信号处理习题及答案
信号处理与测试技术习题及答案
第一章习题:一、填空题1、电量分为和,如电流、电压、电场强度和电功率属于;而描述电路和波形的参数,如电阻、电容、电感、频率、相位则属于。
2、传感器输出的经过加工处理后,才能进—步输送到记录装置和分析仪器中。
3、现代科学认为,、、是物质世界的三大支柱。
4、与三大支柱相对应,现代科技形成了三大基本技术,即、、。
5、传感技术是人的的扩展和延伸;通信技术是人的的扩展和延伸;计算机技术是人的的延伸。
6、、、技术构成了信息技术的核心。
二、简答题1、举例说明信号测试系统的组成结构和系统框图。
2、举例说明传感技术与信息技术的关系。
3、分析计算机技术的发展对传感测控技术发展的作用。
4、分析说明信号检测与信号处理的相互关系。
三、参考答案(-)填空题1、电能量、电参量、电能量、电参量2、电信号、信号调理电路3、物质、能量、信息4、新材料技术、新能源技术和信息技术5、感官(视觉、触觉)功能、信息传输系统(神经系统)、信息处理器官(大脑)功能6、传感、通信和计算机第二章习题:一、填空题1、确定性信号可分为和两类。
2、信号的有效值又称为,它反映信号的。
3、概率密度函数是在域,相关函数是在域,功率谱密度是在域上描述随机信号。
4、周期信号在时域上可用、和参数来描述。
5、自相关函数和互相关函数图形的主要区别是。
6、因为正弦信号的自相关函数是同频率的,因此在随机噪声中含有时,则其自相关函数中也必然含有,这是利用自相关函数检测随机噪声中含有的根据。
7、周期信号的频谱具有以下三个特点:_________、________、_________。
8、描述周期信号的数学工具是__________;描述非周期信号的数学工具是________。
9、同频的正弦信号和余弦信号,其相互相关函数是的。
10、信号经典分析方法是和。
11、均值E[x(t)]表示集合平均值或数学期望,反映了信号变化的,均方值反映信号的。
12、奇函数的傅立叶级数是,偶函数的傅立叶级数是。
数字信号处理复习题带答案
1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。
A、理想低通滤波器B、理想高通滤波器C、理想带通滤波器D、理想带阻滤波器2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__A、.h(n)=δ(n)+δ(n-10)B、h(n)=u(n)C、h(n)=u(n)-u(n-1)D、 h(n)=u(n)-u(n+1)3.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是_____A_____。
≥M ≤M≤2M ≥2M4.以下对双线性变换的描述中不正确的是__D_________。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对5、信号3(n)Acos(n)78xππ=-是否为周期信号,若是周期信号,周期为多少?A、周期N=37πB、无法判断C、非周期信号D、周期N=146、用窗函数设计FIR滤波器时,下列说法正确的是___a____。
A、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。
B、加大窗函数的长度可以增加主瓣与旁瓣的比例。
C、加大窗函数的长度可以减少主瓣与旁瓣的比例。
D、以上说法都不对。
7.令||()nx n a=,01,a n<<-∞≤≤∞,()[()]X Z Z x n=,则()X Z的收敛域为__________。
A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。
点FFT 所需乘法(复数乘法)次数为____D___。
A 、2N log NB 、NC 、2ND 、2log 2NN 9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。
数字信号处理试题及答案
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
信号处理技术期末试题及答案汇总
信号处理技术期末试题及答案汇总选择题1. 关于信号的采样定理,下面哪个选项是正确的?A. 采样频率必须大于信号带宽的两倍。
