两个变量间的相关关系
两个连续变量之间的相关关系
两个连续变量之间的相关关系两个连续变量之间的相关关系,即指两个随机变量之间的相关性。
它是衡量两个连续变量之间相互依赖程度的重要指标。
在数据分析、统计学以及机器学习等领域,相关性分析是一项基础而重要的任务。
一、计算相关性系数在统计学中,通常通过相关系数来衡量两个连续变量之间的相关关系。
相关系数通常是在-1到1之间取值,其中-1表示完全的负相关关系,即两个变量之间有完全相反的关系;1则表示完全的正相关关系,即两个变量之间具有完全相同的变化趋势;而0则表示两个变量之间没有线性关系。
计算相关系数的方法有多种,其中比较常用的是皮尔逊相关系数和斯皮尔曼等级相关系数。
皮尔逊相关系数适用于连续型变量,并且假设变量服从正态分布。
斯皮尔曼等级相关系数则适用于序数型数据以及不满足正态分布的变量。
在这里以皮尔逊相关系数为例进行说明。
二、使用Python计算相关性系数在Python中,统计分析库numpy和pandas都提供了计算相关性系数的函数。
numpy提供的pearsonr函数可以计算两个变量之间的皮尔逊相关系数以及相关性显著性;而pandas提供的corr函数可以计算两个DataFrame对象中所有列的相关系数矩阵。
下面通过一个例子来说明如何使用Python计算相关系数。
```pythonimport numpy as npimport pandas as pd# 构造样本数据x = np.array([1, 2, 3, 4, 5])y = np.array([2, 4, 6, 8, 10])# 计算皮尔逊相关系数correlation, p_value = np.corrcoef(x, y)[0][1],scipy.stats.pearsonr(x, y)[0]print(f"皮尔逊相关系数: {correlation:.4f} (p-value:{p_value:.4f})")# 构造DataFrame对象df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]})# 计算相关系数矩阵corr_matrix = df.corr()print(f"相关系数矩阵: \n{corr_matrix}")```以上代码首先构造了两个变量x和y,分别表示1到5的整数和2到10的偶数。
2.3 变量间的相关关系
则������ =
^
66.5-4×4.5×3.5
^
������ = ������ − ������ ������ =3.5-0.7×4.5=0.35, 故线性回归方程为������ =0.7x+0.35. (3)根据线性回归方程的预测,现在生产 100 吨产品消耗的标准 煤的数量为 0.7×100+0.35=70.35, 故消耗能源减少了 90-70.35=19.65(吨).
2.3
变量间的相关关系
知识能力目标引航 1.了解相关关系、线性相关、回归直线、最小二乘法的定义. 2.会作散点图,能判断两个变量之间是否具有相关关系. 3.会求回归直线方程,并能用回归直线方程解决有关问题.
1.相关关系 (1)定义:如果两个变量中一个变量的取值一定时,另一个变量的 取值带有一定的随机性,那么这两个变量之间的关系,叫做相关关系. (2)两类特殊的相关关系:如果散点图中点的分布是从左下角到 右上角的区域,那么这两个变量的相关关系称为正相关,如果散点图 中点的分布是从左上角到右下角的区域,那么这两个变量的相关关 系称为负相关.
③代入公式计算������ , ������ 的值. ④写出回归直线方程. (2)求回归直线方程时应注意的问题:
^^
①用公式计算������ , ������ 的值时,要先算出������ ,然后才能算出������ . ②使用计算器能大大简化手工的计算,迅速得出正确的结果,但输入数 据时要细心,不能出任何差错;不同计算器的按键方式可能不同,可参考 计算器的使用说明书进行相关的计算.
^
86-4×4.5
2
=
66.5-63 =0.7, 86-81
^
利用回归方程,可以对总体进行估计,如回归方程为������ = ������ x+������ . 当 x=x0 时估计值为������0 = ������ x0+������ .
两个变量的相关关系知识点和典例
两个变量的相关关系知识点和典例1.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ),其它点不一定过直线只是在直线附近,这个结论既是检验所求回归直线方程是否准确的依据,也是求参数的一个依据.)(2)回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x2=∑i =1n)(x i -x )(y i -y )∑i =1n)(x i -x )2,a ^=y -b ^x .(3)相关系数:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2∑i =1n )(y i -y )2当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(r 的符号表明两个变量是正相关还是负相关;|r |的大小表示线性相关性的强弱.)例一.某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与月利润y (单位:百万元)进行了初步统计,得到下列表格中的数据:经计算,微信推广费用x 与月利润y 满足线性回归方程 6.517.5y x ∧=+.求p 的值.[解] ()()11245685,3040607040555p x y p =++++==++++=+, 因为样本中心(),x y 在回归直线 6.517.5y x ∧=+上, 所以40 6.5517.55p+=⨯+,解得50p = [变式练习]已知变量x ,y 之间的线性回归方程y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈负相关关系))))B.可以预测,当x =20时,b ^=-3.7 C.m =4))))))))))))))))))))))))D.该回归直线必过点(9,4)[解]由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x -=14×(6+8+10+12)=9,y -=14(6+m +3+2)=11+m 4,则11+m 4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y -=6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.例二.下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量.参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,)∑i =17)(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n )(t i -t )2∑i =1n )(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2,a ^=y -b ^)t .[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑i =17)(t i -t)2=28,)∑i =17)(y i -y )2=0.55,∑i =17)(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,∴r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17)(t i -t )(y i -y )∑i =17)(t i -t )2=2.8928≈0.103. a ^=y -b ^)t ≈1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以,预测2019年我国生活垃圾无害化处理量约为1.82亿吨.[变式练习]1.(2019·广州调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y (千克)与使用某种液体肥料的质量x (千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r (精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系.(若|r |>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X 限制,并有如下关系:对商家来说,若某台光照控制仪运行,则该台光照控制仪产生的周利润为3)000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1)000元.若商家安装了3台光照控制仪,求商家在过去50周的周总利润的平均值.参考数据:0.3≈0.55,0.9≈0.95. 解:(1)由已知数据可得x =2+4+5+6+85=5,y =3+4+4+4+55=4.