人教版八年级上册数学乘法公式(基础)巩固练习题与答案及解析
八年级数学上册《第十四章 乘法公式》同步练习题及答案(人教版)
八年级数学上册《第十四章乘法公式》同步练习题及答案(人教版)一、选择题(共8题)1.下列计算正确的是( )A.a2⋅a3=a6B.3a2+2a3=5a5C.a3÷a2=a D.(a−b)2=a2−b22.若x2−6x+y2+4y+13=0,则y x的值为( )A.8B.−8C.9D.193.下列算式能用平方差公式计算的是( )A.(x−2)(x+1)B.(2x+y)(2y−x)C.(−2x+y)(2x−y)D.(−x−1)(x−1)4.若x2−mx+4是完全平方式,则m的值为( )A.2B.4C.±2D.±45.如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是( )A.a2−b2=(a+b)(a−b)B.a(a−b)=a2−abC.(a−b)2=a2−2ab+b2D.a(a+b)=a2+ab6.对于代数式:x2−2x+2,下列说法正确的是( )A.有最大值1B.有最小值1C.有最小值2D.无法确定最大最小值7.在下列多项式中,与−x−y相乘的结果为x2−y2的多项式是( )A.−x+y B.x+y C.x−y D.−x−y8.已知一个正方形的边长为a,将该正方形的边长增加1,则得到的新正方形的面积为( )A.a2+2a+1B.a2−2a+1C.a2+1D.a+1二、填空题(共5题)9.计算:(a+2)(a−2)=.10.已知m=√2+1,n=√2−1则代数式m2+n2−3mn的值为.11.定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=−1 ),a称为复数的实部,b称为复数的虚部,复数可以进行四则运算,运算的结果还是一个复数.如(1+ 3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i−9=−8+6i,因此(1+3i)2的实部是−8,虚部是6.已知复数(3−mi)2的虚部是12,则实部是.12.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是.13.有两个正方形A,B现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的边长之和为.三、解答题(共6题)14.计算:(1) (ab)3⋅(−23a4b5)÷32a2b5.(2) (2x−y+5)(2x+y−5).15.数学课堂上,张老师写出了下面四个等式,仔细观察下列等式,你会发现什么规律:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62⋯⋯(1) 请你按照这个规律再写出第5个,第6个等式:、.(2) 请将你写出第n个等式.(3) 说出这个等式成立的理由:16.已知代数式(ax−3)(2x+4)−x2−b化简后,不含有x2项和常数项.(1) 求a,b的值.(2) 求(b−a)(−a−b)+(−a−b)2−a(2a+b)的值.17.先化简后求值:(x−2y)2−(x+2y)(x−2y),其中x=−1,y=2.18.如图所示,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.19.学习整式乘法时,老师拿出三种型号卡片,如图1.(1) 选取1张A型卡片,6张C型卡片,则应取张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是(请用含a,b的代数式表示);(2) 选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可验证的等量关系为;(3) 选取1张D型卡片,3张C型卡片按图3的方式不重叠地放在长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S1−S2,且S为定值,则a与b有什么关系?请说明理由.答案1. C2. B3. D4. D5. A6. B7. A8. A9. a2−410. 311. 512. (a+b)(a−b)=a2−b213. 514.(1)(ab)3⋅(−23a4b5)÷32a2b5=−23a7b8÷32a2b5=−49a5b3.(2)(2x−y+5)(2x+y−5)=[2x−(y−5)][2x+(y−5)] =4x2−(y−5)2=4x2−(y2−10y+25)=4x2−y2+10y−25.15.(1) 5×9+4=72;6×10+4=82(2) 第n个:n×(n+4)+4=(n+2)2.(3) 左边=n×(n+4)+4=n2+4n+4=(n+2)2=右边;即n×(n+4)+4=(n+2)2成立.16.(1) 原式=ax (2x +4)−3(2x +4)−x 2−b=2ax 2+4ax −6x −12−x 2−b =(2a −1)x 2+(4a −6)x −12−b,∵ 不含 x 2 项和常数项∴2a −1=0,−12−b =0∴a =12,b =−12. (2) 原式=−(b −a )(a +b )+[−(a +b )]2−2a 2−ab=−(b 2−a 2)+a 2+2ab +b 2−2a 2−ab =a 2−b 2+a 2+2ab +b 2−2a 2−ab =ab,当 a =12,b =−12 时 原式=12×(−12)=−6.17. 原式=x 2−4xy +4y 2−(x 2−4y 2)=x 2−4xy +4y 2−x 2+4y 2=−4xy +8y 2.当 x =−1,y =2 时原式=−4×(−1)×2+8×22=40.18. 绿化面积S=(3a +b )(2a +b )−(a +b )2=6a 2+5ab +b 2−a 2−b 2−2ab =5a 2+3ab(平方米).当 a =3,b =2 时S =5×32+3×3×2=63(平方米).19.(1) 9;a +3b(2) (a −b )2=(a +b )2−4ab(3) 设 MN 长为 xS 1=(a −b )[x −(a −b )]=ax −bx −a 2+2ab −b 2S 2=3b (x −a )=3bx −3abS =S 1−S 2=(a −4b )x −a 2+5ab −b 2由题意得,若S为定值,则S将不随x的变化而变化可知当a−4b=0时,即a=4b时,S=−a2+5ab−b2为定值.故答案为:a=4b时,S为定值.。
人教版八年级上册数学 14.2 乘法公式同步习题(包含答案)
(4) .
5.利用平方差公式计算下列各题:
(1)10 ×9 ;
(2)1 999×2 001.
6.[2016·湘西]先化简,再求值:(a+b)(a-b)-b(a-b),其中a=-2,b=1.
7.[2015·莱芜期中]计算:
(1)1232-124×122;
(1)设图1421(1)中阴影部分面积为S1,图14-2-1(2)中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;
(2)请写出上述过程所揭示的乘法公式.
图14-2-1
参考答案
【知识管理】
平方差a2-b2
【归类探究】
例1(1)9a2-4b2((2)3 599.96
2019年初中八年级数学第14章第2节:乘法公式同步习题(含答案)
学生姓名:年级:老师:
上课日期:时间:课次:
1.下列各式,能用平方差公式计算的是()
A.(x+2y)(2x-y)
B.(x+y)(x-2y)
C.(x+2y)(2y-x)
D.(x-2y)(2y-x)
2. 的结果是()
A. x2- y2B. y2- x2
例3a4-81
【当堂测评】
1.C
2.(1)m2-9(2)y2-9x2(3)x2-4y2(4)9-4x2
3.(1)999 984(2)8 099
4.±4
【分层作业】
1.C2.C
3.(1)y2-x2(2)y2-4x4(3)x2y2- (4)-3x
(5)x2n-y2n
4.(1)25a2-9b2(2)1-m2n2(3)9b4-49x4y2
(4)0.49y2- x2
5.(1)99 (2)3 999 999
人教版八年级上数学乘法公式(基础)巩固练习
【巩固练习】一.选择题1. 在下列计算中,不能用平方差公式计算的是( )A.))((n m n m +--B.()()3333x y x y -+C.))((b a b a ---D.()()2222c d d c -+ 2.若x y +=6,x y -=5,则22x y -等于( ).A.11B.15C.30D.60 3.下列计算正确的是( ).A.()()55m m -+=225m -B. ()()1313m m -+=213m -C.()()24343916n n n ---+=-+D.( 2ab n -)(2ab n +)=224ab n - 4.下列多项式不是完全平方式的是( ).A.244x x --B.m m ++241C.2296a ab b ++D.24129t t ++5.下列等式能够成立的是( ).A.()()22a b a b -=--B.()222x y x y -=- C.()()22m n n m -=-D.(x -y)(x +y)=(-x -y)(x -y) 6.下列等式不能恒成立的是( ).A.()222396x y x xy y -=-+B.()()22a b c c a b +-=--C.22241)21(n m n m n m +-=-D.()()()2244x y x y x y x y -+-=- 二.填空题7.若2216x ax ++是一个完全平方式,则a =______.8. 若2294x y +=()232x y M ++,则M =______.9. 若x y +=3,xy =1,则22x y +=_______.10.观察等式222222213,325,437-=-=-=,…用含自然数n 的等式表示它的规律为:_________.11. ()25(2)(2)21x x x -+--=___________.12.若()212x -=,则代数式225x x -+的值为________. 三.解答题13. 计算下列各题:(1)33(2)(2)22x y x y +--+(2)2(4)(4)(16)x x x +-+(3)2(2)()4(2)x y x y x y -+--(4)23()(2)(2)y z y z z y --+-+14.先化简,再求值:22)1(2)1)(1(5)1(3-+-+-+a a a a ,其中3=a .15.已知:2225,7x y x y +=+=,且,x y >求x y -的值.【答案与解析】一.选择题1. 【答案】A ;【解析】A 中m 和m -符号相反,n 和n -符号相反,而平方差公式中需要有一项是符号相同的,另一项互为相反数.2. 【答案】C ;【解析】()()22x y x y x y -=+-=6×5=30. 3. 【答案】C ;【解析】()()55m m -+=225m -;()()1313m m -+=219m -; (2ab n -)(2ab n +)=2224a b n -.4. 【答案】A ;【解析】2211()42m m m ++=+;22296(3)a ab b a b ++=+;224129(23)t t t ++=+. 5. 【答案】C ;6. 【答案】D ;【解析】()()()()22222x y x y x y x y -+-=-. 二.填空题7. 【答案】±4;【解析】222216244x ax x x ++=±⨯+,所以4a =±.8. 【答案】12xy -;【解析】2294x y +=()23212x y xy +-.9. 【答案】7;【解析】()2222x y x y xy +=++,22927x y +=-=.10.【答案】()22121n n n +-=+ (n ≥1的正整数); 11.【答案】2421x x +-;【解析】()()()22225(2)(2)2154441421x x x x x x x x -+--=---+=+-. 12.【答案】6;【解析】因为()212x -=,所以2221,256x x x x -=-+=.三.解答题13.【解析】 解:(1)原式=22223339222462224x y x y x y x y y ⎡⎤⎛⎫⎛⎫⎛⎫+---=--=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦; (2)原式=()()2241616256x x x -+=-;(3)原式=()2222222244421717x xy xy y x xy y x xy y +----+=-+-; (4)原式=()()22222232464y yz z y z y yz z -+--=--+.14.【解析】解:223(1)5(1)(1)2(1)a a a a +-+-+- ()()()22232151221210a a a a a a =++--+-+=+当3,=231016a =⨯+=时原式.15.【解析】解:∵()2222x y x y xy +=++,且2225,7x y x y +=+= ∴27252xy =+,∴12xy =,∵()2222252121x y x y xy -=+-=-⨯= ∴1x y -=±∵,x y >即0x y ->∴1x y -=.。
人教版 八年级上册数学 14.2 乘法公式 同步课时训练(含答案) (2)