B. 采样频率必须大于信号带宽的一半。
C. 采样频率必须大于信号带宽。
D. 采样频率必须小于信号带宽的两倍。
答案:A解析:根据奈奎斯特采样定理,采样频率必须大于信号带宽的两倍。
2. 傅里叶变换的时间域和频率域是什么关系?A. 互为傅里叶变换。
B. 没有关系。
C. 傅里叶变换是时间域信号,频率域没有关系。
D. 傅里叶变换是频率域信号,时间域没有关系。
答案:A解析:傅里叶变换的时间域和频率域是互为傅里叶变换。
3. 下面哪个不是数字信号处理的应用?A. 语音增强。
B. 声音合成。
C. 地震勘探。
D. 通信系统。
答案:C解析:数字信号处理的应用包括语音增强、声音合成和通信系统等。
4. 在数字滤波器设计中,下面哪个表示滤波器的通带?A. 通带带宽。
B. 阻带上限。
C. 通过增益。
D. 频率响应。
答案:C解析:在数字滤波器设计中,通过增益表示滤波器的通带。
5. 关于离散时间信号的周期性,下面哪个选项是正确的?A. 任何离散时间信号都是周期信号。
B. 只有连续周期信号才有周期性。
C. 离散时间信号有可能是周期信号,也有可能不是。
D. 只有离散非周期信号才有周期性。
答案:C解析:离散时间信号有可能是周期信号,也有可能不是。
简答题1. 解释离散傅里叶变换的作用。
离散傅里叶变换是一种将时域信号变换到频域信号的方法,它将一个N点的序列变换为N个复数。
通过进行傅里叶变换,我们可以得到信号的频率特性,比如说信号的谐波成分以及它们的幅度和相位。
离散傅里叶变换在数字信号处理中有着广泛的应用,比如说在通信系统中对信号进行调制和解调。
2. 简述数字滤波器设计的步骤。
数字滤波器设计的步骤包括以下几个步骤:- 确定需求:需要通过滤波器达到哪些目的,比如说去除噪声或者增强信号。
- 选择滤波器类型:根据需求和信号的特性选择滤波器类型,比如说低通滤波器、高通滤波器、带通滤波器或者带阻滤波器。
信号处理基础课后练习题含答案
信号处理基础课后练习题含答案信号处理是一种重要的技术,涉及到音频、图像、视频等众多领域。
信号处理技术能够从原始信号中提取出有用的信息,帮助我们更好地理解和分析数据。
在学习信号处理时,我们必须进行实践,以加深对理论知识的理解。
下面是一些信号处理基础课后练习题及其答案。
问题1.对于给定的数字信号 $x[n] = \\{1, 2, 3, 4, 5\\}$,请计算其平均值和方差。
2.对于信号 $x(t) = 2\\sin(2\\pi f_1 t) + 3\\cos(2\\pi f_2 t +\\phi)$,请说明其频率和相位。
3.对于滤波器系统 $H(z) = \\frac{1}{1 - az^{-1}}$,请确定其系统函数的长度与阶数,说明其类型。
4.对于数字信号 $x[n] = \\{1, 2, 0, 4, 5, 1\\}$,请绘制其幅度谱和相位谱。
答案问题1数字信号 $x[n] = \\{1, 2, 3, 4, 5\\}$ 的平均值为:$$ \\mu = \\frac{1 + 2 + 3 + 4 + 5}{5} = 3 $$而方差为:$$ \\sigma^2 = \\frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5} = 2 $$问题2信号 $x(t) = 2\\sin(2\\pi f_1 t) + 3\\cos(2\\pi f_2 t + \\phi)$ 的频率为f1和f2,而相位为 $\\phi$。
问题3滤波器系统 $H(z) = \\frac{1}{1 - az^{-1}}$ 的系统函数长度为2,阶数为1,是一个一阶滤波器。
问题4数字信号 $x[n] = \\{1, 2, 0, 4, 5, 1\\}$ 的幅度谱和相位谱幅度谱幅度谱相位谱相位谱以上是信号处理基础课后练习题及其答案。
通过这些练习,我们可以更好地理解信号处理的基本概念和实践应用,以加深知识点的掌握。
数字信号处理(第三版)-课后习题答案全-(原题+答案+图)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
现代数字信号处理课后习题解答