因为∑i =15)(x i -x )(y i -y )=(-3)×(-1)+0+0+0+3×1=6,∑i =15)(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15)(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15)(x i -x )(y i -y )∑i =15)(x i -x)2)∑i =15)(y i -y )2=625×2=)910≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系. (2)由条件可得在过去50周里,当X >70时,共有10周,此时只有1台光照控制仪运行, 每周的周总利润为1×3)000-2×1)000=1)000(元).当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 每周的周总利润为2×3)000-1×1)000=5)000(元).当30<X <50时,共有5周,此时3台光照控制仪都运行, 每周的周总利润为3×3)000=9)000(元).所以过去50周的周总利润的平均值为1)000×10+5)000×35+9)000×550=4)600(元),所以商家在过去50周的周总利润的平均值为4)600元.例三.某机构为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.x y u∑i=18)(x i-x)2∑i=18)(x i-x)(y i-y)∑i=18)(u i-u)2∑i=18)(u i-u)(y i-y) 15.25 3.630.2692)085.5-230.30.7877.049表中u i=1x i,u=18∑i=18u i.(1)根据散点图判断:y=a+bx与y=c+dx哪一个模型更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(回归系数的结果精确到0.01).(3)若该图书每册的定价为10元,则至少应该印刷多少册才能使销售利润不低于78)840元?(假设能够全部售出.结果精确到1)附:对于一组数据(ω1,υ1),(ω2,υ2),…,(ωn,υn),其回归直线υ^=α^+β^ω的斜率和截距的最小二乘估计分别为β^=∑i=1n)(ωi-ω)(υi-υ)∑i=1n)(ωi-ω)2,α^=υ-β^ω.解:(1)由散点图判断,y=c+dx更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程.(2)令u=1x,先建立y关于u的线性回归方程,由于d ^=∑i =18)(u i -u )(y i -y )∑i =18)(u i -u )2=7.0490.787≈8.957≈8.96, ∴c ^=y -d ^·u =3.63-8.957×0.269≈1.22, ∴y 关于u 的线性回归方程为y ^=1.22+8.96u , ∴y 关于x 的回归方程为y ^=1.22+8.96x .(3)假设印刷x 千册,依题意得10x -⎝⎛⎭⎫1.22+8.96x x ≥78.840, 解得x ≥10,∴至少印刷10)000册才能使销售利润不低于78)840元.[变式练习](2015课标Ⅰ,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费x i )和年销售量y i ))(i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw∑i=18(x i -x )2∑i=18(w i -w )2 ∑i=18(x i -x )(y i -y ) ∑i=18(w i -w )(y i -y )46.6 563 6.8 289.81.61 469108.8表中w i =√x ,w =18∑i=18w i.(1)根据散点图判断,y =a +bx 与y =c +d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x,y 的关系为z =0.2y −x .根据(2)的结果回答下列问题: (i)年宣传费x =49时,年销售量及年利润的预报值是多少? (ii)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ))),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i=1n (u i -u )(v i -v )∑i=1n(u i -u )2,α^=v -β^)u .解析 (1)由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2分)(2)令w =√x ,先建立y 关于w 的线性回归方程.由于 d ^=∑i=18(w i -w )(y i -y )∑i=18(w i -w )2=108.81.6=68,c ^=y -d ^)w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w,因此y 关于x 的回归方程为y ^=100.6+68√x .(6分) (3)(i)由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+68√49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.(9分) (ii)根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68√x )-x =-x +13.6√x +20.12. 所以当√x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。
第三节 变量间的相关关系-高考状元之路
第三节 变量间的相关关系预习设计 基础备考知识梳理1.两个变量的线性相关(1)正相关:在散点图中,点散布在从到的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关:在散点图中,点散布在从 到 的区域,对于两个变量的这种相关关系,我们将它称为负相关.(3)线性相关关系、回归直线: 如果散点图中点的分布从整体上看大致在 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程(1)最小二乘法: 求回归直线使得样本数据的点到它的 的方法叫做最小二乘法.(2)回归方程:方程a x by ˆˆ+=是两个具有线性相关关系的变量的一组数据),(,),,(),,(2211n n y x y x y x 的回归方程,其中:ˆ,ˆb a是待定参数. ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=⋅-====-∑∑-∑--∑==x b y a i y x n y x i n i i i n i b x n x x x y y x x n i i i n i n ˆˆ22211ˆ111)())((典题热身1.下列选项中,两个变量具有相关关系的是 ( )A .参加60年国庆阅兵的人数与观看第十一届全运会开幕布式的人数B .正方体的体积与棱长C .人体内的脂肪含量与年龄D .汶川大地震的经济损失与全球性金融危机的经济损失答案:C2.(2011.陕西高考)设),(,),,(),,(2211n n y x y x y x ⋅⋅⋅是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是 ( )A .直线l 过点),(y xB .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在O 到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同答案:A3.设有一个回归直线方程为,5.12ˆx y-=则变量x 增加一个单位 ( ) A .y 平均增加1.5个单位B .y 平均增加两个单位C .y 平均减少1.5个单位D .y 平均减少两个单位答案:C4.在一次实验中,测得(x ,y)的四组值为(1,2),(2,3),<蝴_(4,5),则y 与x 之间的回归直线方程为 ( )1ˆ.+=x yA 2ˆ.+=x yB 12ˆ.+=x yC 1ˆ.-=x yD 答案:A5.(2011.辽宁高考)调查了某地若干户家庭的年收入x (单位;万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:,321.0254.0ˆ+=x y 由回归直线方程可知,家庭年收入每增加l 万元,年饮食支出平均增加 万元.答案:0,254课堂设计 方法备考题型一 利用散点图判断两个变量的相关关系画出散点图,判断它们是否有相关关系.题型二 求回归直线方程【例2】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据;(1)请画出表中数据的散点图;(2)请根据表中提供的数据,用最小二乘法求出y 关于x 的回归方程.