14.2 乘法公式同步训练一、选择题1. 计算(-a-b)2的结果是()A.a2+b2B.a2+2ab+b2C.a2-b2D.a2-2ab+b22. 将202×198变形正确的是()A.2002-4 B.2022-4C.2002+2×200+4 D.2002-2×200+43. 若a2+ab+b2=(a-b)2+X,则整式X为()A.ab B.0 C.2ab D.3ab4. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+95. 若(2x+3y)(mx-ny)=9y2-4x2,则m,n的值分别为() A.2,3 B.2,-3C.-2,-3 D.-2,36. 将9.52变形正确的是()A.9.52=92+0.52 B.9.52=(10+0.5)×(10-0.5) C.9.52=92+9×0.5+0.52 D.9.52=102-2×10×0.5+0.52 7. 计算(x+1)(x2+1)·(x-1)的结果是()A.x4+1 B.(x+1)4C.x4-1 D.(x-1)48. 若(x+a)2=x2+bx+25,则()A.a=3,b=6B.a=5,b=5或a=-5,b=-10C.a=5,b=10D.a=-5,b=-10或a=5,b=109. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b)D.(a+b)(a-2b)10. 如图,阴影部分是边长为a的大正方形剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是()A .①②B .②③C .①③D .①②③二、填空题11. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.12. 填空:()22121453259x y x y ⎛⎫-=- ⎪⎝⎭13. 如果(x -ay )(x +ay )=x 2-9y 2,那么a = .14. 若x -y =6,xy =7,则x 2+y 2的值等于________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.ab ba16. 根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题17. 计算:(41)(41)a a ---+18. 阅读材料后解决问题.小明遇到一个问题:计算(2+1)×(22+1)×(24+1)×(28+1).经过观察,小明发现将原式进行适当的变形后,可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)×(22+1)×(24+1)×(28+1)=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)=(22-1)×(22+1)×(24+1)×(28+1)=(24-1)×(24+1)×(28+1)=(28-1)×(28+1)=216-1.请你根据小明解决问题的方法,试着解决下列问题:(1)计算:(2+1)×(22+1)×(24+1)×(28+1)×(216+1);(2)计算:(3+1)×(32+1)×(34+1)×(38+1)×(316+1);(3)化简:(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).19. 观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…(1)(x-1)(x4+x3+x2+x+1)=________;(2)根据规律可得:(x-1)(x n-1+…+x+1)=________(其中n为正整数);(3)计算:(3-1)(350+349+348+…+32+3+1);(4)计算:(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1.20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.答案一、选择题1. 【答案】B[解析] 原式=(-a)2-2·(-a)·b+b2=a2+2ab+b2.2. 【答案】A[解析] 202×198=(200+2)×(200-2)=2002-4.3. 【答案】D4. 【答案】A[解析] 原式=(-2x-3)(-2x+3)=(-2x)2-32=4x2-9.5. 【答案】C[解析] 因为(2x+3y)(mx-ny)=2mx2-2nxy+3mxy-3ny2=9y2-4x2,所以2m=-4,-3n=9,-2n+3m=0,解得m=-2,n=-3.6. 【答案】D[解析] 9.52=(10-0.5)2=102-2×10×0.5+0.52.7. 【答案】C[解析] (x+1)(x2+1)(x-1)=(x+1)(x-1)(x2+1)=(x2-1)(x2+1)=x4-1.8. 【答案】D[解析] 因为(x+a)2=x2+bx+25,所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.9. 【答案】A [解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.10. 【答案】D [解析] 在图①中,左边的图形阴影部分的面积=a 2-b 2,右边图形的面积=(a +b )(a -b ),故可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式; 在图②中,左边图形的阴影部分的面积=a 2-b 2,右边图形的面积=(2b +2a )(a -b )=(a +b )(a -b ),可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式;在图③中,左边图形的阴影部分的面积=a 2-b 2,右边图形的面积=(a +b )(a -b ),可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式.二、填空题11. 【答案】±3 [解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m =±3.12. 【答案】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 【解析】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭13. 【答案】±3 [解析] ∵(x -ay )(x +ay )=x 2-a 2y 2=x 2-9y 2,∴a 2=9,解得a =±3.14. 【答案】50 [解析] 因为x -y =6,xy =7,所以x 2+y 2=(x -y)2+2xy =62+2×7=50.15. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题17. 【答案】222(41)(41)(4)1161a a a a ---+=--=-【解析】222(41)(41)(4)1161a a a a ---+=--=-18. 【答案】解:(1)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)×(216+1)=232-1.(2)原式=×(3-1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)=. (3)若m ≠n ,则原式=(m -n )(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16)=;若m =n ,则原式=2m ·2m 2·……·2m 16=32m 31.19. 【答案】 解:(1)x 5-1(2)x n -1(3)(3-1)(350+349+348+…+32+3+1)=351-1.(4)因为(-2-1)[(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1]=(-2)2021-1=-22021-1,所以(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1=22021+13.20. 【答案】解:(1)由已知可得:(a+b)1展开式中共有2项,(a+b)2展开式中共有3项,(a+b)3展开式中共有4项,……则(a+b)n展开式中共有(n+1)项.(2)(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,…则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.。
八年级数学上册《第十四章-乘法公式》同步练习题及答案-人教版
八年级数学上册《第十四章 乘法公式》同步练习题及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果x 2﹣6x+k 是完全平方式,则k 的值为( )A .±9B .±36C .36D .92.计算:2210021009999(-⨯⨯+==( ) A .0 B .1C .1-D .39601 3.下列运算正确的是( )A .32xy xy -=B .22(3)6x x -=C .62322x x x ÷=D .22()()x y x y x y -+=-4.已知4x y -=,xy =−3,则22x y +=( )A .22B .19C .16D .105.若a+x 2=2020,b+x 2=2021,c+x 2=2022,则a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值为( )A .0B .1C .2D .36.若()()22221135a b a b +++-=,则22a b +=( ) A .3 B .6 C .3± D .6±7.已知222x x -=,则x 4−2x 3+x 2−6x −5的值为( )A .2-B .1C .3D .108.如图有A 、B 、C 三类卡片,分别是边长为a 的正方形,边长为a ,b 的长方形,边长为b 的正方形,若用这三种卡片拼成无缝隙不重叠的正方形,以下方案不可行的是( )A .A 类卡片1张,B 类卡片2张,C 类卡片1张B .A 类卡片2张,B 类卡片4张,C 类卡片1张C .A 类卡片1张,B 类卡片4张,C 类卡片4张D .A 类卡片4张,B 类卡片8张,C 类卡片4张二、填空题:(本题共5小题,每小题3分,共15分.)9.化简: (2a −1)2 = .10.计算:1.992-1.98×1.99+0.992=11.若2b ﹣a =﹣2,a+2b =5.则a 2﹣4b 2= .12.若a 2+b 2+c 2-ab-bc-ac=0,且a+3b+4c=16,则a+b+c 的值为 .13.有两个正方形A 、B ,现将B 放在A 的内部得图甲,将A 、B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A ,B 的面积之和为 .三、解答题:(本题共5题,共45分)14.计算(1)2(32)(32)(31)x x x +---(2)()()2323x y x y -++-15.计算:(1)(x +y)(x 2−xy +y 2) ;(2)[(x −y)2+(x +y)(x −y)]÷2x .16.已知a +b =7,ab =5,求22a b + 和2()a b -的值.17.已知关于x 的多项式2459x kx --减去3333k k x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的差是一个单项式,求231k k -+-的值.18.认真观察图形,解答下列问题:(1)根据图①中的条件,试用两种不同方法表示两个阴影图形的面积的和.方法1: ;方法2: .(2)从中你能发现什么结论?请用等式表示出来: ;(3)利用(2)中结论解决下面的问题:如图②,两个正方形边长分别为m ,n ,如果m +n =mn=4,求阴影部分的面积.参考答案:1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】D 5.【答案】D 6.【答案】B 7.【答案】B 8.【答案】B9.【答案】4a 2−4a +110.【答案】111.【答案】1012.【答案】613.【答案】1114.【答案】(1)解:原式=9x 2-4-(9x 2-6x+1)=9x 2-4-9x 2+6x-1=6x-5;(2)解:原式=[2x-(y-3)][2x+(y-3)]=4x 2-(y-3)2=4x 2-y 2+6y-9.15.【答案】(1)解:原式= x 3−x 2y +xy 2+x 2y −xy 2+y 3=x 3+y 3(2)解:原式= (x 2−2xy +y 2+x 2−y 2)÷2x()2222x xy x =-÷ x y =-16.【答案】解:∵a+b=7,ab=5,∴a 2+b 2=(a+b )2﹣2ab=72﹣2×5=39;(a ﹣b )2=(a+b )2﹣4ab=72﹣4×5=29.17.【答案】解:∵2459x kx -- 3333kk x x ⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭22245999k x x kx =---+22459k x kx ⎛⎫=-- ⎪⎝⎭22459k x kx ⎛⎫-- ⎪⎝⎭ 是一个单项式 ∴2409k -= 或 50k -=∴6k =± 或 0k =则当 6k = 时 2313618119k k -+-=-+-=-当 6k =- 时 2313618155k k -+-=---=-当 0k = 时 2311k k -+-=-18.【答案】(1)a2+b2;(a+b)2-2ab(2)a2+b2=(a+b)2-2ab(3)解:阴影部分的面积=S 正方形ABCD+S正方形CGFE−S△ABD−S△BGF=m2+n2−12m2−12(m+n)n∴阴影部分的面积=12m2+12n2−12mn=12(m2+n2)−12mn=12[(m+n)2−2mn]−12mn∵m+n=mn=4∴阴影部分的面积=12[(m+n)2−2mn]−12mn=12×(42−2×4)−12×42=答:阴影部分面积为2。
