用数学分析方法求解恰当微分方程

用数学分析方法求解恰当微分方程

用数学分析方法求解恰当微分方程

摘要通过数学分析微积分的理论,线积分与积分路径无关以

及分部积分公式直接求不定积分的的原函数,本文采用了线积分与

分部积分两种方法得到恰当微分方程的通解。

关键词恰当微分方程线积分法分部积分法通解

中图分类号:o175 文献标识码:a

高等数学第七章微分方程习题

第七章 微分方程与差分方程 习题7-1(A ) 1. 说出下列微分方程的阶数: ;02)()1(2=+'-'x y y y x ;0)2(2=+'+'''y y x y x .0)32()67()3(=++-dy y x dx y x 2. 下列函数是否为该微分方程的解: x e x y y y y 2; 02)1(==+'-'' )(2; 0)()2(2为任意常数C x x C y xdy dx y x -==++ ),(cos sin ; 0) 3(212122 2为任意常数C C ax C ax C y y a dx y d +==+ )(ln ; 02)()4(2xy y y y y y x y x xy =='-'+'+''+ 3. 在下列各题中,确定函数关系式中所含的参数,写出符合初始条件的函数: ;5, )1(0 22==-=x y C y x ;1,0,)()2(0 221=' =+===x x x y y e x C C y . 0,1, )(sin )3(21='=-===ππx x y y C x C y 4. 写出下列条件确定的曲线所满足的微分方程: 点横坐标的平方。 处的切线的斜率等于该曲线在点),()1(y x 轴平分。被,且线段轴的交点为处的法线与曲线上点y PQ Q x y x P ),()2( 习题7-1(B ) 1.在下列各题中,对各已知曲线族(其中 C 1, C 2, C 3 都是任意常数)求出相应的微分方程: ; 1)()1(22=+-y C x . )2(21x x e C e C xy -+= 2.用微分方程表示下列物理问题: 平方成反比。温度的成正比,与的变化率与气压对于温度某种气体的气压P T P )1( 。 速度成反比(比例系数同时阻力与, 成正比(比例系数与时间用在它上面的一个力的质点作直线运动,作一质量为)))2(11k k t m 习题7-2(A ) 1.求下列微分方程的通解: ;0ln )1(=-'y y y x ;0553)2(2='-+y x x ; )()3(2y y a y x y '+='-'

(完整版)高等数学微分方程试题

第十二章 微分方程 §12-1 微分方程的基本概念 一、判断题 1.y=ce x 2(c 的任意常数)是y '=2x 的特解。 ( ) 2.y=(y '')3是二阶微分方程。 ( ) 3.微分方程的通解包含了所有特解。 ( ) 4.若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5.微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、填空题 1. 微分方程.(7x-6y)dx+dy=0的阶数是 。 2. 函数y=3sinx-4cosx 微分方程的解。 3. 积分曲线y=(c 1+c 2x)e x 2中满足y x=0=0, y ' x=0=1的曲线是 。 三、选择题 1.下列方程中 是常微分方程 (A )、x 2+y 2=a 2 (B)、 y+0)(arctan =x e dx d (C)、22x a ??+22y a ??=0 (D ) 、y ''=x 2+y 2 2.下列方程中 是二阶微分方程 (A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx 3.微分方程2 2dx y d +w 2 y=0的通解是 其中c.c 1.c 2均为任意常数 (A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 4. C 是任意常数,则微分方程y '=3 23y 的一个特解是 (A )y-=(x+2)3 (B)y=x 3+1 (C) y=(x+c)3 (D)y=c(x+1)3 四、试求以下述函数为通解的微分方程。 1.2 2 C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

高数公式大全(全)

高数公式大全 1.基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -=----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建 立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对 微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有 所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能 近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性 质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t时刻病人人数() x t连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0 t=时有0x个病人。 +?病人人数增加 建模:t到t t

()()()x t t x t x t t λ+?-=? (1) 0,(0)dx x x x dt λ== (2) 解得: 0()t x t x e λ= (3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型 假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ= (4) 由于 ()()1s t i t += (5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-= (6)