ˆˆˆa x b y+= 题型三 利用回归直线方程对总体进行估计【例3】某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1000件时,单位成本平均变动多少?(3)假定产量为6000件时,单位成本为多少元?技法巧点(1)线性相关关系的理解:相关关系与函数关系不同,函数关系中的两个变量间是一种确定性关系,例如正方形面积S 与边长x 之间的关系2x s =就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系,例如商品的销售额与广告费是相关关系,两个变量具有相关关系是回归分析的前提. (2)求回归方程,关键在于正确求出系数b a b aˆ,ˆ,ˆ,ˆ由于的计算量大,计算时应仔细谨慎,分层进行,避免因计算产生错误.(注意回归直线方程中一次项系数为,ˆb 常数项为,ˆa 这与一次函数的习惯表示不同.)(3)回归分析是处理变量相关关系的一种数学方法,主要解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察值,预测变量的取值及削断变量取值的变化趋势;③求出回归直线方程.失误防范1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.2.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.随堂反馈 1.(20】】.江西高考)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为 ( )1-=⋅x y A 1+=⋅x y B x y c 2188+=⋅ 176=⋅y D 答案:C2.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x 具有真相关关系,回归方程为.562.166.0ˆ+=x y若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为 ( )%83.A 0072.B 0076. c %66.D 答案:A3.(2011.广东高考)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系;小李这5天的平均投篮命中率为 ;用线性 回归分析的方程,预测小李该月6号打6小时篮球的投篮命中率为答案:53.0;5.0高效作业 技能备考一、选择题1.(201-1.福州模拟)已知变量x ,y 呈线性相关关系,回归方程为,25.0ˆx y+=则变量x ,y 是( ) A .线性正相关关系B .由回归方程无法判断其正负相关C .线性负相关关系D .不存在线性相关关系答案;A2.(2011.绍兴月考)对有线性相关关系的两个变量建立的回归直线方程x b a yˆˆˆ+=中,回归系数b ˆ( ) A .可以小于0 B .大于O C .能等于O D .只能小于0答案:A3.已知x 与y 之间的一组数据:则y 与x 的线性回归方程a x b yˆˆˆ+=必过 ( ) A .点(2,2) B .点(1.5,O) C .点(1,2) D .点(1.5,4)答案:D4.(2011.泰安模拟)下表是某厂l ~4月份用水量(单位:百吨)的一组数据:散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是,ˆ7.0ˆa x y+-=则 aˆ等于( ) 5.10.A 15.5.B 2.5.c 25.5.D答案:D5.对变量x ,y 有观测数据),10,,2,1)(,( =i y x i i 得散点图(1);对变量u ,v 有观测数据),10,,2,1)(,( =i v u i i 得散点图(2),由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关 B.变量_x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关答案:C6.(2011.青岛模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为⋅21l l 、已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 、t ,那么下列说法正确的是 ( )A .直线1l 和2l 一定有公共点(s ,t)B .直线1l 和2l 相交,但交点不一定是(s ,t)C .必有21//l l 21.l lD 与必定重合答案:A二、填空题7.(2011.舟山适应性考试)人的身高与手的扎长存在相关关系,且满足264.31303.0ˆ-=x y(x 为身高,y 为扎长,单位:cm),则当扎长为24.8 cm 时,身高为 cm.答案:03.1858.(2011.芜湖模拟)已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其线性回归方程是 答案:42347+=x y9.(2011.丽水调研)某单位为了了解用电量y 度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程,2ˆˆˆˆ-=+=b a x b y中预测当气温为-4℃时,用电量的度数约为 答案:68三、解答题10.(2011.台州模拟)在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:由资料看y 与x 呈线性相关,试求回归方程.11.(2011.枣 庄模拟)在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如下表:根据上述数据,画出散点图并判断居民的身高和体重之间是否有相关关系.12.(2011.北京高考)以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树为19的概率. (注:方差],)()()[(1222212x x x x x x n s n -++-+-=其中x 为n x x x ,,,21 的平均数)。
(完整word)两个变量的相关关系
(完整word)两个变量的相关关系两个变量间的相关关系变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的。
例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系。
相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势。
(2)负相关:两个变量具有相反的变化趋势。
对相关关系的理解可以从下面三个角度把握:相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系。
因此,不能把相关关系等同于函数关系.相关关系与函数关系的异同点为:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系。
函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系。
然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄。
当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断。
我们再来认识生活中的确定两个变量间的相关关系的两个例子:【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高。
变量间的相关关系
2.正相关:在散点图中,点散布在从左下角到右上 角的区域,对于两个变量的这种相关关系,我们将 它称为正相关。
思考6:如图是高原含氧量与海拔高度的相关关系 的散点图,高原含氧量与海拔高度有何相关关系? 点的分布有何特点?
海平面以上,海拔高度 越高,含氧量越少。
点散布在从左上角到右 下角的区域内。
脂肪含量
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考3:上图叫做散点图,你能描述一下散点图的含 义吗?
1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
脂肪含量
思考4:观察散点图的大致趋势,人的年龄的与人体 脂肪含量具有什么相关关系?
大体上看,随着年龄的增加,人体中脂肪百分比也 在增加。
年龄 23 脂肪 9.5
27 39 17.8 21.2
41 25.9
45
49 50
27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:为了确定年龄和人体脂肪含量之间的更明 确的关系,我们需要对数据进行分析,通过作图可 以对两个变量之间的关系有一个直观的印象.以x轴 表示年龄,y轴表示脂肪含量,你能在直角坐标系 中描出样本数据对应的图形吗?
销售价格 12.2 15.3 24.8 21.6 18.4 29.2 22
(万元)
画出数据对应的散点图,并指出销售价格与房屋面积 这两个变量是正相关还是负相关.