习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)x i j i j iji j i j i j R t t E x x x xp x x t t dx dx ==⎰⎰(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=-⎰⎰⎰⎰ 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x y m m m=+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明: ①当0τ=时,2(0),(0)x x x x R D C σ==; ②当τ=∞时,2(),()0x x x R m C ∞=∞=。
(完整)数字信号处理试卷及答案,推荐文档
数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理经典习题(北理工826必备)(附答案)
数字信号处理经典习题(北理工826必备)(附答案)第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称位“抗折叠”滤波器。
在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理 计算题:18c 因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T 8π没有影响,故整个系统的截止频率由)(ωj eH 决定,是625Hz 。
(b )采用同样的方法求得kHz T 201=,整个系统的截止频率为Hz Tf c 1250161==二、离散时间信号与系统频域分析 计算题:1( 2(2))(*n x (共轭) 解:DTFT )(**])([)(*)(*ωωωj n n jn jn e X e n x en x n x -∞-∞=∞-∞=-===∑∑2.计算下列各信号的傅里叶变换。
(a )][2n u n- (b )]2[)41(+n u n(c )]24[n -δ (d )nn )21(解:(a )∑∑-∞=--∞-∞==-=2][2)(n nj n nj n ne en u X ωωωωnj e 11)1(==∞( ((X =3 (1))(*n x - (2))](Re[n x (3) )(n nx解: (1))(*])([)(*)(*jw n n jw n jwne X en x en x=-=-∑∑∞-∞=--∞-∞=-(2)∑∑∞-∞=-*-*∞-∞=-+=+=n jw jw jwn n jwne X e X e n xn x en x )]()([21)]()([21)](Re[(3)dw e dX j e n x dw d j dw e n dx j en nx jw n jwnn jwn n jwn)()()(1)(==-=∑∑∑∞-∞=-∞-∞=-∞-∞=- 4.序列)(n x 的傅里叶变换为)(jwe X ,求下列各序列的傅里叶变换。
数字信号处理题库(附答案)
A.一个N阶IIR子系统和一个(M-N)阶的FIR子系统的并联
B.一个N阶IIR子系统和一个(M-N)阶的FIR子系统的级联
C.一个N阶IIR子系统和一个M阶的FIR子系统的级联
D.一个N阶IIR子系统和一个M阶的FIR子系统的并联
19.周期卷积是线性卷积的周期延拓。( Y )
20.DFT隐含周期性。( Y )
21.重叠保留法和重叠相加法的计算量差不多。( Y )
22.频率抽取法输出是自然顺序,输入是按照反转的规律重排。(N )
23.按频率抽取法与按时间抽取法是两种等价的FFT运算。( Y )
24.变动DFT的点数,使谱线变密,增加频域采样点数,原来漏掉的某些频谱就可能被检测出来。( Y )
33.阶数位N的Butterworth滤波器的特点之一是( C )。
A.具有阻带内最大平坦的幅频特性
B.具有通带内线性的相位特性
C.过度带具有频响趋于斜率为 的渐近线
D.过度带具有频响趋于斜率为 的渐近线
34.不是阶数为N的Chebyshev滤波器的特点之一是( D )。
A.逼近误差值在阻带内等幅地在极大值和极小值之间摆动
A.1024 B.1000 C.10000 D.1000000
21. 。( C )
A.0 B.2 C.4 D.6
22. 。( A )
A. B. C. D.
23. 。( A )