八年级数学上册《第十四章 乘法公式》同步练习及答案-人教版
八年级数学上册《第十四章乘法公式》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算正确的是()A.3√3−√3=3B.x5⋅x2=x10C.(a−b)2=a2−b2D.a6÷a3=a32.已知ab=−5,a−b=6,则a2+b2=()A.13 B.19 C.26 D.373.计算(a+b)(﹣a+b)的结果是()A.b2﹣a2B.a2﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab+b24.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方数的平均数,那么a与b的大小关系是()A.a>b B.a≥b C.a≤b D.a<b5.不论x,y取什么实数,代数式x2+y2+2x-4y+7的值( )A.不小于2 B.不小于7 C.为任何实数D.可能为负数6.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来的正方形草坪面积相比().A.增加6m2B.增加9 m2C.减少9 m2D.保持不变7.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片1张,边长为b的正方形卡片4张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为()A.a+2b B.4a+b C.2a+b D.a+3b8.下列计算中:①(2x)3·(-5x2y)=-10x5y;②(2a2-b)(2a2+b)=4a2-b2;③(x+3)(3-x)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.其中错误的有( )A.1个B.2个C.3个D.4个二、填空题9.﹣[a﹣(b﹣c)]去括号应得.10.若x﹣3y=7,x2﹣9y2=49,则x+3y= .11.若x2+kx+36是一个完全平方式,则k= .12.若a、b、c为三角形的三边,且a、b满足√a2−6a+9+(b−2)2=0,则第三边c的取值范围是.13.如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是三、解答题14.计算:(1)(a﹣2b+3c)2;(2)(3x+y﹣2)(3x﹣y+2).15.先化简,再求值:(2x+5)(2x−5)+(x−3)2−6x(x−1),其中x=6 .16.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:17.阅读下列材料:( 1 )关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以1x 得:x-3+ 1x=0即x+ 1x=3 (x+1x)2=x2+1 x2+2×x×1x=x2+1x2+2x2+1x2=(x+1x)2−2=32−2=7 .( 2 )a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2). 根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则x+ 1x =1 ,x2+1x2= ,x4+1x4= ;(2)2x2﹣7x+2=0(x≠0),求x3+1x3的值.18.(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.19.我国著名数学家华罗庚曾说“数缺形时少直观,形少数时难入微”,数形结合的方法是我们解决数学问题常用到的思想方法.图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分正方形的边长是.(2)通过观察,请用两种不同的方法求出图②中阴影部分的面积:方法1:S阴影=;方法2:S阴影=.(3)观察图②,请你写出(a+b)2,(a﹣b)2与ab之间的等量关系.参考答案1.D2.C3.A4.D5.A6.C7.A8.D9.﹣a+b ﹣c10.711.k=±1212.1<c <513.a 2−b 2=(a +b)(a −b)14.(1)解:(a ﹣2b+3c )2=(a ﹣2b )2+9c 2﹣6c (a ﹣2b )=a 2﹣4ab+4b 2+6ac ﹣12bc+9c 2(2)解:(3x )2﹣(y ﹣2)2=9x 2﹣y 2+4y ﹣415.解:原式=4x 2−25+x 2−6x +9−6x 2+6x=−x 2−16当 x =6 时原式 =−5216.解:由题意可得:方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2方案三:a 2+ [a+(a+b)]b 2 + [a+(a+b)]b 2 = a 2+ab +12b 2+ab +12b 2 =a 2+2ab+b 2=(a+b )2. 17.(1)4;14;194(2)解:方程两边同时除以2x 得x − 72 + 1x =0则x+ 1x = 72两边平方得x 2+ 1x 2 +2= 494 ,则x 2+ 1x 2 = 414∴x3+1x3 =(x+ 1x)(x2-1+ 1x2)= 72×(414-1)= 2598.18.解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4;故答案为:a2﹣b2,a3﹣b3,a4﹣b4;(2)由(1)的规律可得:原式=a n﹣b n故答案为:a n﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.19.(1)a﹣b(2)(a﹣b)2;(a+b)2﹣4ab(3)解:(a﹣b)2=(a+b)2﹣4ab。
【推荐】人教版八年级上册14.2《乘法公式》同步练习带答案.doc
人教版八年级上册14.2《乘法公式》同步练习带答案基础巩固1.下列添括号错误的是().A.-x+5=-(x+5) B.-7m-2n=-(7m+2n)C.a2-3=+(a2-3) D.2x-y=-(y-2x)2.下列各式,计算正确的是().A.(a-b)2=a2-b2B.(x+y)(x-y)=x2+y2C.(a+b)2=a2+b2D.(a-b)2=a2-2ab+b23.下列各式中,与(a-1)2相等的是().A.a2-1 B.a2-2a+1C.a2-2a-1 D.a2+14.下列等式能够成立的是().A.(x-y)2=x2-xy+y2B.(x+3y)2=x2+9y2C.(x-12y)2=x2-xy+214yD.(m-9)(m+9)=m2-95.应用乘法公式计算:1.234 52+2.469×0.765 5+0.765 52的值为__________.6.正方形的边长增大5 cm,面积增大75 cm2.那么原正方形的边长为__________,面积为__________.7.(-a-b)(a-b)=-[()(a-b)]=-[()2-()2]=__________.8.计算:(1)(x-3)(x2+9)(x+3);(2)(x+y-1)(x-y+1);9.(1)先化简,再求值:2(3x+1)(1-3x)+(x-2)(2+x),其中x=2.(2)化简求值:(1-4y)(1+4y)+(1+4y)2,其中y=2 5 .能力提升10.若x2-y2=20,且x+y=-5,则x-y的值是().A.5 B.4C.-4 D.以上都不对11.等式(-a-b)()(a2+b2)=a4-b4中,括号内应填().A.-a+b B.a-bC.-a-b D.a+b12.若a2+2ab+b2=(a-b)2+A,则A的值为().A.2ab B.-abC.4ab D.-4ab13.若x-1x=1,则x2+21x的值为().A.3 B.-1 C.1 D.-314.(湖南益阳)观察下列算式:①1×3-22=3-4=-1②2×4-32=8-9=-1③3×5-42=15-16=-1④________________________________________________________________________ ……(1)请你按以上规律写出第④个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.15.已知x=12,求代数式(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)的值,在解这道题时,小茹说:“只给出了x的值,没给出y的值,求不出答案.”小毅说:“这道题与y的值无关,不给出y的值,也能求出答案.”你认为谁的说法正确?请说明理由。
人教版八年级数学上册同步练习乘法公式(含答案解析)
14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b2 2.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1 B.x4+1 C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.参考答案:1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版八年级数学上册《14.2 乘法公式》同步练习题带答案
人教版八年级数学上册《14.2 乘法公式》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.在等式(a+b)( )=a2−b2中,括号里应填的多项式是()A.−a+b B.a+b C.a−b D.−a−b2.已知x2+2kx+9是完全平方式,则k的值为()A.3B.±3C.-3D.±93.下列多项式相乘,不能用平方差公式计算的是()A.(x+3y)(x−3y)B.(−2x+y)(−2x−y)C.(x−2y)(2y+x)D.(x−3y)(3y−x)4.数学活动课上,小云和小辉在讨论一道张老师出的代数式求值问题.结合他们的对话,通过计算求得a−b的值是()A.−3B.−4C.3D.45.观察图中的两个图形,利用它们之间的关系可以验证的等式是()A.(a+b)2﹣(a﹣b)2=4ab B.(a﹣b)2+2ab=a2+b2C.(a+b)2﹣(a2+b2)=2ab D.(a+b)(a﹣b)=a2﹣b26.若边长为a,b的长方形周长为10,面积为5,则a2+b2的值是()A.10B.15C.18D.207.设(2a+3b)2=(2a﹣3b)2+A,则A=()A.6ab B.12ab C.0D.24ab8.3(22+1)(24+1)…(232+1)+1计算结果的个位数字是()A.4B.6C.2D.8二、填空题9.化简(2x+5)(2x−5)+2(x−1)=..10.计算:(−x−2y)(−x+2y)= .11.已知m+n=6,mn=2,则(m−n)2=.12.若a+b=1,则a2−b2+2b−1=13.如图,点D是线段AE上一点,以AD,DE为边向两边作正方形,面积分别是S1和S2,设AE= 6,两个正方形的面积之和S1+S2=16,则△DCE的面积为.14.原有长方形绿地一块、现进行如下改造:将长减少2m,将宽增加2m.改造后得到一块正方形绿地,它的面积是原长方形绿地面积的2倍,则改造后正方形绿地的面积为.15.用幂的形式表示:(32+1)(34+1)(38+1)⋯(364+1)=16.现有甲、乙两个正方形纸片,将甲、乙并列放置后得到图1,已知点H为AE的中点,连接DH、FH,将乙纸片放到甲的内部得到图2,已知甲、乙两个正方形边长之和为8,图1的阴影部分面积为19,则图2的阴影部分面积为.17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.根据上面的规律,(a+b)5=三、解答题18.计算:(1)(3m+15n)2(2)(y+2)(y−2)−(y−1)(y+5)19.先化简,再求值:(1−2x)2−(2x+1)(2x−1)−(3+2x)(1−2x),其中x=32 20.解不等式:(2x+3)(2x−3)−(x+1)2>3x2−7.21.利用乘法公式计算下列各题:(1)102×98;(2)1.2342+0.7662+2.468×0.766.22.通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)根据上述过程,写出(a+b)2、(a−b)2、ab之间的等量关系:;(2)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.观察图3,把一个大正方体分割成如图所示的小长方体和小正方体,从中可以得到一个恒等式:;(3)两个正方形ABCD,CEFG如图4摆放,边长分别为x,y(x>y)若这两个正方形面积之和为34,且BE=8,求图中阴影部分面积.参考答案:1.C2.B3.D4.A5.C6.B7.D8.B9.4x2+2x−2710.x2−4y211.2812.013.514.8m215.3128−1816.617.a5+5a4b+10a3b2+10a2b3+5ab4+b518.(1)9m2+65mn+125n2(2)−4y+119.−1+4x220.x<−32.21.(1)9996(2)422.(1)(a+b)2=(a−b)2+4ab(2)(a+b)3=a3+3a2b+3ab2+b3(3)312。