解: 35
30 25 20 15 10 5 0
两个变量间相关关系的举例
两个变量间相关关系的举例1. 温度与冰淇淋销量的相关关系温度是一个影响冰淇淋销量的重要因素。
当温度升高时,人们更容易感到口渴,因此购买冰淇淋的欲望也会增加。
因此,温度与冰淇淋销量之间存在正相关关系。
2. 年龄与学习成绩的相关关系年龄与学习成绩之间存在一定的相关关系。
通常情况下,年龄越大,学生的学习经验和能力也会相应增加,因此学习成绩也有可能更好。
当然,这并不意味着年龄是唯一决定学习成绩的因素,还会受到其他因素的影响,如学习动力、学习方法等。
3. 饮食与身体健康的相关关系饮食习惯与身体健康之间存在密切的相关关系。
良好的饮食习惯可以提供身体所需的营养物质,维持身体的正常功能,降低患病的风险。
相反,不健康的饮食习惯,如高糖、高脂肪、高盐的饮食,会增加患糖尿病、高血压等慢性疾病的风险。
4. 运动与心脏健康的相关关系适度的运动与心脏健康之间存在正相关关系。
定期进行适度的身体活动可以增强心肌的收缩能力,促进血液循环,降低心脏病的风险。
相反,长期缺乏运动会导致心脏功能下降,易患心血管疾病。
5. 睡眠时间与注意力集中力的相关关系睡眠时间与注意力集中力之间存在一定的相关关系。
充足的睡眠可以提高人的注意力集中力,保持精力充沛,提高工作和学习效率。
相反,睡眠不足会导致注意力不集中,易疲劳、易犯错误。
6. 学历与收入水平的相关关系学历与收入水平之间存在一定的相关关系。
通常情况下,具有较高学历的人更容易获得高薪工作,因此收入水平相对较高。
当然,学历并不是唯一决定收入的因素,还会受到其他因素的影响,如工作经验、技能等。
7. 空气污染与呼吸道疾病的相关关系空气污染与呼吸道疾病之间存在密切的相关关系。
空气中的污染物,如PM2.5、臭氧等,会对人体的呼吸道造成刺激和损害,增加呼吸道感染和慢性呼吸道疾病的风险。
8. 金融市场与经济增长的相关关系金融市场与经济增长之间存在一定的相关关系。
金融市场的繁荣与活跃会为经济提供资金支持和融资渠道,促进企业的发展和创新,推动经济的增长。
两个变量之间的相关关系称为
两个变量之间的相关关系称为
统计学中,两个变量之间的相关关系被称为相关性。
它是一种检测和研究变量间关系的方法,它可以帮助研究人员探索实验结果的数据。
相关性测量两个变量的关联程度,帮助我们更多地了解被调查者中变量之间的因果关系,以及几种变量之间的结构关系。
相关性可以使企业在未来进行数据分析时,更好地推断某些事件发生的可能性。
它可以帮助研究者更深入地了解被调查者中变量之间的潜在相关性,因此可以有效地预测变量未来变化的趋势。
相关性分析也可以检查多个变量之间的关系,因此有助于确定定义变量和被调查者之间的关系,进而确定这些变量的分类组合。
另外,相关性分析还可以帮助企业识别出重要的变量,从而有效地预测业务结果。
总之,相关性可以说是统计学中一种重要的概念。
它能够有效地识别和解释变量之间的关系,并为企业在未来数据分析中应用提供重要的参考。
因此,我们可以看出,相关性对学习统计学和收集数据分析有着重要意义。
两个变量之间的相关关系(公开课)汤水秋
2.3 变量间的相关关系一、学习目标:1.理解两个变量的相关关系的概念2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观判断两个变量之间是否具有相关关系;3. 知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
二、学习重点、难点:1重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程。
2.难点:对最小二乘法的理解。
三、学习方法:探究、合作、交流 四、学习过程:〖创设情境〗1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一 定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问 题。
”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成 绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3、“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的 教学水平之间的关系是函数关系吗? (一).相关关系(1)定义:如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的________性,那么这两个变量之间的关系,叫做相关关系.(2)两类特殊的相关关系:如果散点图中点的分布是从________角到________角的区域,那么这两个变量的相关关系称为正相关,如果散点图中点的分布是从________角到________角的区域,那么这两个变量的相关关系称为负相关.[归纳总结] 两个变量间的关系分为三类:一类是确定性的函数关系,如正方形的边长与面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,这种关系就是相关关系,例如,某位同学的“物理成绩”与“数学成绩”之间的关系,我们称它们为相关关系;再一类是不相关,即两个变量间没有任何关系. (二).线性相关(1)定义:如果两个变量散点图中点的分布从整体上看大致在一条________附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做_________.(2)最小二乘法:求线性回归直线方程y ^=b ^x +a ^时,使得样本数据的点到它的________________最小的方法叫做最小二乘法,其中a ,b 的值由以下公式给出:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.,)())((1221121x b y a x n x yx n yx x x y y x x b ni i ni iini i ni i i其中x =n1∑=ni i x 1,y =n1∑=ni iy1,a 为回归方程的斜率,b 为截距。
变量之间的相关关系
变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。
两个变量的相关关系
两个变量间的相关关系变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系.相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势.(2)负相关:两个变量具有相反的变化趋势.对相关关系的理解可以从下面三个角度把握:相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.相关关系与函数关系的异同点为:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系.函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.我们再来认识生活中的确定两个变量间的相关关系的两个例子:【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.那么,教师的水平与学生的水平成什么相关关系?你能举出更多的描述生活中的两个变量的相关关系的成语吗?解析:“名师出高徒”的意思是说有名的教师一定能教出高明的徒弟,通常情况下,高水平的教师有很大的趋势教出高水平的学生.所以,教师的水平与学生的水平成正相关关系.生活中这样的成语很多,如“龙生龙,凤生凤,老鼠的孩子会打洞”.【例2】历史上,有人认为人们的着装与经济好坏有关系,着装越鲜艳,经济越景气.你认为着装与经济真的有这种相关关系吗?解析:人们的着装只能反映个人的爱好以及个人心情状况,与经济的好坏没有任何关系,并不能反映经济的景气与否.所以,着装与经济并没有“着装越鲜艳,经济越景气”这种相关关系.。
两个变量之间存在显著相关关系
两个变量之间存在显著相关关系
首先,我们可以通过计算皮尔逊相关系数来衡量两个变量之间
的线性相关性。
皮尔逊相关系数的取值范围在-1到1之间,0表示
没有线性相关性,1表示完全正相关,-1表示完全负相关。
如果计
算得到的皮尔逊相关系数显著大于0,那么可以认为这两个变量之
间存在正相关关系;反之,如果相关系数显著小于0,则可以认为
存在负相关关系。
其次,斯皮尔曼相关系数用于衡量两个变量之间的等级相关性,即使得两个变量之间的关系不是严格的线性关系,也可以通过斯皮
尔曼相关系数来进行衡量。
当斯皮尔曼相关系数显著大于0时,可
以认为两个变量之间存在正相关关系;反之,当相关系数显著小于
0时,则可以认为存在负相关关系。
除了相关系数,我们还可以通过散点图来观察两个变量之间的
关系。
如果散点图呈现出明显的趋势,比如向上或向下的趋势,那
么可以初步判断这两个变量之间存在相关关系。
此外,还可以进行假设检验来验证两个变量之间的相关性是否
显著。
通过计算相关系数的置信区间或者进行相关性检验,可以得
出两个变量之间的相关性是否显著。
综上所述,我们可以通过计算相关系数、绘制散点图以及进行假设检验来全面、多角度地判断两个变量之间是否存在显著相关关系。
当然,对于不同类型的数据和研究问题,需要综合考虑不同的方法来进行判断。
变量间的相关关系
