倡导的理念:“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展.”。

八年级数学几何最值问题(人教版)(专题)(含答案)

八年级数学几何最值问题(人教版)(专题)(含答案)

几何最值问题(人教版)(专题)一、单选题(共10道,每道10分)1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,则PB+PE的最小值是( )A. B.C. D.答案:C解题思路:1.思路分析2.解题过程根据正方形的性质,点B和点D关于AC对称,此时连接DE,与AC的交点即为点P,线段DE的长即为所求.∵正方形ABCD的边长为2,E为AB的中点,∴AE=1,AD=2,∴,故选C试题难度:三颗星知识点:略2.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A.3B.C. D.答案:C解题思路:定点:D,E动点:P(在定线段AC上运动)要使PD+PE最小,需要通过对称把PD,PE转移到直线AC异侧.如图,由正方形的性质知,D,B关于AC所在直线对称,所以PD=PB,故所求可转化为“PB+PE的最小值”.根据“两点之间线段最短”,当B,P,E共线时,PB+PE最小,最小值为BE的长度.∵正方形ABCD的面积为12,∴,∴,故选C.试题难度:三颗星知识点:略3.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为边BC,CD,BD上的动点,则PK+QK的最小值为( )A.1B.C.2D.答案:B解题思路:如图,作点Q关于BD的对称点,根据菱形的对称性,点落在AD边上,则题目转化为求的最小值,根据两点之间线段最短,的最小值为线段的长度,当⊥AD时,最小.如图,过点C作CE⊥AD,则.∵四边形ABCD为菱形,∴∠CDE=180°-∠A=60°,CD=AB=2,∴,故选B.试题难度:三颗星知识点:略4.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A,B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E,F为边OA上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为( )A. B.C. D.答案:B解题思路:1.思路分析2.解题过程通过题意可知,EF和CD的长固定,所以若要四边形CDEF的周长最小,则DE+CF最小即可.如图,CF向左平移两个单位到,此时就转化为要求即可.作出点D关于x轴的对称点,此时连接,与x轴的交点即为点E.根据题意可得,点的坐标为(1,4),点的坐标为(0,-2),∴的直线解析式为:,∴点E的坐标为,∴点F的坐标为.故选B试题难度:三颗星知识点:略5.如图,正方形ABCD的边长为2,顶点A,D分别在x轴、y轴上.当点A在x轴上运动时,点D随之在y轴上运动,则在运动过程中,点B到原点O的最大距离为( )A. B.C. D.答案:B解题思路:如图,取AD的中点M,连接OM,MB.∵OM为Rt△AOD斜边上的中线,∴,在Rt△AMB中,由勾股定理,得,在△OBM中,根据三角形的三边关系定理,得OM+BM OB,即,当O,M,B三点共线时,OM+BM=OB,此时OB最大,最大值为.故选B.试题难度:三颗星知识点:略6.如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为( )A.24B.25C. D.26答案:B解题思路:取BC的中点M,连接OM,MD.∵OM为Rt△BOC斜边上的中线,∴,在Rt△DMC中,由勾股定理,得,在△ODM中,根据三角形的三边关系定理,得OM+DM OD,即,当O,M,B三点共线时,OM+DM=OD,此时OD最大,最大值为.故选B.试题难度:三颗星知识点:略7.动手操作:在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC 边上的处,折痕为PQ,当点在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点在BC边上可移动的最大距离为( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:略8.如图,折叠矩形纸片ABCD,使点B落在AD上的点E处,折痕的两端点分别在AB,BC上(含端点),且AB=6,BC=10.设AE=x,则x的取值范围是( )A. B.C. D.答案:D解题思路:当点M与点A重合时,AE最大,如图,此时AE=6;当点N与点C重合时,AE最小,如图,此时AE=2.∴,故选D.试题难度:三颗星知识点:略9.如图,在矩形ABCD中,AB=5,BC=12,E是BC边上一动点,则以BD为对角线的所有平行四边形BEDF中,EF的最小值是( )A. B.5C.6D.12答案:B解题思路:在平行四边形BEDF中,EF=2OE,由“直线外一点到直线上所有点的连线中,垂线段最短”可知,当OE⊥BC时,OE最短,如图,此时,,∴EF的最小值为5.试题难度:三颗星知识点:略10.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△,连接,则的最小值是( )A. B.C. D.4答案:A解题思路:如图,连接ED,由题意,,在Rt△AED中,AE=2,AD=6,∴,由翻折得BE=B′E=2,由三角形三边关系得:B′D-B′E,∴当,B′,D三点共线时,B′D-B′E,B′D取最小值,当,B′,D三点共线时,如图,∴B′D=DE-B′E=,∴B′D 的最小值是.试题难度:三颗星知识点:略第11页共11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级平面几何最值问题
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用其它知识求最值。

1、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。

2、如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm 。

3、在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .
4、如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .
5、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】
A . 1
B .3
C . 2
D .3+1 6、如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,
点B 的坐标为【 】
A.(0,0)
B.(2
1-,21
-) C.(22,22-) D.(22-,22-)
7、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为【 】 A 、1 B 、2 C 、3 D 、4
8、如图,等腰梯形ABCD 中,AD ∥BC ,AD=AB=CD=2,∠C=60°,M 是BC 的中点.
(1)求证:△MDC 是等边三角形;
(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.
9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角 坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA
十QB 的值最小的点,则OP OQ ⋅= .
答案:1.4 2.15 3.1<AD<4 4.3 5.B 6.B 7.B 8.2+
9.5。

相关文档
最新文档