2024年-人教版数学八年级上册14.2乘法公式同步练习(含答案)
14.2 乘法公式同步练习1.填空.2(1)_______1x x -=-2.2200720062008-⨯的计算结果是( ) A.1 B.-1 C.2 D.-23. 简便计算:10397⨯. 42(2)(2)(4)b b b +-+5. 试说明:两个连续奇数的积加上1,一定是一个偶数的平方.6. 方程22(21)(13)5(1)(1)x x x x ---=-+的解是( ) 7. 下列各式中,能用平方差公式计算的是( ) A.1122a b a b ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭B.1122a b a b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭ C.1122a b a b ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭D.1122a b a b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭ 8. 计算:(1)()(2)a b a +-;(2)1122x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭;(3)()()m n m n +-;(4)(0.1)(0.1)x x -+;(5)()()x y y x +-+.9. 计算:(1)(25)(25)a a ---;(2)11113232a b a b ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭;(3)(53)(35)ab x x ab ---;(4)11122(8)224x x x x ⎛⎫⎛⎫-+-+ ⎪⎪⎝⎭⎝⎭;(5)111()933x y x y x y x y ⎛⎫⎛⎫⎛⎫----+⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.10. 利用平方差公式计算:(1)3129⨯;(2)9.910.1⨯;(3)98102⨯;(4)1003997⨯.a b11. 计算:(1)(34)(34)a b a b +-;(2)()()a b c a b c +-++;(3)112233a c b a c b ⎛⎫⎛⎫-++--+ ⎪⎪⎝⎭⎝⎭.12. 利用平方差公式计算:(1)2733⨯;(2)5.9 6.1⨯;(3)99101⨯;(4)1005995⨯.13如图是四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式. 14计算.2302=_________15.计算22(4)a b -=_________16. 若2154a b ab +==,,则22a b +=_________ 17. 如果226x x k ++恰好是一个整式的平方,那么常数k 的值为( ) A.3B.3-C.3±D.918.22()x y --等于( )A.222x xy y --+B.4222x x y y --+ C.4222x x y y ++D.422x xy y -- 19 计算题:(1)2(23)a b c --;(2)2(2)(2)()x y z x y z x y z +----+-.20. 已知2222263()()x y xy x y x y +==+-和,,求的值.21. 已知2(1)()5a a a b ---=,求222a b ab +-的值.22.计算2212x ⎛⎫+ ⎪⎝⎭等于( )A.42124x x ++B.4214x x -+ C.4214x x ++D.42124x x -+23. 若14a a-=,则221a a +=_________.24. 代数式26()a b -+的最大值是_______,这时a 与b 的关系为________.25. 计算:2222x y x y +-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭.26. 已知5,6,a b ab +==-求下列各式的值. (1)22a b +;(2)22a ab b -+.27 在多项式241x +中,添加一个单项式,使其成为一个完全平方式.则添加的单项式是(只写出一个即可)28.62()()ab ab ÷=( )A.33a b B.44a b C.34a b D.43a b29.已知:如图,现有a a ⨯、b b ⨯的正方形纸片和a b ⨯的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为22252a ab b ++,并标出此矩形的长和宽.14.2 乘法公式同步练习1:(1)x -- 2:A a abbb3:9991 4:416b - 5:设两个连续奇数为21n -,21n +, 6.:D 7:C8:(1)222a ba a b +--;(2)214x -;(3)22m n -;(4)20.01x -;(5)22x y -.9:(1)2254a -;(2)221194a b -;(3)222925x a b -;(4)24x --;(5)21029y xy -. 10:(1)(301)(301)9001899+-=-=; (2)(100.1)(100.1)1000.0199.99-+=-=; (3)(1002)(1002)1000049996-+=-=; (4)(10003)(10003)10000009999991+-=-=.11:(1)22916a b -;(2)22()a b c +-(或2222a ab b c ++-);(3)22123a b c ⎛⎫-+- ⎪⎝⎭22214493a ab b c ⎛⎫-+- ⎪⎝⎭或.12:(1)891;(2)35.99;(3)9999;(4)999975. 13:如:22()4()a b ab a b +-=-. 14:9120415:224168a ab b -+ 16:114217:C18:C19:(1)222494612a b c ab ac bc ++--+;(2)2522y xy yz --+.20:2()32x y +=,2()20x y -=21:25222:C23:1824:6,0a b +=或a b ,互为相反数25:222x y +.26:(1)222()2251237a b a b ab +=+-=+=;(2)()()22223536251843a ab b a b ab -+=+-=-⨯-=+=.27:4x ±或1-或24x -28:B29:说明:答案不唯一,画图正确,不论画在什么位置,只要符合题意即可.不标出相应尺寸的扣2分,标错1个或少标1个扣1分. a+2b2a +b2a +ba+2b。
2023-2024学年八年级数学上册《第十四章-乘法公式》同步练习题含答案(人教版)
2023-2024学年八年级数学上册《第十四章乘法公式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列运算正确的是()A.B.C.D.2.计算:852-152等于( )A.70 B.700 C.4 900 D.7 0003.下列各式中,能用平方差公式计算的是()(1)(a-2b)(-a+2b);(2)(a-2b)(-a-2b);(3)(a-2b)(a+2b);(4)(a-2b)(2a+b).A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)4.已知a﹣b=5,(a+b)2=49,则a2+b2的值为()A.25 B.27 C.37 D.44 5.···的个位数是()A.4 B.5 C.6 D.86.有3张边长为a的正方形纸片,8张边长分别为a、b(b>a)的矩形纸片,10张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+5b B.a+4b C.2a+2b D.a+3b7.已知实数、、满足,下列结论正确的是()A.可能为B.若、、中有两个数相等,则C.若,则D.若,则8.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2﹣4b2B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)二、填空题:(本题共5小题,每小题3分,共15分.)9.计算:.10.已知(a+b)2=7,(a-b)2=4,则 ab 的值为.11.七中有一正方形花坛,边长为am,现在把花坛边长增加3m,则这个花坛面积增加m.12.运用平方差公式计算:.13.如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD和正方形PBEF,连结MD和ME.设AP=a,BP=b,且a+b=10,ab=15.则图中阴影部分的面积为.三、解答题:(本题共5题,共45分)14.化简:.15.化简:.16.先化简,再求值(3a+2b)(2a﹣3b)﹣(a﹣2b)(2a﹣b),其中.17.已知:关于x,y的二元一次方程组的解满足,求的值.18.有一张边长为厘米的正方形桌面,因为实际需要,需将正方形边长增加厘米,木工师傅设计了如图所示的三种方案:善于观察思考的小明发现:利用图形面积关系这三种方案都能验证公式:.对于方案一,小明是这样验证的:因为大正方形的面积可以看成:,又可以看成所以.解答下列问题:(1)公式验证:请根据方案二、方案三,分别写出公式的验证过程.方案二:方案三:(2)公式应用,已知实数a,均为正数,且a-b=2,ab=3,求的值.参考答案:1.【答案】D 2.【答案】D 3.【答案】B 4.【答案】C 5.【答案】C 6.【答案】D 7.【答案】D 8.【答案】A9.【答案】10.【答案】11.【答案】6a+912.【答案】25513.【答案】4514.【答案】解:.15.【答案】解:原式.16.【答案】解:(3a+2b)(2a﹣3b)﹣(a﹣2b)(2a﹣b)=(6a2+4ab﹣9ab﹣6b2)﹣(2a2-4ab﹣ab+2b2)=6a2+4ab﹣9ab﹣6b2﹣2a2+4ab+ab﹣2b2=4a2﹣8b2当a=﹣1.5 ,b= 时原式=4×( )2﹣8×( )2=9-= .17.【答案】解:①+②得:②+①得:③+④得:又x+y=a∴,则a=9即x+y=9③-④得:∴x-y=7∴.18.【答案】(1)解:方案二:∵大正方形面积可以看成又可以看成∴;方案三:∵大正方形面积可以看成,又可以看成∴;(2)解:∵a-b=2∴∴∵ab=3∴∴,即∴a+b=±4。
人教版八年级上册142《乘法公式》同步练习带答案
人教版八年级上册14、2《乘法公式》同步练习带答案 基础巩固1 •下列添括号错误的是( )。
A.—x+5= —(x+5)C ・“2-3 = + (“2-3)2•下列各式,计算正•确的是( )A 。
(u —b)1 2 3=a 2—JrC. (a+h) — a 2^b 23•下列各式中,与(</-1) 2相等的是(2(宀一1Co a 2—2a — 14、下列等式能够成立的是().Ao (A —y) 2=x 2~xy+y 2Bo (x+3y)2=A 2+9rCo (x — - y )2=x 2—xy+ — y 2 2r 4'D.伽一9)(〃】+9)=〃】2—95o 应用乘•法公式计算:K 234 5?+2、469X0、765 5+0、765 52的值为 _____________ 。
6o 正方形的边长增大5 cm,而积增大75 cm —那么原正方形的边长为 _____________ ,面积为 _________ ・ 7o ( —a —b) (a~b) =一[() (a~b)^ =—[ ( )2 — ( )2]= __________ 、&计算:(1) (兀一3) X+9) (x+3): (2) (x+y —1) (x —y+1):9、(1)先化简,再求值:2 (3x+1)(1-3x) +(x~2) (2+x),其中 x=2、2⑵化简求值:(1一4$)(1+4巧+(1+4刃2,英中)=二、能力提升10•若工一)2=20,且 x+y=—5,贝'J x —y 的值是乂 )。
Ao 5 B.4C.-4 . D •以上都不对11。
等式(一“一b)( ) Ca 2+b 2) =a 4—b 4 中,括号内应填(Ao —a+b B.a~bC.—a — b .rD.d+b12o 若 a 2+2ab+b 2=(a-b)2+A 9 则 A 的值为( )。
Ao lab r Bo ~abCo 4ab Do ~4ab13。
人教版数学八年级上册:乘法公式练习题附答案
【解析】 【分析】 此题考查了平方差公式,熟练掌握平方差公式是解本题的关键,利用平方差公式的结构 特征判断即可. 【解答】
解:퐴.首先(푥 + 푦)(푥−푦) = 푥2−푦2,再与(푥2 + 푦2)使用平方差公式,可以两次使用平方
差公式,故 A 正确; B.不能使用平方差公式,故 B 错误; C.只能使用一次平方差公式,故 C 错误; D.不能使用平方差公式,故 D 错误. 故选 A.