变量间的相关关系 【知识梳理】(1)相关关系:当自变量的取值一定时,因变量的取值带有 ,那么这两个变量之间的关系叫做 ,如果一个变量的值由小变大时,另一个变量的值也由小到大,这种相关称为 ,反之,如果一个变量的值由小变大,另一个变量的值由大到小,这种关系为 (2)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有 关系,这条直线叫做回归直线. (3)线性回归方程方程y=ˆbx+ˆa 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中ˆb , ˆa 是待定参数.ˆˆb a ⎧=⎪⎨=⎪⎩【基础练习】1.(2009·海南高考题)对变量x ,y 有观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u 1,v 1)(i =1,2,…,10),得散点图2.由这两个散点图可以判断( ) A .变量x 与y 正相关,u 与v 正相关 B .变量x 与y 正相关,u 与v 负相关 C .变量x 与y 负相关,u 与v 正相关 D .变量x 与y 负相关,u 与v 负相关2.已知关于某设备的使用年限x 与所支出的维修费用y(万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程ˆy=ˆb x +ˆa 表示的直线一定过定点________.3. (原创题)经研究表明,学生的体重y(单位:kg)与身高x(单位:cm)有很强的线性相关关系,其回归方程为y=0.75x-68.2,如果一个学生的身高为170 cm ,则他的体重( ) A. 一定是59.3 kg B. 一定大于59.3 kg C. 有很大的可能性在59.3 kg 左右 D. 一定小于59.3 kg 【互动探究】【例1】(1)如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?画出散点图,并判断它们是否有相关关系【例2】 三点(3,10),(7,20),(11,24)的回归方程是( )A.y ∧=-5.75+1.75xB.y ∧=1.75x +5.75C.y ∧=-1.75x +5.75 D.y ∧=-1.75x -5.75练习:一家保险公司调查其总公司营业部的加班程度,收集了5周中每周加班工作时间y (小时)与签发新保单数目x 的数据如下表:【例3】(2007·广东卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =ˆbx +ˆa ; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)练习: (原创题)某服装厂引进新技术,其生产服装的产量x (百件)与单位成本y (元)满足回归直线方程y =149.36-16.2x ,则以下说法正确的是( ) A. 产量每增加100件,单位成本下降16.2元 B. 产量每减少100件,单位成本上升149.36元 C. 产量每增加100件,单位成本上升16.2元 D. 产量每减少100件,单位成本下降16.2元【当堂检测】1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形相对应的是( ) A .a —①,b -②,c -③ B .a -②,b -③,c -①C .a -②,b -①,c -③D .a -①,b -③,c -② 2.(2010·湖南,3)某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ∧=-10x +200 B.y ∧=10x +200 C.y ∧=-10x -200 D.y ∧=10x -200 3.设有一线性回归方程为y =2-1.5x ,则变量x 增加一个单位时,y 平均减少________个单位. 4.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是( ) A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08D.y ^=0.08x +1.235.若施化肥量x kg 与水稻产量y kg 在一定范围内线性相关,若回归方程为y ^=5x +250.当施化肥量为80 kg 时,预计水稻的产量为________.6. 实验测得4组(x,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为 ( ) A. y =x+1B. y =x+2C. y =2x+1D. y =x-17.具有线性相关关系的两个变量满足如下关系:A. y =0.56x +997.4B. y =0.63x -231.2C. y =50.2x +501.4D. y =60.4x +400.7 8. 一般来说,一个人的脚越长,他的身高就越高.现对10名成年人的脚长x 与身高y 进行测量,得如下数据(单位:作出散点图后,发现散点在一条直线附近.经计算得到一些数据:x =24.5,y =171.5,()()101iii x x y y =--=∑577.5, ()2101ii x x =-∑=82.5.某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长26.5 cm ,请你估计案发嫌疑人的身高为 cm.。
两个变量间相关关系的举例
两个变量间相关关系的举例相关关系是指两个变量之间的变化是否存在某种联系或者依赖。
在统计学中,我们可以通过计算相关系数来度量两个变量之间的相关程度。
下面,我将为你举例说明两个变量间的相关关系。
举例一:首先,我们来看身高和体重之间的相关关系。
身高和体重是人体的两个重要指标,一般来说,身高越高,体重也会相应增加。
我们可以通过一个调查统计来验证这种关系。
在调查中,我们随机选择了1000名男性被试,记录了他们的身高和体重。
通过运用统计学方法,我们计算得到了身高和体重之间的相关系数为0.8,这说明身高和体重之间存在着强正相关关系。
也就是说,身高增加会促使体重的增加。
举例二:其次,让我们来考察学习时间和考试成绩之间的相关关系。
有一种常见的观点是,学习时间越多,考试成绩也会越好。
我们可以通过一个实验证明这种关系。
我们在一所学校中随机选取了500名学生,将他们分为两组:一组进行了加强学习时间的训练,每天学习4个小时;另一组保持正常学习时间,每天学习2个小时。
在经过一段时间的训练后,我们进行了一次考试,记录了两组学生的考试成绩。
通过对比两组学生的考试成绩,我们发现加强学习时间组的平均分高于正常学习时间组,这说明学习时间和考试成绩之间存在着正相关关系。
举例三:再次,让我们来研究睡眠时间和工作效率之间的相关关系。
一般来说,充足的睡眠对于提高工作效率很重要。
为了验证这个假设,我们进行了一项睡眠实验。
我们让20名被试者进行七天的实验,在前三天,他们每晚只睡4个小时;在后四天,他们每晚睡眠时间恢复到正常的8个小时。
在每天的工作结束后,我们记录了被试者当天的工作成绩。
通过实验数据的分析,我们发现在睡眠时间缺乏的前三天,被试者的工作效率明显降低;而在恢复充足睡眠的后四天,工作效率也得到了明显的提高。
这表明睡眠时间和工作效率之间存在着正相关关系。
以上三个例子表明,两个变量之间的相关关系可以通过实验证明或者调查统计来证实。
将变量之间的相关关系研究清楚,对我们了解事物的本质以及提高效率具有重要意义。
具有相关关系的两个变量的关系式
具有相关关系的两个变量的关系式具有相关关系的两个变量的关系式【引言】在数学和统计学中,很多研究都关注于两个变量之间的相关关系。
相关关系是指两个或多个变量之间的相互依赖程度。
了解变量之间的关系可以帮助我们理解事物的本质和变化规律,从而做出更准确的预测和决策。
本文将探讨具有相关关系的两个变量之间的关系式,旨在帮助读者了解相关性的概念以及如何建立和解读关系式。
【正文】一、相关关系的概念和度量相关关系是指两个变量之间的相互依赖程度。
在统计学中,常用的相关性度量方式包括皮尔逊相关系数、斯皮尔曼等级相关系数和判定系数等。
其中,皮尔逊相关系数是最常见且广泛应用的一种度量方法。
皮尔逊相关系数(Pearson correlation coefficient)是用于衡量两个连续变量之间线性关系的强度和方向的统计量。
它的取值范围在-1到1之间,值越接近1或-1表示两个变量之间关系越强,值越接近0表示两个变量之间关系越弱。
当系数为正值时,表示两个变量之间正向线性关系;而当系数为负值时,表示两个变量之间负向线性关系。
二、建立具有相关关系的两个变量之间的关系式在研究中,我们可以通过实际观察或实验来获得变量之间的数据,并通过统计分析确定它们之间的关系。
下面以简单线性回归作为例子来介绍如何建立具有相关关系的两个变量之间的关系式。
简单线性回归是一种用于描述一个因变量和一个自变量之间关系的统计模型。
它的关系式可以表示为y = a + bx,其中y表示因变量,x 表示自变量,a和b分别表示截距和斜率。
通过最小二乘法可以估计出关系式中的参数。
具体建立关系式的步骤如下:1. 提出研究问题:确定自变量和因变量的关系,并给出观察或实验数据。
2. 绘制散点图:将观察或实验得到的数据绘制成散点图,以观察变量之间的整体趋势。
3. 计算相关系数:使用合适的方法计算出两个变量之间的相关系数,判断它们是否具有相关关系以及相关性强度。
4. 拟合线性回归模型:通过最小二乘法拟合出最符合数据的线性回归模型。
变量之间的相关关系
变量之间的相间确实存在关系,但又不 具备函数关系所要求的确定性,若它们的关系是 带有随机性的,就说两个变量具有相关关系. 注:相关关系是一种非确定性关系. 2、散点图:从一个统计数表中,为了更清楚地 看出x与y是否有相关关系,常将x的取值作为横 坐标,将y的相应取值作为纵坐标,在直角坐标 系中描点 i i ,这样的图形叫做散 点图.