高等数学 微分方程

第十二章 微分方程 § 1 微分方程的基本概念 1、由方程x 2-xy+y 2=C 所确定的函数是方程( )的解。 A. (x-2y)y '=2-xy '=2x-y C.(x-2)dx=(2-xy)dy D.(x-2y)dx=(2x-y)dy 2、曲线族y=Cx+C 2 (C 为任意常数) 所满足的微分方程 ( ) 4.微分方程y '=y x 21-写成以 y 为自变量,x 为函数的形式为( ) A.y x 21dx dy -= B.y x 21dy dx -= '=2x-y D. y '=2x-y §2 可分离变量的微分方程 1.方程P(x,y)dx+Q(x,y)dy=0是( ) A.可分离变量的微分方程 一阶微分方程的对称形式, C.不是微分方程 D.不能变成 ) y ,x (P ) y ,x (Q dy dx -= 2、方程xy '-ylny=0的通解为( ) A y=e x B. y=Ce x cx D.y=e x +C 3、方程满足初始条件:y '=e 2x-y , y|x=0=0的特解为( ) A. e y =e 2x +1 2 1 e ln x 2+= C. y=lne 2x +1-ln2 D. e y =21e 2x +C 4、已知y=y(x)在任一点x 处的增量α+?+=?x x 1y y 2 ,且当?x →0时,α是?x 高阶无穷小,y(0)=π,则y(1)=( ) A. 2π B. π C. 4 e π 4e ππ 5、求特解 cosx sinydy=cosy sinxdx , y|x=0=4 π 解:分离变量为tanydy=tanxdx ,即-ln(cosy)=-ln(cosx)-lnC ,cosy=ccosx 代入初始条件:y|x=0= 4π 得:2 2C =特解为:2cosy=cosx 6、求微分方程()2 y x cos y x 2 1cos dx dy +=-+满足y(0)=π的特解。

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

高等数学微分方程试题及答案.docx

第九章常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 ( 1)方程形式:dy P x Q y Q y0通解 dy P x dx C dx Q y (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) ( 2)方程形式:M1x N1 y dx M 2x N 2y dy0 通解M 1x dx N 2 y dy C M 2 x 0, N 1 y 0 M 2x N 1y 2.变量可分离方程的推广形式 dy f y ( 1)齐次方程 x dx 令y u ,则 dy u x du f u f du dx c ln | x | c x dx dx u u x 二.一阶线性方程及其推广 1.一阶线性齐次方程 dy P x y0 它也是变量可分离方程,通解y Ce P x dx ,(c为任意常数)dx 2.一阶线性非齐次方程 精品文档令 z y1把原方程化为dz1P x z 1Q x 再按照一阶线性 dx 非齐次方程求解。 dy1可化为 dx P y x Q y y x 以为自变量,.方程: P y x dy dx Q y 为未知函数再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程 方程类型解法及解的表达式 通解 y n C 2 x n 2C n 1 x C n y n f f x dx C1 x n 1 x n次 令 y p ,则 y p ,原方程 y f x, y f x, p ——一阶方程,设其解为p g x, C1 p, 即y g x, C1,则原方程的通解为y g x, C1dx C2。 令 y p ,把p看作y的函数,则 y dp dp dy p dp dx dy dx dy y f 把 y, y 的表达式代入原方程,得 dp1 f y, p—一阶方程, y, y dy p dy dx P x y Q x用常数变易法可求出通解公式设其解为 p g y, C 1 , 即 dy g y, C1,则原方程的通解为 dx 令 y C x e P x dx代入方程求出 C x 则得ye P x dx Q x e P x dx dx C 3.伯努利方程 dy Q x y0,1 P x y dx dy x C2。 g y, C1

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

第五章 高等数学(理专) 微分方程试题库1

第五章 微分方程 试题库一 1.填空题 (1) 微分方程0),,,()4(='y y y x F 是 阶微分方程. (2)通过点)1,1(处,且在任意一点),(y x P 处的切线斜率为x 的曲线方程为 . (3) 微分方程054=-'-''y y y 的特征方程为 . (4) 微分方程03='-''y y 的通解为 . (5) 微分方程09=-''y y 的通解为 . (6) 微分方程y x x y -=e d d 的通解为 . (7) 微分方程054=-'+''y y y 的通解为 . (8) 微分方程20yy x '+=的通解为 . (9)微分方程560y y y '''-+=的特征方程为 . (10) 微分方程440y y y '''-+=的通解为 . 2.选择题 (1) 微分方程0))(,,,(24='''y y y x F 的通解中含有的相互独立的任意常数的个数是( ). A.1; B.2; C.3; D.4. (2) 下列微分方程中是可分离变量的微分方程的是( ). A.y xy x y +=d d ; B. y x y xy sin e d d =; C. 2d d y xy x y +=; D. 22d d y x x y +=. (3) 下列微分方程中是一阶线性非齐次微分方程的是( ). A. 2d d y xy x y +=; B.x xy y =+''; C.x xy y =+'; D. 02=+'xy y . (4) 微分方程x y e =''的通解为( ). A. x y e =; B. C y x +=e ; C. Cx y x +=e ; D. 21e C x C y x ++=.