【解答】 解:(1)푎 + 2푏−푐 = 푎 + (2푏−푐);
(2)2−푥2 + 2푥푦−푦2 = 2−(푥2−2푥푦 + 푦2); (3)(푎 + 푏−푐)(푎−푏 + 푐) = [푎 + (푏−푐)][푎−(푏−푐)]. 故答案为(1)2푏−푐;(2)푥2−2푥푦 + 푦2 ;(3)푏−푐,푏−푐.
7.【答案】D
【解析】 【分析】 本题主要考查完全平方公式,熟记完全平方公式是解题的关键. 运用完全平方公式求出(2푎 ± 3푏)2对照求解即可. 【解答】 解:由(2푎 ± 3푏)2 = 4푎2 ± 12푎푏 + 9푏2 , ∴ 染黑的部分为 ± 12. 故选 D.
8.【答案】D
【解析】 【分析】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键. 利用完全平方公式的结构特征判断即可得到结果. 【解答】
(2)原式 = 푎2−(2푏)2 = 푎2−4푏2. (3)原式 = 116푎2−1. (4)原式 = (2푚)2−(3푛)2
= 4푚2−9푛2.
【解析】本题主要考查的是平方差公式的有关知识. (1)直接利用平方差公式进行求解即可; (2)直接利用平方差公式进行求解即可; (3)直接利用平方差公式进行求解即可; (4)直接利用平方差公式进行求解即可.
人教版八年级数学上册14.2 乘法公式 同步练习(Word版含简答)
2021——2022学年度人教版八年级数学上册 第十四章 整式的乘法与因式分解14.2 乘法公式 同步练习一、选择题1.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 22.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 3.若28x x k -+是完全平方式,则k 的值是( )A .4B .8C .16D .32 4.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断:①**a b b a =;①()222**a b a b =;①()()**a b a b -=-;①()**a b c a b a c +=+*. 其中所有正确推断的序号是( )A .①①①①B .①①①C .①①D .①①5.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=-6.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .7.若()()()248(21)2121211A =+++++,则A 的末位数字是( ) A .4 B .2 C .5 D .68.已知x +1,y ﹣1,则xy 的值为( )A .8B .48C .D .6 9.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( ) A .A 5<A 6 B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <10082015 10.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b += 二、填空题11,利用这个比例,我们规定一种“黄金算法”即:a ①b =a b ,比如1①2=×2x ①(4①8)=10,则x 的值为______.12.对于实数a ,b ,定义运算“*”:a *b =22,,a ab a b ab a a b⎧-≥⎨-<⎩,若x 1,x 2是一元二次方程x 2﹣5x +6=0的两个根,其中x 1>x 2,则x 1*x 2=____.13.已知2410x x -+=,则221x x +的值是___. 14.若8x y -=,10xy =,则22x y +=______________.15.希望小组的同学在求式子23411111 (22222)n a a a a a +++++的值(结果用n 和a 表示)时遇到了困难.经过合作探究他们想出了如图所示的图形来解释这个式子:设①ABC 的面积为a ,取BC 的中点,则有①ABD 的面积为12a ,再取AD 的中点E ,则有①ACE 的面积为212a ,再取CE 的中点F ,则有①DEF 的面积为312a ,......照此思路持续取下去.就可利用这个图形求得 23411111 (22222)n a a a a a +++++的值=___________.三、解答题16.计算(1)(2x )3(﹣5xy 2)(2)(﹣6a 2b )•(23b 2﹣13a ) (3)(3a +b )(a ﹣3b )(4)(3x +2y ﹣1)(3x ﹣2y +1)17.老师在数学课上提出这样一个问题:已知21(0)x x x +=-≠,求221x x +的值. 小明通过观察、分析、思考,形成了如下思路:先将等式两边都除以x ,得到1x x +的值,再利用完全平方公式求出221x x+. 参考小明的思路,解决下列问题:(1)已知210(0)x x x --=≠,求221x x +的值;(2)已知213(0)x x x +=≠18.一个正整数 A 若能写成A =m ²- n ²(m 、n 均为正整数,且m >n ),则称A 为“第一共同 体数”,m 、n 为A 的平方差分解数组.在A 的所有平方差分解数组中,若m - n 最大,则称m 、n 为A 的最佳平方差分解数组,此时 Q (A )= m ²+ n ².范例①:①13=7²﹣6²,①13为第一共同体数,7和6为13的平方差分解数组;范例①:32的平方差分解有两组,即 32=9²﹣7²,32=6²﹣2².① 6-2>9-7,①6和2为32的最佳平方差分解数组,Q (32)=6²+2²=40根据材料回答:(1)请模仿范例①写出两个10以内的“第一共同体数”,并写出它们的平方差分解数组;(2)判断 48 是否为第一共同体数?若不是,请说明理由,若是,请计算 Q (48)的值19.(1)对于算式()()()()()2481024212121212+1______++++=;不用计算器,你能计算出来吗?直接写出计算结果.(2)你计算结果的个位数字是________.(3)根据(1)推测()()()()()2420481111+1=_______m m m m m -+++.20.阅读下面的材料并解答后面的问题:在学了整式的乘法公式后,小明问:能求出243x x ++的最小值吗?如果能,其最小值是多少?小丽:能.求解过程如下:因为222434443(2)1x x x x x ++=++-+=+-,因为2(2)0x +≥,所以243x x ++的最小值是1-.问题:(1)小丽的求解过程正确吗?(2)你能否求出285x x -+的最小值?如果能,写出你的求解过程;(3)求265x x -+-的最大值.21.我们通常用作差法比较代数式大小.例如:已知M =2x +3,N =2x +1,比较M 和N 的大小.先求M ﹣N ,若M ﹣N >0,则M >N ;若M ﹣N <0,则M <N ;若M ﹣N =0,则M =N ,反之亦成立.本题中因为M ﹣N =2x +3﹣(2x +1)=2>0,所以M >N .(1)如图1是边长为a 的正方形,将正方形一边不变,另一边增加4,得到如图2所示的新长方形,此长方形的面积为S 1;将图1中正方形边长增加2得到如图3所示的新正方形,此正方形的面积为S 2用含a 的代数式表示S 1= ,S 2= (需要化简).然后请用作差法比较S 1与S 2大小;(2)已知A =2a 2﹣6a +1,B =a 2﹣4a ﹣1,请你用作差法比较A 与B 大小.(3)若M =(a ﹣4)2,N =16﹣(a ﹣6)2,且M =N ,求(a ﹣4)(a ﹣6)的值.22.观察:(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和长方形EFHD为阴影部分,则阴影部分的面积可表示为(写成平方差的形式);(2)将图1中的长方形ABGE和长方形EFHD剪下来,拼成如图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式);探究:(3)比较图1与图2的阴影部分的面积,可得等量关系;(4)若7x﹣y=5,y+7x=7,则49x2﹣y2=;应用:(5)利用公式计算:(1﹣13)(1+13)(1+213)(1+413)(1+813) (1)6413)+12813.23.(知识生成)通过不同的方法表示同一图形的面积,可以探求相应的等式,两个边长分别为a,b的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的梯形,请用两种方法计算梯形面积.(1)方法一可表示为;方法二可表示为;(2)根据方法一和方法二,你能得出a,b,c之间的数量关系是(等式的两边需写成最简形式);(3)由上可知,一直角三角形的两条直角边长为6和8,则其斜边长为.(知识迁移)通过不同的方法表示同一几何体的体积,也可以探求相应的等式.如图2是边长为a+b的正方体,被如图所示的分割线分成8块.(4)用不同方法计算这个正方体体积,就可以得到一个等式,这个等式可以为.(等号两边需化为最简形式)(5)已知2m﹣n=4,mn=2,利用上面的规律求8m3﹣n3的值.【参考答案】1.D 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.D 10.D11.12.3或2或313.1414.8415.12na a - 16.(1)4240-x y ;(2)23342ab a b -+;(3)22383a ab b --;(4)229441x y y -+-17.(1)221x x +=8+(2= 18.(1)7为第一共同体数,4和3为7的平方差分解数组,9为第一共同体数,5和4为9的平方差分解数组;(2)是,理由见解析,(48)50Q =19.(1)204821-;(2)5;(3)40961m -20.(1)正确;(2)能,最小值为-11,见解析;(3)4.21.(1)a 2+4a <a 2+4a +4;(2)A >B ;(3)622.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b -=+-;(4)35;(5)123.(1)12ab +12ab +12c 2;12(a +b )2;(2)c 2=a 2+b 2;(3)10;(4)(a +b )3=a 3+3a 2b +3ab 2+b 3;(5)8m 3﹣n 3的值为112.。
人教版八年级上册数学 乘法公式(巩固作业)