A. B. C. D.
24.重叠保留法输入段的长度为 , ,每一输出段的前( B )点就是要去掉的部分,把各相邻段流下来的点衔接起来,就构成了最终的输出。
以上为DFT部分的习题
数字信号处理复习题及参考答案
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs ②.Ωc③.Ωc/2 ④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
信号处理-习题(答案)
页脚内容1数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号;分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即页脚内容2f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,页脚内容3若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
数字信号处理习题集(附答案)
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器.在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器.判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
( )答:错.需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理.( ) 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础.第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器.(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率. (b)对于kHz T 201=,重复(a )的计算.解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
信号处理-习题(答案)
信号处理-习题(答案)数字信号处理习题解答第二章数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1)该信号的最小采样频率;(2)若采样频率f s =5000Hz ,其采样后的输出信号;分析:利用信号的采样定理及采样公式来求解。
○1采样定理采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号-???? ????? ??=?+???? ????? ??-???? ????? ??=????++???? ????? ??-+???? ????? ??=?+???? ????? ??+???? ????? ??=???====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
《数字信号处理(第四版)》部分课后习题解答
《数字信号处理(第四版)》部分课后习题解答一、简答题1. 什么是数字信号处理?数字信号处理(DSP)是指对数字信号进行处理和分析的一种技术。
它使用数学和算法处理模拟信号,从而实现信号的采样、量化、编码、存储和重构等过程。
DSP广泛应用于通信、音频处理、图像处理和控制系统中。
2. 数字信号处理的主要特点有哪些?•数字信号处理能够处理和分析具有广泛频谱范围的信号。
•数字信号处理能够实现高精度的信号处理和复杂的算法运算。
•数字信号处理能够实现信号的存储、传输和复原等功能。
•数字信号处理可以利用计算机等处理硬件进行实时处理和系统集成。
3. 数字信号处理的基本原理是什么?数字信号处理的基本原理是将连续时间的模拟信号转换成离散时间的数字信号,然后通过一系列的算法对数字信号进行处理和分析。
该过程主要涉及信号的采样、量化和编码等环节。
4. 什么是离散时间信号?离散时间信号是指信号的取样点在时间上呈现离散的情况。
在离散时间信号中,只能在离散时间点上获取信号的取样值,而无法观测到连续时间上的信号变化。
5. 描述离散时间信号的功率和能量的计算方法。
对于离散时间信号,其功率和能量的计算方法如下:•功率:对于离散时间信号x(n),其功率可以通过求平方和的平均值来计算,即功率P = lim(T->∞) [1/T *∑|x(n)|^2],其中T表示信号x(n)的观测时间。
•能量:对于离散时间信号x(n),其能量可以通过求平方和来计算,即能量E = ∑|x(n)|^2。
二、计算题1. 设有一个离散时间周期序列x(n) = [2, 3, -1, 4, 0, -2],求其周期N。
由于x(n)是一个周期序列,我们可以通过观察序列来确定其周期。
根据观察x(n)的取值,我们可以发现序列在n=1和n=5两个位置上取得了相同的数值。
因此,序列x(n)的周期为N = 5 - 1 = 4。
2. 设有一个信号x(t) = 2sin(3t + π/4),请将其离散化为离散时间信号x(n)。
信号分析与处理_习题答案.
= ay1 (t ) + by2 (t )
,线性系统。
T x (t − t0 )= x(t − t0 − 2) + x(2 − t − t0 ) ≠ y(t − t0 ) ,时变系统。
t 有可能小于 2 − t ,故为非因果系统。
t
∫ (2) y(t) = x(τ )dτ −∞
T ax1 (t ) + bx2 (t )= aT x1 (t ) + bT x2 (t ) ,线性系统。
2
O
n
-2
-2
题 1.4 图 3
1.5 信号 x(t) 的波形如题 1.5 所示。
∫ (1)画出 y(t) = dx(t) 的波形;(2)画出 y(t) = t x(x )dx 的波形。
dt
−∞
-10
x(t) 2 1
-1 O 1 t
题 1-5 图
1
-1
O
-1
1t
-2
2.5 2
1
-1
O
1t
1.6 判定下列系统是否为线性的,时不变的? (1) y(t) = x(t − 2) + x(2 − t)
T {ax1[n] + bx2[n=]} ax1[n] + bx2[n] + 2{ax1[n −1] + bx2[n −1]} = a{x1[n] + 2x1[n −1]} + b{x2[n] + 2x2[n −1]}
= ay1[n] + by2[n]
,线性系统。
T {x[n − n0 ]}= x[n − n0 ] + 2x[n − n0 −1]= y[n − n0 ] ,时不变系统。
数字信号处理第三章习题答案
解 (1) 已知F=50Hz (2) (3)
(4)频带宽度不变就意味着采样间隔T不变, 应该使记录时间 扩大一倍为0.04s实现频率分辨率提高1倍(F变为原来的1/2).
解
、
和
(a)、(b)、(c)所示。
分别如题3解图
x1(n) (a)
x2(n) (b)
y (n)
(a)
(b)
(c) (c)
5.如果X(k)=DFT[ x(n)], 证明DFT的初值定 理 证明 由IDFT定义式
可知
14.两个有限长序列x(n)和y(n)的零值区间为 x(n)=0, n<0, 8≤n y(n)=0, n<0, 20 ≤ n
对每个序列作20点DFT, 即
X (k)=DFT [x(n)],
Y(k)=DFT [y(n)],
如果
F(k)=X(k)▪Y(k),
k=0,1,…,19 k=0,1,…,19 k=0,1,…,19
f(n)=IDFT [F(k)], k=0,1,…,19
试问在哪些点上f(n)=x(n)*y(n)?为什么?