温热度饮/℃杯数-5 与当0 天4气温7的对12比表15:19 23 27 31 36 热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图; (2)从散点图中发现气温与热饮销售杯数之间关系的 一般规律;
变量之间的相关关系
【典型例题】 解:(1)散点图如图所示
变量之间的相关关系
【分类】
线性相关关系:
正相关:指的是两个变量有相同的变化趋势,即从 整体上来看一个变量会随着另一个变量变大而变大. 这在散点图上的反映就是散点的分布在斜率大于0的 直线附近;
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
变量之间的相关关系
【分类】
负相关:指的是两个变量有相反的变化趋势,即 从整体上来看一个变量会随着另一个变量变大而 变小,这在散点图上的反映就是散点的分布在斜 率小于0的直线附近.
1.2 1
0.8 0.6 0.4 0.2
0 0
0.1
0.2
0.3
0.4
0.5
0.6
变量之间的相关关系
【典型例题】
1、某机构曾研究温度对翻车鱼的影响,在一定温 度下,经过x单位时间,翻车鱼的存活比例为y,数 据如下: (0.10,1.00),(0.15,0.95),(0.20,0.95), (0.25,0.90),(0.30,0.85),(0.35,0.70), (0.40,0.65),(0.45,0.60),(0.50,0.55), (0.55,0.40) (1)请作出这些数据的散点图; (2)关于这两个变量的关系,你能得出什么结论?
高中数学必修三-变量间的相关关系
变量间的相关关系知识集结知识元变量之间的相关关系知识讲解1、变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系.当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系.相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系.2、线性相关和非线性相关:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系.3、两个变量相关关系与函数关系的区别和联系(1)相同点:两者均是两个变量之间的关系.(2)不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例题精讲变量之间的相关关系例1.用线性回归模型求得甲、乙、丙3组不同的数据的线性相关系数分别为0.81,-0.98,0.63,其中___(填甲、乙、丙中的一个)组数据的线性相关性最强.例2.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)例3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.例4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.两个变量的线性相关知识讲解1.散点图【知识点的知识】1.散点图的概念:在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合的概念:从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合.3.正相关和负相关:(1)正相关:对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到右上角的区域内.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散布在从左上角到右下角的区域.3、注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,应考虑数据分布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,则两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,则表示的关系是线性相关,如果两个变量统计数据的散点图呈现如下图所示的情况,则两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系.4、散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形.特点是能直观表现出影响因素和预测对象之间的总体关系趋势.优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系.散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度.2.线性回归方程【概念】线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.【实例解析】例:对于线性回归方程,则=解:,因为回归直线必过样本中心(),所以.故答案为:58.5.方法就是根据线性回归直线必过样本中心(),求出,代入即可求.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.【考点点评】这类题记住公式就可以了,也是高考中一个比较重要的点.3.最小二乘法【概念】最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达.【例题解析】例:关于x与y有如表数据:请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程为y=0.7x+0.35.解:∵由题意知,,∴=0.7∴要求的线性回归方程是y=0.7x+0.35,故答案为:y=0.7x+0.35.集体步骤就是先做出x,y的平均数,代入的公式,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【考点解析】最小二乘法一般在线性拟合中应用的比较多,主要是一种方法,能够熟记如何操作就可以了,剩下的就是计算要认真.例题精讲两个变量的线性相关例1.'2018年9月17日,世界公众科学素质促进大会在北京召开,国家主席习近平向大会致贺信中指出,科学技术是第一生产力,创新是引领发展的第一动力某企业积极响应国家“科技创新”的号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据{x i,y i)(i=1,2,3,4,5,6),如表(1)求出p的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价:x(百元)的线性国归方程y=bx+a(计算结果精确到整数位);(3)用表示用正确的线性回归方程得到的与x对应的产品销的估计值当销售数据(x i,y i)的残差的绝对值|y i-y|<1时,则将销售数据称为一个“有效数据”现从这6组销售数中任取2组,求抽取的2组销售数据都是“有效数据”的概率.参考公式及数据=y i=80,=1606,=91,,'例2.'某地种植常规稻α和杂交稻β,常规稻α的亩产稳定为485公斤,今年单价为3.70元/公斤,估计明年单价不变的可能性为10%,变为3.90元/公斤的可能性为70%,变为4.00的可能性为20%.统计杂交稻β的亩产数据,得到亩产的频率分布直方图如图①.统计近10年杂交稻β的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为(x i,y i)(i=1,2,..10),并得到散点图如图②.(1)根据以上数据估计明年常规稻α的单价平均值;(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻β的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻β的亩产超过795公斤的概率;(3)①判断杂交稻β的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;②调查得知明年此地杂交稻β的种植亩数预计为2万亩.若在常规稻α和杂交稻β中选择,明年种植哪种水稻收入更高?统计参考数据:=1.60,=2.82,(x i)(y i)=-0.52,(x i)2=0.65,附:线性回归方程=bx+a,b=.'当堂练习单选题练习1.用模型y=ce kx拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+2,则c=()A.e2B.e4C.2D.4练习2.根据最小二乘法由一组样本点(x i,y i)(其中i=1,2,…,300),求得的回归方程是=x+,则下列说法正确的是()A.至少有一个样本点落在回归直线=x+上B.若所有样本点都在回归直线=x+上,则变量间的相关系数为1C.