14.2 乘法公式(巩固作业)人教版八年级上册一.选择题1.已知(2022﹣m)(2020﹣m)=2021,那么(2022﹣m)2+(2020﹣m)2的值为()A.4046B.2023C.4042D.40432.若n满足关系式(n﹣2020)2+(2021﹣n)2=3,则代数式(n﹣2020)(2021﹣n)=()A.﹣1B.0C.D.13.下列四种说法中正确的有()①关于x、y的方程2x+6y=199存在整数解.②若两个不等实数a、b满足2(a4+b4)=(a2+b2)2,则a、b互为相反数.③若(a﹣c)2﹣4(a﹣b)(b﹣c)=0,则2b=a+c.④若x2﹣yz=y2﹣xz=z2﹣xy,则x=y=z.A.①④B.②③C.①②④D.②③④4.如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为()A.6B.8C.10D.125.如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:7=7×1=(4+3)×(4﹣3)=42﹣32,7就是一个智慧数,8=4×2=(3+1)×(3﹣1)=32﹣12,8也是一个智慧数,则下列各数不是智慧数的是()A.2021B.2022C.2023D.20246.如果4x2+2kx+25是一个完全平方式,那么k的值是()A.20B.±20C.10D.±107.若(a+b)2=25,a2+b2=13,则ab的值为()A.6B.﹣6C.12D.﹣128.2×(3+1)(32+1)(34+1)(38+1)(316+1)+1的计算结果是()A.332+1B.332﹣1C.331D.3329.从前,一位农场主把一块边长为a米(a>4)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加4米,相邻的另一边减少4米,变成长方形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.没有变化B.变大了C.变小了D.无法确定10.将四个长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=2S2,则a,b满足()A.a=2b B.a=3b C.2a=3b D.2a=5b二.填空题11.计算20222﹣2020×2024的结果是.12.若x+y=3,xy=﹣5,则(x﹣y)2=.13.如图,由四张大小相同的矩形纸片拼成一个大正方形和一个小正方形.如果大正方形的面积为75,小正方形的面积为3,则矩形的宽AB为.14.如图,边长分别为a、b的两个正方形并排放在一起,当a+b=8,ab=10时,阴影部分的面积为.15.如图,边长为6的正方形ABCD中放置两个长和宽分别为a,b(a<6,b<6)的长方形,若长方形的周长为16,面积为15.75,则图中阴影部分面积S1+S2+S3=.三.解答题16.已知A=(2y﹣x)(﹣2y﹣x),B=4y(x﹣2y).(1)对A,B进行整式乘法运算;(2)甲、乙两位同学用如图所示的方法比较A,B的大小.甲认为:A大于B;乙认为:A不小于B.通过计算判断谁的说法正确.17.乘法公式(a+b)2=a2+2ab+b2给出了a+b、a2+b2与ab的数量关系,灵活的应用这个关系,可以解决一些数学问题.(1)若a+b=5,ab=3,求a2+b2的值;(2)若m满足(11﹣m)2+(m+9)2=10,求(11﹣m)(m+9)的值;(3)如图,点E、G分别在正方形ABCD的边AD、AB上,且BG=DE+1,以AG为一边作正方形AGJK,以AE的长为边长过点E作正方形GFIH,若长方形AEFG的面积是,求阴影部分的面积.18.(1)【观察】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).请你写出(a+b)2,(a﹣b)2,ab之间的等量关系:.(2)【应用】若m+n=6,mn=5,则m﹣n=;(3)【拓展】如图3,正方形ABCD的边长为x,AE=5,CG=15,长方形EFGD的面积是300,四边形NGDH和四边形MEDQ都是正方形,四边形PQDH是长方形,求图中阴影部分的面积.19.学习了平方差、完全平方公式后,小聪同学对学习和运用数学公式非常感兴趣,他通过上网查阅,发现还有很多数学公式,如立方和公式:(a+b)(a2﹣ab+b2)=a3+b3,他发现,运用立方和公式可以解决很多数学问题,请你也来试试利用立方和公式解决以下问题:(1)【公式理解】公式中的字母可以代表任何数、字母或式子.①化简:(a﹣b)(a2+ab+b2)=;②计算:(993+1)÷(992﹣99+1)=;(2)【公式运用】已知:+x=5,求的值;(3)【公式应用】如图,将两块棱长分别为a、b的实心正方体橡皮泥揉合在一起,重新捏成一个高为的实心长方体,问这个长方体有无可能是正方体,若可能,a与b应满足什么关系?若不可能,说明理由.20.综合与实践我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.小明同学用如图1所示不同颜色的正方形与长方形纸片拼成了一个如图2所示的正方形.(1)用不同的代数式表示图2中阴影部分的面积,写出你能得到的等式,并用乘法公式说明这个等式成立;(2)小明想到利用(1)中得到的等式可以完成了下面这道题:如果x满足(6﹣x)(x﹣2)=3.求(6﹣x)2+(x﹣2)2的值.小明想:如果设6﹣x=m,x﹣2=n,那要求的式子就可以写成m2+n2了,请你按照小明的思路完成这道题目.(3)如图3,在长方形ABCD中,AB=10,BC=6,E、F是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为40,求图中阴影部分的面积和.。
八年级数学上册《第十四章 乘法公式》同步练习题及答案(人教版)
八年级数学上册《第十四章乘法公式》同步练习题及答案(人教版)班级姓名学号一、单选题1.已知a﹣b=2,则a2﹣b2﹣4b的值为( )A.2 B.4 C.6 D.82.下列计算正确的一项是()A.a5+a5=2a10B.(a+2)(a﹣2)=a2﹣4C.(a﹣b)2=a2﹣b2D.4a﹣2a=23.用1张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,4张边长为b的正方形纸片,正好拼成一个大正方形(按原纸张进行无空隙、无重叠拼接),则拼成的大正方形边长为()A.a+b+2ab B.2a+b C.a2+4ab+4b2D.a+2b4.下列各式不能使用平方差公式的是()A.(2a+b)(2a﹣b)B.(﹣2a+b)(b﹣2a)C.(﹣2a+b)(﹣2a﹣b)D.(2a﹣b)﹣(2a﹣b)5.计算:3(22+1)(24+1)(28+1)-216 的结果为()A.216-1 B.-1 C.216+1 D.16.如图:内、外两个四边形都是正方形,阴影部分的宽为3,且面积为51,则内部小正方形的面积是()A.47 B.49 C.51 D.537.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(1)可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图(2)面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a﹣b)(a+2b)=a2+ab﹣b28.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2二、填空题9.(3x+1)(3x﹣1)(9x2+1)= .10.已知x2+3x+1=0,则x2+1=.x211.如果x2﹣4(m﹣1)x+16是一个完全平方式,则m= .12.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=13.由完全平方公式:(a−b)2=a2+b2−2ab可得a2+b2≥2ab,若a2+b2=4,则(a−b)2的最大值为.三、解答题14.先化简,再求值:x(3-x)+(x+1)(x-1),其中x= −1315.计算:a)3;(1)(3a5−2a4)÷(−12(2)(a+b)(a﹣b)﹣(a﹣2b)2.16.已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.17.如图,两个正方形边长分别为a,b,已知a+b=7,ab=9求阴影部分的面积.18.根据如图图形.(1)利用面积的不同表示方法,写出一个代数恒等式;(2)根据(1)中的结果,思考对于两个实数a、b,若a+b=9,ab=18,请计算a﹣b的值.19.先阅读下面的例题,再解答问题.例题:已知m2+2mn+2n2-6n+9=0.求m和n的值.解:∵m2+2mn+2n2-6n+9=0∴m2+2mn+n2+n2-6n+9=0∴(m+n)2+(n-3)2=0∴m+n=0,n-3=0∴m=-3,n=3.问题:(1)已知x2+5y2+2xy-24y+36=0,求x y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+10b-61,且c是△ABC中最大的边长,求c的取值范围.参考答案1.B2.B3.D4.B5.B6.B7.B8.D9.81x4﹣110.711.3或-112.﹣213.814.解:原式=3x-x2+x2-1=3x-1时当x=−13)-1=-2原式=3×(−13a)315.(1)解:(3a5−2a4)÷(−12a3)= (3a5−2a4)÷(−18= 3a5×(−8a−3)−2a4×(−8a−3)= −24a2+16a(2)解:(a+b)(a﹣b)﹣(a﹣2b)2= a2﹣b2﹣(a2﹣4ab+4b2)= a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b216.解:(1)a2+b2=(a+b)2﹣2ab=52﹣2×6=25﹣12=13.(2)(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=25﹣24=1.17.解:如图S 阴=S△ABC−S△CDE=12a2−12(a−b)b=12(a2−ab+b2)=12(a2−ab+b2)=12[(a+b)2−3ab]∵a+b=7∴S阴=12×(72−3×9)=11.答:阴影部分的面积为11.18.解:(1)根据题意得:(a+b)2=(a﹣b)2+4ab.(2)由(1)得(a+b)2=(a﹣b)2+4ab∴(a﹣b)2=(a+b)2﹣4ab.当a+b=9,ab=18时,(a﹣b)2=92﹣4×18=9∴a﹣b=±√9∴a﹣b=3.19.(1)解:对原式进行变形得:x2+2xy+y2+4y2−24y+36=0即:(x+y)2+(2y−6)2=0∴x+y=0∴x=−3∴x y=(−3)3=−27;(2)解:由题可得:a2−12a+36+b2−10b+25=0即:(a−6)2+(b−5)2=0∴a=6根据三角形的三边关系得:c<a+b,且a=6∴6≤c<11 .。
人教版初中数学八年级上册《14.2 乘法公式》同步练习卷(含答案解析
人教新版八年级上学期《14.2 乘法公式》同步练习卷一.选择题(共15小题)1.下列各式:①(a﹣b)(b+a)②(a﹣b)(﹣a﹣b)③(﹣a﹣b)(a+b)④(a﹣b)(﹣a+b),能用于平方差公式计算的有()A.1 个B.2 个C.3 个D.4 个2.如果x2+6x+n2是一个完全平方式,则n值为()A.3B.﹣3C.6D.±33.(a﹣b+c)(a﹣b﹣c)的计算结果是()A.a2﹣b2+c2B.a2+b2﹣c2C.a 2﹣2ab+b2﹣c2D.a2﹣2ac+c2﹣b24.若x2﹣2(a﹣3)x+25是完全平方式,那么a的值是()A.﹣2,8B.2C.8D.±25.若(2﹣x)(2+x)(4+x2)=16﹣x n,则n的值等于()A.6B.4C.3D.26.已知(m﹣n)2=36,(m+n)2=400,则m2+n2的值为()A.4036B.2016C.2017D.2187.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11B.15C.30D.608.下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)9.若x2+kx+81是一个完全平方式,则k的值为()A.18B.﹣18C.±18D.±910.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣2 11.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣6712.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b213.若a=4+,则a2+的值为()A.14B.16C.18D.2014.计算20172﹣2016×2018的结果是()A.2B.﹣2C.﹣1D.115.如果(x+1)2=3,|y﹣1|=1,那么代数式x2+2x+y2﹣2y+5的值是()A.7B.9C.13D.14二.填空题(共7小题)16.计算:(3a﹣b)(﹣3a﹣b)=.17.计算:(2a﹣1)(﹣2a﹣1)=.18.如果4x2+mx+9是完全平方式,则m的值是.19.已知(m+n)2=7,(m﹣n)2=3,则m2+n2=.20.化简:(2a﹣3)(2a+3)﹣(a﹣1)2=.21.计算:1102﹣109×111=.22.已知(a+b)2=1,(a﹣b)2=49,则ab=.三.解答题(共13小题)23.如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.24.计算:(x﹣3y+2c)(x+3y+2c).25.已知x2+y2=25,x+y=7,求xy和x﹣y的值.26.