解 如前所述, 记
,而
fl(n)长度为27,f(n)长度为20.前面已推出二者的关系为
只有在如上周期延拓序列中无混叠的点上, 才满足f(n)=fl(n)7
21-47
41-67
1-7
21-27
8-20
7-19 当从0开始时候
15.用微处理器对实数序列作谱分析, 要求谱分辨率F≤50Hz, 信号最高频率为1kHz, 试确定以下各参数;
教材第三章习题解答
数字信号处理考试试题及答案
8、线性相位FIR 数字滤波器的单位脉冲响应h(n ) 应满足条件h(n)= 士h(N -n - 1)。
9. IIR 数字滤波器的基本结构中,直接型运算累积误差较大;级联型运算累积误差较小;并联型运算误差最小且运算速度最高。
10. 数字滤波器按功能分包括低通、高通、带通、带阻滤波器。
11. 若滤波器通带内群延迟响应 = 常数,则为线性相位滤波器12. x(n)= A cos(| 3n)|的周期为 14\ 7 )13. 求 z 反变换通常有围线积分法 (留数法)、部分分式法、长除法等。
第 1 页共 7 页A. 零点为z= ,极点为 z=0B. 零点为z=0,极点为z=C. 零点为z= ,极点为 z=1D. 零点为z= ,极点为z=24.下列各种滤波器的结构中哪种不是IIR 滤波器的基本结构? (CA.直接型B.级联型C.频率抽样型D.并联型5.以下关于用双线性变换法设计IIR 滤波器的论述中正确的是( B )。
A.数字频率与模拟频率之间呈线性关系B.总是将稳定的模拟滤波器映射为一个稳定的数字滤波器C.使用的变换是s 平面到 z 平面的多值映射D.不宜用来设计高通和带阻滤波器6.对连续信号均匀采样时,采样角频率为Ωs,信号最高截止频率为Ωc,折叠频率为( D )。
A. ΩsB. ΩcC. Ωc/2D. Ωs/2 7.下列对 IIR 滤波器特点的论述中错误的是( C )。
A.系统的单位冲激响应h(n)是无限长的 B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限 z 平面 (0<|z|<∞ )上有极点第 2 页共 7 页8. δ (n)的 z 变换是 ( A )。
A. 1B. δ (w)C. 2 πδ (w)D. 2 π9.设x(n) , y(n) 的傅里叶变换分别是X(e j O ), Y(e j O ),则x(n) . y(n) 的傅里叶变换为 ( D ) .A. X(e j O ) *Y(e j O )B. X(ej O ) .Y(e j O )C.X(e j O ) . Y(e j O )D.X(e j O )*Y(e j O )10.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、关于传递函数的特点,下列叙述正确的是。( B )
A.与具体的物理结构有关 B.反映系统的传输和响应特性
C.与输入有关
D.不能反映了测试系统的动态特性
3、线性度表示静态标定曲线 A.接近真值 C.正反行程的不重合
B
的程度。
B.偏离理想曲线 D. 输出比输入
4、测试装置的频响函数是装置动态特性在
A.幅值域 B.时域 C.频率域
传递函数H(s)
、 、 h(t) 频率响应函数 H(ω) 脉冲响应函数
6、输入、输出,装置的脉冲响应函数,它们三者间 的关系是 y(t)=x(t)*h(t) 。 7、测试装置在稳态下,其输出信号的变化量与其输 入信号的变化量之比值,称为 灵敏度 。 8、相同测试条件下,当输入量由小增大和由大减小 时,所得输出量最大差值称为 回程误差 。 9、一阶系统的主要特征参数有 时间常数τ 。 10.二阶系统的主要特征参数有 固有频率 n 和 阻尼比 。
四、分析计算题 1、某测试装置为一线性系统,其传递函数为:
1 H ( s) 0.005s 1
求其对周期信号 x(t ) 0.5cos10t 0.2cos(100t 45) 的稳态响应y(t)。