对所有的解释变量x i(i=1,2….300).bx i+的值一定与y i有误差D.若回归直线=x+的斜率b>0,则变量x与y正相关练习3.已知一组数据点(x1,y1),(x2,y2),(x3,y3),…,(x7,y7),用最小二乘法得到其线性回归方程为,若数据x1,x2,x3,…x7的平均数为1,则=()A.2B.11C.12D.14练习4.根据如下样本数据得到的回归直线方程为=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b<0D.a<0,b>0练习5.下列表格所示的五个散点数据,用最小二乘法得出y与x的线性回归直线方程为,则表格中m的值应为()A.8.3B.8.2C.8.1D.8练习6.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下根据上表可得回归方程,则实数a的值为()A.37.3B.38C.39D.39.5练习1.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)练习2.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为_____.练习3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.练习4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.练习1.'2013年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由2012年底的10.2%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,2012年至2018年我国贫困发生率的数据如表:(1)从表中所给的7个贫困发生率数据中心任选两个,求两个都低于5%的概率;(2)设年份代码x=t-2015,利用线性回归方程,分析2012年至2018年贫困发生率y与年份代码x的相关情况,并预测2019年贫困发生率.'练习2.'某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x(单位:千万元)对年销售量y(单位:千万件)的影响,统计了近10年投入的年研发费用x i与年销售量y i(i=1,2…,10)的数据,得到散点图如图所示.(1)利用散点图判断y=a+bx和y=c∙x d(其中c,d均为大于0的常数)哪一个更适合作为年销售量y和年研发费用x的回归方程类型(只要给出判断即可,不必说明理由);(2)对数据作出如下处理,令u i=lnx i,v i=lny i,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求y关于x的回归方程;(3)已知企业年利润z(单位:千万元)与x,y的关系为z=18y-x(其中e≈2.71828),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线=+的斜率和截距的最小二乘估计分别为=,=.'基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y(%),得结果如表(1)观察数据看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明(精确到0.001):(2)求y关于x的线性回归方程,并预测该公司2019年4月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲,乙两款车型报年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆行科学模拟测试,得到两款单车使用寿命表如下经测算,平均每辆单车每年可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?参考数据(x i)2=17.5,(y i)2=76,(x i)(y i)=35,≈36.5参考公式:相关系数r=回归方程=x中斜率和截距的最小二乘估计公式分别为=,=近期,某公交公司与银行开展云闪付乘车支付活动,吸引了众多乘客使用这种支付方式.某线路公交车准备用20天时间开展推广活动,他们组织有关工作人员,对活动的前七天使用云闪付支付的人次数据做了初步处理,设第x天使用云闪付支付的人次为y,得到如图所示的散点图.由统计图表可知,可用函数y=a∙b x拟合y与x的关系(1)求y关于x的回归方程;(2)预测推广期内第几天起使用云闪付支付的人次将超过10000人次.附:①参考数据表中v i=lgy i,=lgy i②参考公式:对于一组数据(u1,v1),(u2,v2)…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=-β.'习近平总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x的高度为ycm,测得一些数据图如下表所示作出这组数的散点图如图.(1)请根据散点图判断,y=ax+b与y=c+d中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第144天这株幼苗的高度(结果保留1位小数)附:=,参考数据:'某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为,=,=-。
两个变量的相关关系
.
知识回顾
1 相关关系
①变量之间除了函数关系之外,还有相关关系,即从总的变 化趋势来看变量之间存在着某种关系,但这种关系又不能用 函数精确表达出来.
②两个变量之间产生相关关系的原因是许多不确定的随机 因素的影响.
③需要通过样本来判断变量之间是否存在相关关系.
2 正关系、负相关、散点图
. 方案2、在图中选两点作直线,使直线两侧
的点的个数基本相同。
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3、如果多取几对点,确定多条直线,再求出这些直线的 斜率和截距的平均值作为回归直线的斜率和截距。而得回归方 程。 如图:
从上表发现,对某个人不一定有此规律,但对很多个体放在 一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
如图:
脂肪含量 40 35
30
25
20
15
10
5
年龄
O
20 25 30 35 40 45 50 55 60 65
x,
y,
x2, i
xi
y i
;
i 1
i 1
第三步:代入公式计算b,a的值;
第四步:写出直线方程。
练习:书P92A组1、3
作业:P94 A组 2
我们再观察它的图像发现这些点大致分布在一条直线附 近,像这样,如果散点图中点的分布从整体上看大致在 一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线叫做回归直线,该直线叫回归方程。
变量间的相关关系
数学成绩
由散点图可见,两者之间具有正相关关系。
小结:用Excel作散点图的步骤如下 : (结合软件边讲边练)
(1)进入Excel,在A1,B1分别输入“数学成 绩”、“物理成绩”,在A、B列输入相应的数据。 (2)点击图表向导图标,进入对话框,选择“标准 类型”中的“XY散点图”,单击“完成”。 (3)选中“数值X轴”,单击右键选中“坐标轴格 式”中的“刻度”,把“最小值”、“最大值”、 “刻度主要单位”作相应调整,最后按“确定”。y 轴方法相同。
(3)从散点图可以看出,0 140 130 120 110 100 90 80 70 60 50 40 -10 0 10
^ Y=-2.352x+147.767
20
30
40
^ (4)当x=2时,y=143.063, 因此,这天大 约可以卖出143杯热饮。
练习:P96 小结:
解2:用Excel求线性回归方程,步 骤如下:
. (1)进入Excel作出散点图。
(2)点击“图表”中的“添加趋势 线”,单击“类型”中的“线性”,单 击“确定”,得到回归直线。 (3)双击回归直线,弹出“趋势线格 式”,单击“选项”,选定“显示公 式”,最后单击“确定”。
三、利用线性回归方程对总体进行估计
二、求线性回归方程
例2:观察两相关变量得如下表: x y -1 -9 -2 -7 -3 -5 -4 -3 -5 -1 5 1 3 5 4 3 2 7 1 9
求两变量间的回归方程
解1: 列表:
i 1
i
2 -2 -7 14
3 -3 -5 15
4 -4 -3 12
10
5 -5 -1 5
2
6 5 1 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 正相关 :因变量随自变量的增大而增大,图中 的点分布在左下角到右上角的区域
• 负相关 :因变量随自变量的增大而减小,散点 图中的点分布在左上角到右下角的区域.