已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.27.如图,两个正方形边长分别为a、b,(1)求阴影部分的面积;(2)如果a+b=12,ab=30,求阴影部分的面积.28.利用乘法公式计算:(1)5002﹣499×501.(2)50×4929.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.30.利用乘法公式计算:(1)1282﹣129×127(2)(2x﹣4y+3z)(2x﹣4y﹣3z)31.化简:(a﹣1)(a+3)﹣(2﹣a)(2+a)32.看图解答:(1)通过观察比较左、右两图的阴影部分面积,可以得到哪个乘法公式?(2)运用你所得到的公式计算:10.3×9.7.33.(2+1)(22+1)(24+1)(28+1)(216+1)34.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:.方法2:.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m﹣n)2=5,请利用(2)中的等式,求mn的值.35.已知a+b=5,ab=6,求下列各式的值.(1)a2+b2;(2)a2+b2﹣3ab;人教新版八年级上学期《14.2 乘法公式》同步练习卷参考答案与试题解析一.选择题(共15小题)1.下列各式:①(a﹣b)(b+a)②(a﹣b)(﹣a﹣b)③(﹣a﹣b)(a+b)④(a﹣b)(﹣a+b),能用于平方差公式计算的有()A.1 个B.2 个C.3 个D.4 个【分析】利用平方差公式的结构特征判断即可.【解答】解:①(a﹣b)(b+a)=a2﹣b2,符合题意;②(a﹣b)(﹣a﹣b)=b2﹣a2,符合题意;③(﹣a﹣b)(a+b)=﹣(a+b)2=﹣a2﹣2ab﹣b2,不符合题意;④(a﹣b)(﹣a+b)=﹣(a﹣b)2=﹣a2+2ab﹣b2,不符合题意,故选:B.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.2.如果x2+6x+n2是一个完全平方式,则n值为()A.3B.﹣3C.6D.±3【分析】利用完全平方公式的结构特征判断即可确定出n的值.【解答】解:∵x2+6x+n2是一个完全平方式,∴n=±3,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.(a﹣b+c)(a﹣b﹣c)的计算结果是()A.a2﹣b2+c2B.a2+b2﹣c2C.a 2﹣2ab+b2﹣c2D.a2﹣2ac+c2﹣b2【分析】先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:原式=(a﹣b)2﹣c2=a2﹣2ab+b2﹣c2,故选:C.【点评】本题主要考查平方差公式和完全平方公式,解题的关键是掌握平方差公式的结构特点.4.若x2﹣2(a﹣3)x+25是完全平方式,那么a的值是()A.﹣2,8B.2C.8D.±2【分析】根据完全平方公式即可求出答案.【解答】解:∵(x±5)2=x2±10x+25,∴﹣2(a﹣3)=±10,∴a=﹣2或8,故选:A.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.5.若(2﹣x)(2+x)(4+x2)=16﹣x n,则n的值等于()A.6B.4C.3D.2【分析】把等号左边利用平方差公式进行计算,再根据x的指数相等求解.【解答】解:(2﹣x)(2+x)(4+x2)=(4﹣x2)(4+x2)=16﹣x4,∵(2﹣x)(2+x)(4+x2)=16﹣x n,∴16﹣x4=16﹣x n,则n=4,故选:B.【点评】本题主要考查平方差公式,解题的关键是掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.6.已知(m﹣n)2=36,(m+n)2=400,则m2+n2的值为()A.4036B.2016C.2017D.218【分析】根据完全平方公式即可求出答案.【解答】解:∵(m+n)2=m2+2mn+n2,(m﹣n)2=m2﹣2mn+n2,∴2m2+2n2=36+400,∴m2+n2=218,故选:D.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.7.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11B.15C.30D.60【分析】已知等式利用平方差公式展开,即可求出所求式子的值.【解答】解:∵a+b=6,a﹣b=5,∴a2﹣b2=(a+b)(a﹣b)=30,故选:C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)【分析】运用平方差公式(a+b)(a﹣b)=a2﹣b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【解答】解:A、不存在相同的项,不能运用平方差公式进行计算B、不存在相同的项,不能运用平方差公式进行计算,C、3y是相同的项,互为相反项是5x与﹣5x,符合平方差公式的要求;D、不存在相同的项,不能运用平方差公式进行计算;故选:C.【点评】本题考查了平方差公式的应用,熟记公式是解题的关键.9.若x2+kx+81是一个完全平方式,则k的值为()A.18B.﹣18C.±18D.±9【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵x2+kx+81是一个完全平方式,∴k=±18,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.10.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣2【分析】根据完全平方公式得出2(m﹣1)x=±2•x•2,求出m即可.【解答】解:∵x2+2(m﹣1)x+4是一个完全平方式,∴2(m﹣1)x=±2•x•2,解得:m=3或﹣1,故选:C.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键.11.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣67【分析】把a+b=10两边平方,利用完全平方公式化简,将ab=11代入求出a2+b2的值,代入原式计算即可得到结果.【解答】解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78﹣11=67,故选:C.【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式的结构特征是解本题的关键.12.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【分析】边长为a的大正方形剪去一个边长为b的小正方形后的面积=a2﹣b2,新的图形面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;剩余部分通过割补拼成的平行四边形的面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故选:B.【点评】本题考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后不同的几何图形的面积不变得到等量关系.13.若a=4+,则a2+的值为()A.14B.16C.18D.20【分析】先将a=4+,整理成a﹣=4,再两边平方,展开整理即可得出结论.【解答】解:∵a=4+,∴a﹣=4,两边平方得,(a﹣)2=16,∴a2+﹣2=16,即:a2+=18,故选:C.【点评】此题主要考查了完全平方公式,给a﹣=4两边平方是解本题的关键.14.计算20172﹣2016×2018的结果是()A.2B.﹣2C.﹣1D.1【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=20172﹣(2017﹣1)×(2017+•1)=20172﹣20172+1=1,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.如果(x+1)2=3,|y﹣1|=1,那么代数式x2+2x+y2﹣2y+5的值是()A.7B.9C.13D.14【分析】原式利用完全平方公式化简,将已知等式代入计算即可求出值.【解答】解:∵(x+1)2=3,|y﹣1|=1,∴原式=(x2+2x+1)+(y2﹣2y+1)+3=(x+1)2+(y﹣1)2+3=3+1+3=7,故选:A.【点评】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.二.填空题(共7小题)16.计算:(3a﹣b)(﹣3a﹣b)=﹣9a2+b2.【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.依此即可求解.【解答】解:(3a﹣b)(﹣3a﹣b)=﹣9a2+b2.故答案为:﹣9a2+b2.【点评】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.17.计算:(2a﹣1)(﹣2a﹣1)=1﹣4a2.【分析】根据平方差公式计算即可.【解答】解:原式=1﹣4a2,故答案为:1﹣4a2【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.18.如果4x2+mx+9是完全平方式,则m的值是±12.【分析】利用完全平方公式化简即可求出m的值.【解答】解:∵4x2+mx+9是完全平方式,∴m=±12,故答案为:±12【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.已知(m+n)2=7,(m﹣n)2=3,则m2+n2=5.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.20.化简:(2a﹣3)(2a+3)﹣(a﹣1)2=3a2+2a﹣10.【分析】先根据乘法公式进行计算,再合并同类项即可.【解答】解:(2a﹣3)(2a+3)﹣(a﹣1)2=(4a2﹣9)﹣(a2﹣2a+1)=4a2﹣9﹣a2+2a﹣1=3a2+2a﹣10,故答案为:3a2+2a﹣10.【点评】本题考查了平方差公式和完全平方公式,能熟练地运用公式进行计算是解此题的关键.21.计算:1102﹣109×111=1.【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=1102﹣(110﹣1)×(110+1)=1102﹣1102+1=1,故答案为:1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.22.已知(a+b)2=1,(a﹣b)2=49,则ab=﹣12.【分析】根据完全平方公式得到a2+2ab+b2=1,a2﹣2ab+b2=49,把两式相减,可计算出ab的值.【解答】解:∵(a+b)2=1,(a﹣b)2=49,∴a2+2ab+b2=1,a2﹣2ab+b2=49,两式相减,可得4ab=﹣48,∴ab=﹣12.故答案为:﹣12.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.解决问题的关键是熟悉完全平方公式的变形.三.解答题(共13小题)23.如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.【分析】根据完全平方公式即可求出答案.【解答】解:∵a2+b2=(a+b)2﹣2ab=100﹣40=60,∴阴影部分的面积=a2+b2﹣(a+b)•b﹣a2=60﹣×ab﹣b2﹣a2=60﹣×20﹣×60=60﹣10﹣30=20.【点评】本题考查图形的面积计算,涉及三角形面积公式,正方形面积公式,完全平方公式,题目较为综合.24.计算:(x﹣3y+2c)(x+3y+2c).【分析】根据平方差公式和完全平方公式计算.【解答】解:原式=[(x+2c)﹣3y][(x+2c)﹣3y]=(x+2c)2﹣(3y)2=x2+4xc+4c2﹣9y2.