线性系统具有叠加性和频率保持特性。
解:已知 则: 即:
H ( s)
1 1 0.005s
相位差 ( ) 43.03
四、简答题
1、什么是线性系统的频率保持特性?有何意义? 一个系统处于线性工作范围内,当其输入是正弦信号时, 它的稳态输出一定是与输入信号同频率的正弦信号,只 是幅值与相位有所变化。若系统的输出信号含有其他频 率成分时,可以认为是外界干扰的影响或系统内部噪声
等原因所致,可采用滤波等方法予以排除。
3、什么是时间尺度改变特性?其对测试工作有何意义? 解:时域压缩,频域扩展,幅值降低;时域扩展,频域压缩, 幅值升高。时域压缩,提高了处理信号的效率。但频域 信号频带加宽,对仪器设备通频带的要求也提高了。反 过来,时域扩展,处理信号的效率会下降,但频域信号 频带变窄,对仪器设备通频带的要求也降低了。
3、设某力传感器可作为二阶系统处理。已知传感器的固有 频率为800Hz,阻尼比为0.14,问使用该传感器测频率 为400Hz正弦力时,其幅值比和相位差各是多少?若将
阻尼比改为0.7,则幅值比和相位差作何变化?
按题意,当 =400 2,n 800 2 时,
0.5, 有: =0.14,
2、非周期信号的频谱一定是连续的。( ) ) ) )
)
3、具有离散频谱的信号一定是周期信号。 (
4、 单位脉冲函数的函数值等于无穷大,强度为1。( 5、若 x (t ) 的频谱为X ( f ) ,则 X (t ) 的频谱为 X ( f ) 。(
第1章 三、单选题
习
题
1、描述周期信号的数学工具是( B )
试判断哪一个齿轮轴存在质量不平衡问题?
第1章
习
题
分析:转子不平衡的典型故障特征为工频突出。 齿数为40的大齿轮为输入轴,转频600r/min,即工 频为10Hz;根据相互啮合的齿轮转速与齿数成反 比的关系,可知齿数为20的中齿轮,工频为20Hz; 齿数为10的小齿轮,工频为40Hz。由频谱图可知, 40Hz的频率成分最为突出,故小齿轮轴存在转子 不平衡的问题。
A. ( f )
B. X ( f )
C. ( f ) * X ( f )
D. X (0)
第 1章 四、分析计算题
1、已知信号如图所示:
习
题
A x(t ) A
T0 t 4 T0 t 4
求其傅立叶级数的三角函数展开和复指数函数展开式,
并作出各自的频谱图。
H ( )
1 1 j 0.005
A( )
1 1 (0.005 )
2
( ) arctan( 0.005 )
令,y1 (t ) Y1 cos(10t 1 )
y2 (t ) Y2 cos(100t 2 )
Y1 1 A(1 ) A(10) Y1 0.499 0.5 1 (0.005 10)2
2
当系统做200Hz信号测试时,有:
=1=1-
1 1 ( ) 2 1
2 1 (2 200 5.23 104) =16.4%
() =-arctan(-2 f )=-arctan(2 3.14 200 5.23 104 )
=-33.4
四、分析计算题
第 1章
习
题
一、填空题
1、信号一般分为 确定性信号 和 随机信号 两类。 2、信号的描述方法常用的有 时域描述 和 频域描述 两种。 3、周期信号用 傅里叶级数展开到频域描述; 瞬变非周期信号用 傅里叶变换 展开到频域描述。 4、周期信号频谱的特点是 离散性、谐波性、收敛性; 瞬变非周期信号频谱的特点是 连续性 。
4、测试装置的静态特性包括哪些? 答:测试装置静态特性描述指标:(1)线性度,(2)灵敏度,(3)回 程误差,(4)分辨率,(5)零点漂移和灵敏度漂移
5、如何测定测试装置的频率响应函数? 答:依次用不同频率的正弦信号通过系统,测出系统输出信 号与输入信号的幅值和相位。则对某一个频率,输出与 输入信号的幅值比就是该频率对应的幅频特性,输出 与 输入信号的相位差就是该频率对应的相频特性。
2、一阶系统中的时间常数对系统有何意义?