• 无相关性:因变量与自变量不具备相关性
小结:借助散点图可以直观判断两 个变量间的相关关系
强调:
①如果所有的样本都落在某一条函数曲线上,就用该函数 来描述变量之间的关系,即变量之间具有函数关系.
现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这 个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低。于 是,他就得出一个结论:天鹅能够带来孩子。你认为这样得 到的结论可靠吗?如何证明这个结论的可靠性?
• 没有根据说明“天鹅能够带来孩子”,
完全(例如独特的环境
脂肪含量 40 35 30 25 20 15 10 5 0 05
图1
10 15 20 25 30 35 40 45 50 55 60 65 年龄
图1
1000 800 600 400 200 0 0
1.2
1
0.8
0.6
0.4
0.2
0
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
11
图3
0
50
100
150
图2
世界是一个普遍联系 的整 体,任何事物都与其 它事物相联系
学不好数学,物理也是学不好的 小明,你数学成绩不太好,物理怎么样?
也不太好啊. ?????...
你认为老师的说法对吗?
事实上,我们在考察数学成绩对物理成绩影响的
同时,还必须考虑到其他的因素:爱好,努力程度
数
学
物理成绩
成
绩
学习 兴趣
花费 时间
4. 你能体会用最小二乘法得到回归直线是如 何体现“从总体上看,各点与此直线的距离 最小”的含义的吗?
1.样本点的中心
假设样本点为(x1,y1),(x2,y2),…,(xn,yn),
记 x =n1i=n1xi, y =n1i=n1yi,
则( x , y )为样本点的中心
2. 回归直线的定义及特征
因素),即天鹅与婴儿出生率之间没有
直接的关系,因此 “天鹅能够带来孩子”
的结论不可靠。
• 可以通过试验来进行。相同的环境下将居民随机地 分为两组,一组居民和天鹅一起生活(比如家中都 饲养天鹅),而另一组居民的附近不让天鹅活动, 对比两组居民的出生率是否相同。
即学即用
1.下列关系中,是带有随机性相关关系的是( ) ①正方形的边长与面积的关系;②水稻产量与施 肥量之间的关系;③人的身高与年龄之间的关系; ④降雪量与交通事故发生之间的关系.
吸烟会损害身体的健康。但人体健康 是由很多因素共同作用的结果,既有长 寿的吸烟者,又有发现由于吸烟而引发 的患病者,吸烟与健康是一种相关关系 ,所以吸烟不一定引起健康问题。
• 但吸烟引起健康问题的可能性大,因此“健康问 题不一定是由吸烟引起的,所以可以吸烟”的 说法是不对的。
P85-练习2:
2.某地区的环境条件适合天鹅栖息繁衍,有人统计发
2.通过作图可以对两个变量之间的关系有一个直观的 印象. 将表2-3提供的数据转变成什么样的形式更能 直观的反映这种关系?
3.两个变量的相关关系有正相关和负相关,它们在散 点图上各有什么特点?
4.你还能举出一些生活中的变量成正相关或负相关的 例子吗?
正、负相关、线性相关 概念探究
• 请同学们观察这3幅图,看有什么特点?
在寻找变量间的相关关系时,统计同样 发挥了非常重要的作用,我们是通过收集大量 的数据,对数据进行统计分析的基础上,发现 其中的规律,才能对它们之间的关系作出判断. 下面我们通过具体的例子来分析
探究二 阅读课本P85---P86思考,思考并讨论以 下问题: 1.根据表2-3提供的相信,你认为人体的脂肪含量与 年龄之间有怎样的关系?
其他 因素
如果单纯从数学对物理的影响来考虑,就是 考虑这两者之间的相关关系
探究一 阅读课本P84---P85内容及课堂练习, 思考并讨论以下问题:
1.当两个变量之间是一种确定性关系时,这两个 变量之间的关系是函数关系;当两个变量之间 带有随机性时,这两个变量之间的关系是什么关系? 2.相关关系与函数关系有什么异同?
变量间相关关系: 自变量取值一定时,因变量的取 值带有一定随机性的两个变量之间的关系.
2.相关关系与函数关系有什么异同?
相同点:两者均是指两个变量间的关系.
不同点:函数关系是一种确定的关系; 相关关系是一种非确定的关系.
3. 请举出一两个现实生活中具有相关关系的例子 或成语
商品销售收入
? 广告支出经费
②如果所有的样本都落在某一条函数曲线的附近, 变量之间 具有相关关系.
③如果所有的样本都落在某一直线的附近, 变量之间具有线 性相关关系.
探究三 阅读课本P87--P89思考,思考并讨论以下 问题:
1.什么是样本点的中心?
2.什么是回归直线? 回归直线一定经过样本点的中心吗?
3.你有哪些方案可以得到回归直线?
3. 请举出一两个现实生活中具有相关关系的例子 或成语
4.思考回答P85课堂练习1、2:
探究一 阅读课本P84---P85内容及课堂练习, 思考并讨论以下问题: 1.当两个变量之间是一种确定性关系时,这两 个变量之间的关系是函数关系;当两个变量之 间带有随机性时,这两个变量之间的关系是什 么关系?
粮食产量
? 施肥量
学习成绩
?
学习时间
生活中相关成语:
“名师出高徒” , “瑞雪兆丰年” “强将手下无弱兵” “虎父无犬子” “老子英雄儿好汉,老子反动儿混蛋 ” “上梁不正下梁歪”
4.思考回答P85课堂练习1、2:
1. 有关法律规定,香烟盒上必须印上“吸烟有
害健康”的警示语。吸烟是否一定会引起健康问题? 你认为“健康问题不一定是由吸烟引起的,所以可 以吸烟”的说法对吗?
2. 下列两个变量之间的关系哪个不是函数关 系( ) A.角度和它的余弦值 B. 正方形边长和面积 C.正n边形的边数和它的内角和 D.人体的脂肪含量与年龄
以上种种问题中的两个变量之间的相关 关系,我们都可以根据自己的生活,学习经验作 出相应的判断,“经验当中有规律”,但是不管 你多有经验,只凭经验办事,还是很容易出错的, 在寻找变量间的相关关系时,我们需要一些更 为科学的方法来说明问题.