【点评】本题考查的是多项式乘多项式,掌握平方差公式和完全平方公式是解题的关键.25.已知x2+y2=25,x+y=7,求xy和x﹣y的值.【分析】先根据完全平方公式求出xy的值,再根据完全平方公式求出(x﹣y)2的值,再求出答案即可.【解答】解:∵x2+y2=(x+y)2﹣2xy,∴25=72﹣2xy,∴xy=12,∴(x﹣y)2=x2﹣2xy+y2=25﹣2×12=1,∴x﹣y=±1.【点评】本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键,注意:a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.26.已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.【分析】(1)根据图形即可得出图乙中阴影部分小正方形的边长为a﹣b;(2)直接利用正方形的面积公式得到图中阴影部分的面积为(a﹣b)2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(a+b)2﹣4ab;(3)根据图中阴影部分的面积是定值得到(a+b)2,(a﹣b)2,ab之间的等量关系式;(4)利用(3)中的公式得到(a﹣b)2=(a+b)2﹣4ab,进而得出(a﹣b)2的值.【解答】解:(1)图乙中小正方形的边长为a﹣b.(2)方法①:S=(a﹣b)2;方法②:S=(a+b)2﹣4ab;(3)因为图中阴影部分的面积不变,所以(a﹣b)2=(a+b)2﹣4ab;(4)由(3)得:(a﹣b)2=(a+b)2﹣4ab,∵a+b=8,ab=12,∴(a﹣b)2=82﹣4×12=64﹣48=16.【点评】本题考查了完全平方公式的几何背景,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.27.如图,两个正方形边长分别为a、b,(1)求阴影部分的面积;(2)如果a+b=12,ab=30,求阴影部分的面积.【分析】(1)阴影部分的面积=两正方形的面积之和﹣两直角三角形的面积,列出关系式,化简即可;(2)利用完全平方公式将(1)得出的关系式整理后,将a+b及ab的值代入计算,即可求出值.=a2+b2﹣a2﹣b(a+b)=a2+b2﹣a2﹣ab 【解答】解:(1)根据题意得:S阴影﹣b2=a2﹣ab+b2;(2)∵a+b=12,ab=30,∴S=(a2﹣ab+b2)=[(a+b)2﹣3ab]=(122﹣90)=27.阴影【点评】此题考查了整式的混合运算,以及化简求值,涉及的知识有:单项式乘以多项式法则,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.28.利用乘法公式计算:(1)5002﹣499×501.(2)50×49【分析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式变形后,利用平方差公式计算即可求出值.【解答】解:(1)原式=5002﹣(500﹣1)×(500+1)=5002﹣(5002﹣1)=5002﹣5002+1=1;(2)原式=(50+)×(50﹣)=2500﹣=2499.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.29.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:(a+b)2;方法2:a2+b2+2ab(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(a+b)2=a2+2ab+b2(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设2018﹣a=x,a﹣2017=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy==﹣2,进而得到(2018﹣a)(a﹣2017)=﹣2.【解答】解:(1)图2大正方形的面积=(a+b)2图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设2018﹣a=x,a﹣2017=y,则x+y=1,∵(2018﹣a)2+(a﹣2017)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2,∴xy==﹣2,即(2018﹣a)(a﹣2017)=﹣2.【点评】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.30.利用乘法公式计算:(1)1282﹣129×127(2)(2x﹣4y+3z)(2x﹣4y﹣3z)【分析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【解答】解:(1)原式=1282﹣(128+1)×(128﹣1)=1282﹣1282+1=1;(2)原式=(2x﹣4y)2﹣9z2=4x2﹣16xy+16y2﹣9z2.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.31.化简:(a﹣1)(a+3)﹣(2﹣a)(2+a)【分析】先计算多项式乘多项式、平方差公式,再合并同类项即可得.【解答】解:原式=a2﹣a+3a﹣3﹣22+a2=2a2+2a﹣7.【点评】考查了平方差公式和多项式乘多项式,属于基础计算题,熟记计算法则解题即可.32.看图解答:(1)通过观察比较左、右两图的阴影部分面积,可以得到哪个乘法公式?(2)运用你所得到的公式计算:10.3×9.7.【分析】(1)根据左右两图的面积相等即可求出答案.(2)利用(1)中的公式即可求出答案.【解答】解:(1)左图的阴影部分面积为a2﹣b2,右图的阴影部分面积为(a+b)(a﹣b),所以由阴影部分面积相等可得(a+b)(a﹣b)=a2﹣b2,可以得到的乘法公式为:(a+b)(a﹣b)=a2﹣b2,(2)原式=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题是属于基础题型.33.(2+1)(22+1)(24+1)(28+1)(216+1)【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22﹣1)(22+1)(24+1)(28+1)(216+1)=(24﹣1)(24+1)(28+1)(216+1)=(28﹣1)(28+1)(216+1)=(216﹣1)(216+1)=232﹣1.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.34.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:4ab.方法2:(a+b)2﹣(a﹣b)2.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m﹣n)2=5,请利用(2)中的等式,求mn的值.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据(2)的结论代入即可解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,故答案为:4ab;(a+b)2﹣(a﹣b)2.(2)(a+b)2﹣(a﹣b)2=4ab,成立.证明:∵(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=4ab.∴(a+b)2﹣(a﹣b)2=4ab.(3)由(2)得:(2m+n)2﹣(2m﹣n)2=8mn.∵2m+n)2=13,(2m﹣n)2=5,∴8mn=13﹣5.mn=1.【点评】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等,列等式是解题的关键.35.已知a+b=5,ab=6,求下列各式的值.(1)a2+b2;(2)a2+b2﹣3ab;【分析】(1)直接利用完全平方公式计算得出答案;(2)利用(1)中所求,代入求出答案.【解答】解:(1)∵a+b=5,∴(a+b)2=25,则a2+2ab+b2=25,∵ab=6,∴a2+b2=25﹣12=13;(2)由(1)得:a2+b2﹣3ab=13﹣3×6=﹣5.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.。
人教版2024-2025学年八年级上学期数学14.2乘法公式同步练习基础卷(含答案)
人教版2024-2025学年八年级上学期数学14.2乘法公式同步练习基础卷班级: 姓名:亲爱的同学们:练习开始了,希望你认真审题,细致做题,不断探索数学知识,领略数学的美妙风景。
运用所学知识解决本练习,祝你学习进步!一、选择题1.下列运算正确的是( )A .(a 3)2⋅a 4=a 9B .(−3a −2)(3a −2)=9a 2−4C .a 12÷a 6=a 2D .a 2⋅a 3=a 52.下列算式能用平方差公式计算的是( )A .(2a +b)(2b −a)B .(4x +1)(−4x −1)C .(2x −y)(2x −y)D .(−x +y)(−x −y) 3.若对于两个多项式的乘积:(m +n )(p +q ),能用完全平方公式进行简捷运算,则满足的条件可以是( )A .m =−p ,n =qB .m =p ,n =−qC .m =p ,n =qD .m =p ,n =2q4.根据等式:(x −1)(x +1)=x 2−1,(x −1)(x 2+x +1)=x 3−1,(x −1)(x 3+x 2+x +1)=x 4−1,…的规律,则可以得出22024+22023+⋯+23+22+2的结果为( )A .22025−1B .22025+2C .22025+1D .22025−25.(3a +12)2(3a −12)2=( ) A .9a 2−14 B .81a 4−116C.81a4−92a2+116D.81a4+92a2+1166.已知(x+y)2=9,且(x−y)2=5,则xy的值是()A.14 B.4 C.2 D.17.对于任意有理数x,y,现用⋆定义一种运算:a⋆b=a2−b2.根据这个定义,代数式(x+y)⋆y可以化简为()A.xy+x2B.xy−y2C.x2+2xy D.x28.已知x≠0,M=(x2+2x+1)(x2−2x+1),N=(x2+x+1)(x2−x+1),则M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定二、填空题9.若(x+3)(x−3)=x2+px−9,则p的值是.10.设一个正方形的边长为acm,若边长增加3cm,则新正方形的面积增加了.11.已知a2−b2=6,a−b=−3,则a+b=.12.多项式x2+1添加一个单项式后,可变为完全平方式,则添加的单项式可以是.13.已知:(2a+2b+1)(2a+2b−1)=99,则a+b的值为.三、解答题14.简读以下材料井解决问题:①若a−b≥0,则a≥b;若a−b≤0,则a≤b.②∵x2+6x+10=(x+3)2+1∴x2+6x+10有最小值1③∵2x2−8x−1=2(x−2)2−9∴2x2−8x−1有最小值-9(1)已知P=2x2−4x−1,Q=x2−6x−6,比较P与Q的大小.(2)设x、y为实数,求式子4x2−2xy+y2−12x+13的最小值.15.观察下列各式(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1···①根据以上规律,则(x−1)(x6+x5+x4+x3+x2+x+1)=,②由此归纳出一般性规律:(x−1)(x n+x n−1+⋯+x+1)=;③根据②直接写出:1+2+22+⋯+234+235−236=.1.答案:D2.答案:D3.答案:C4.答案:D5.答案:C6.答案:A7.答案:C8.答案:B9.答案:010.答案:6a+911.答案:−212.答案:2x或−2x或14x413.答案:±514.答案:(1)P>Q(2)115.答案:①x7−1;②x n+1−1;③−1。