时间常数是反映系统特性的重要参数,实际上决定了该装
置适应的频率范围。 3、影响二阶系统动态特性的参数有哪些?对系统有何 意义? 二阶系统的动态特性参数是固有频率和阻尼比。然而在通 常的频率使用范围中,有以固有频率的影响最为重要。 二阶系统固有频率的选择要以其工作频率范围为依据。 固有频率应避开工作频率。当属入接近固有频率时,系 统将发生共振,应避开。阻尼比一般选在0.6~0.8之间。
ห้องสมุดไป่ตู้
习
题
一、填空题 1、一个理想的测试装置应具有单值的、确定的 输入输出关系 。 2、线性系统可用 常系数线性微分 方程描述。 3、测试装置的特性可分为 静态 特性和 动态 特性。 4、为了求取测试装置本身的动态特性,常用的实验 方法是 频率响应法 和 阶跃响应法 。
5、描述测试装置动态特性的数学模型有
n
A(400)
1 1 n
2 2 2 4 n 1 2 2
1 0.5 4 0.142 0.5 2
2
1.31
2 n ( ) arctan 10.57 2 1 n (2)当 =0.7时,可得A(400) 0.975
第1章
习
j 2 ft0
题
4、什么是时移特性?它反映了什么规律?
x(t t0 ) X ( f )e
信号在时域中平移,频域中幅频谱不变,相频谱(相位) 会变化。 5、简述单位脉冲函数的采样性质和卷积性质。
如果 函数与某一连续函数f (t )相乘,显然其乘积仅在 t 0处为f (0) (t ), 其余各点(t 0)之乘积均为0。 函数x(t )和 函数的卷积结果,就是在 函数的坐标位置 上简单地将( x t)重新作图。
第1章
习
题
t 5、 若 x(t ) 的频谱为 X ( f ) ,则 x( a ) 的频谱 为 。(a为常数) ( D ) 1 f f X( ) A. aX ( ) B. a a a 1 f C. X ( ) D. aX (af ) a a 6、 若x(t )的频谱为 X ( f ) ,则的 (t ) * x(t ) 的 频谱为 B
A.相关函数
B.傅氏级数 C.拉氏级数 D.傅氏变化
2、已知 x(t ) 10sin t , (t ) 为单位冲击函数,则积分
x(t ) (t 2 )dt 的函数值为( C) A. 5 B. 0 C. 10 D. 任意值
第1章
习
题
3、如果周期函数是一个奇函数,则傅里叶系数 a0 , an 和 bn 中 ( A ) A. a0 0 , an 0
解:幅值误差为 = 1 A () 对一阶系统,幅频特性和相频特性为 1 A ()= ( ) arctan( ) 1 ( ) 2
当 5%=0.05,即要求(1-A ()) 0.05时,有 1 1 0.05,有 1 ( ) 2 1 ( ) -1=0.108 2 0.95 1 1 0.108 0.108 5.23 104 2 f 2 100
第 1章 五、简答题
习
题
1、简要说明信号的分类及描述方法。
第1章
习
题
2、什么是信号的时域描述和频域描述?两者有何区别? 解:直接观测或记录到的信号,一般是以时间为独立变量的, 称其为时域描述。信号时域描述能反映信号幅值随时间的 变化关系,而不能明确信号的频率组成关系。把信号的时 域描述通过适当方法可变成信号的频域描述。
C.
B. bn 0
D.
an
是偶函数
bn
是奇函数
4、若 x (t ) 的频谱为 X ( f ) ,则频谱为 函数为( C )
j 2 f 0 t x ( t ) e A. j 2 f 0 t C. x(t )e
X ( f f 0 ) 的时域
B. D.
x(t t 0 )
x(t t0 )
C 中的描述。
D.复数域
5、时间函数为的一阶装置,输入频率为 号,则其输出与输入间的相位差是 B A. 0 º B. -45º C.-90º
1 = 的正弦信 。
D.-180º
6、测试装置的脉冲响应函数与它的频率响应函数间的关系 A 是 。 A.傅氏变换对 B. 卷积 C.拉氏变换对 D.微分。