高数 第七章题库 微分方程

第十二章 微分方程答案 一、 选择题 1.下列不是全微分方程的是 C 1 A.2()(2)0x y dx x y dy ++-= B.2 (3)(4)0y x dx y x dy ---= C.3 2 2 2 3(23)2(2)0x xy dx x y y dy +++= D.2 2 2(1)0x x x ye dx e dy -+= 2. 若3y 是二阶非齐次线性方程(1):()()()y P x y Q x f x '''++=的一个特解,12,y y 是对应的 齐次线性方程(2)的两个线性无关的特解,那么下列说法错误的是(123,,c c c 为任意常数) C 2 A.1122c y c y +是(2)的通解 B. 113c y y +是(1)的解 C. 112233c y c y c y ++是(1)的通解 D. 23y y +是(1)的解 3.下列是方程xdx ydy += 的积分因子的是 D 2 A.2 2x y + B. 221x y + 4.方程32 2321x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 5.已知方程'()0y p x y +=的一个特解cos 2y x =,则该方程满足初始特解(0)2y =的特解为( C ). 2 (A) cos 22y x =+ (B) cos 21y x =+ (C) 2cos 2y x = (D) 2cos y x = 6.方程32232 1x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 7.设线性无关的函数123,,y y y 都是微分方程''()'()()y p x y q x y f x ++=的解,则该方程的通解为 ( D ). 2 (A) 11223y c y c y y =++ (B) 1122123()y c y c y c c y =+-+ (C) 1122123(1)y c y c y c c y =+--- (D) 1122123(1)y c y c y c c y =++-- 8.设方程''2'3()y y y f x --=有特解*y ,则其通解为( B ). 1

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

(完整版)高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程, 通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α -=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性 非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

高等数学——微分方程

第八章 常微分方程 一、本章学习要求与内容提要 (一)基本要求 1.了解微分方程和微分方程的阶、解、通解、初始条件与特解等概念. 2.掌握可分离变量的微分方程和一阶线性微分方程的解法. 3.了解二阶线性微分方程解的结构. 4.掌握二阶常系数齐次线性微分方程的解法. 5.会求自由项为x m x P λe )(或x x P x m βαcos e )(,x x P x m βαsin e )(时的二阶常系数非 齐次线性微分方程的解. 6. 知道特殊的高阶微分方程()()(x f y n =,),(y x f y '='',),(y y f y '='')的降阶法. 7.会用微分方程解决一些简单的实际问题. 重点 微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶线性微分方程的解的结构,二阶常系数非齐次线性微分方程的待定系数法。 难点 一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶常系数非齐次线性微分方程的待定系数法,高阶微分方程的降阶法,用微分方程解决一些简单的实际问题. (二)内容提要 ⒈ 微分方程的基本概念 ⑴ 微分方程的定义 ①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. ⑵ 微分方程的阶、解与通解 微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数 )(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方 程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解. ⑶ 初始条件与特解 用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解. ⑷ 独立的任意常数 ①线性相关与线性无关 设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有 0)()(2211=+x y k x y k

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

数学模型 微 分 方 程

数学模型 13.人体注射葡萄糖溶液时,血液中葡萄糖浓度g(t)的增长率与注射速率r 成正比,与人体血液容积v 成反比,而由于人体组织的吸收作用,g(t)的减少率与g(t)本身成正比。分别在以下几种假设下建立模型,并讨论稳定情况。 (1)人体血液容积v 不变。 (2)v 随着注入溶液而增加。 (3)由于排泄等因素v 的 增加有极限值 解:模型假设: 本模型中主要符号说明为: 葡萄糖浓度g(t) 注射速率r 人体血液容积v 基本模型为: g k V r k dt dg 21-= (1k ,02>k ,常数) ⑴ (1)V 为常数时,平衡点V k r k g 210= 稳定。 如果以g 为横轴、 dt dg 为纵轴作出方程的图形(图1),可以分析葡萄糖浓度增长速度dt dg 随着g 的增加而变化的情况,从而大概地看出g(t)的变化规律。 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100-0.5g,{g,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图1 dt dg ~g 曲线 再利用matlab 在操作窗口中输入以下代码命令:

g=dsolve('Dg=k1*r/v-k2*g','g(0)=g0','t') 其解为 g =k1*r/v/k2+exp(-k2*t)*(-k1*r+g0*v*k2)/v/k2 整理得到: 2 20112)(vk vk g r k e v r k t g t k +-+=- ⑵ 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100+Exp[-0.5t],{t,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图2 g ~t 曲线 由图可以知道它在平衡点V k r k g 210= 稳定。 (2)不妨设 β=dt dV (0>β,常数) ⑶ 方程⑴,⑵不存在平衡点。若由⑵解出t V t V β+=0)(代入⑴,得到 g k t V r k dt dg 201-+=β ⑷ 则⑷不能是自治方程。因为平衡点及稳定性的概念只是对自治方程而言才有意义,而⑷不能是自治方程,所以不能考虑它的稳定性。 (3)不妨设 V )(V dt dV -=1μ (0>μ,常数) ⑸ 如果以V 为横轴、dt dV 为纵轴作出方程的图形(图3),可以分析人体血液容积V 增长速度dt dV 随着V 的增加而变化的情况,从而大概地看出V(t)的变化规

高等数学微分方程练习题

高等数学微分方程练习 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程. 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数. 1.不是一阶微分方程. A.正确 B.不正确 2.不是一阶微分方程. A.正确 B.不正确 一阶线性微分方程:未知函数及其导数都是一次的微分方程d ()() d y P x y Q x x += 称为一阶线性微分方程. 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解. 通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解. 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解. 1.是微分方程的解. A.正确 B.不正确 2.是微分方程的解. A.正确 B.不正确 3.是微分方程的通解. A.正确 B.不正确

4.微分方程 的通解是( ). A. B. C. D. (二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法是: (1)分离变量:1221()()()() g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解. 1.微分方程 的通解是( ). A. B. C. D. 2.微分方程 的通解是( ). A. B. C. D. 3.微分方程的通解是( ). A. B. C. D. 4.微分方程的通解是( ).

数学建模微分方程的应用举例

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 ★返回 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得 ,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238 )的半衰期约为50亿年; 通常的镭(Ra 226 )的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始 量, 一克 Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是 1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、 逻辑斯谛方程: 逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下

高等数学微分方程试题汇编

第十二章微分方程 §2-1 微分方程的基本概念 一、 判断题 1. y=ce 2x (c 的任意常数)是y ' =2x 的特解。 ( ) 2. y=( y )3是二阶微分方程。 ( ) 3. 微分方程的通解包含了所有特解。 ( ) 4. 若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5. 微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、 填空题 微分方程.(7x-6y)dx+dy=0的阶数是 _______________ 。 2. 函数y=3sinx-4cosx ___________ 微分方程的解。 3. 积分曲线y=(c 1 +c 2x)e 2x 中满足 y x=o =O, y" x=o =1的曲线是 _________________ 。 三、选择题 1. _________________ 下列方程中 是常微分方程 _2 _2 2 2 2 d arctan x 3 '3 2 2 (A )、x+y =a (B)、 y+——(e ) = 0 (C)、—2 +— =0 ( D )、y =x +y dx ex cy 2. _______________ 下列方程中 是二阶微分方程 2 y 2 i-2 2 3 2 (A ) ( y ) +x +x =0 (B) ( y ) +3x y=x (C) y +3 y +y=0 (D) y -y =sinx (A ) y=ccoswx (B)y=c sinwx (C)y=c i coswx+c 2sinwx (D)y=c coswx+c sinwx 2 4. C 是任意常数,则微分方程 y =3y 3的一个特解是 ______________ 3 3 3 3 (A ) y-=(x+2) (B)y=x +1 (C) y=(x+c) (D)y=c(x+1) 四、试求以下述函数为通解的微分方程。 2 2 2x 3x 1. y =Cx C (其中C 为任意常数) 2.y =C i e C 2e (其中C-C ?为任意常数) 五、质量为 m 的物体自液面上方高为 h 处由静止开始自由落下,已知物体在液体中受的阻 力与运 3.微分方程 穿+w2y =0的通解是 ______ 中c.c i.c 2均为任意常数

数学建模微分方程的应用举例

第八节数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t的质量. 用x表示该放射性物质在时刻t的质量, 则 表示x在时刻t的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 (8.1)

这是一个以x为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t增加时, 质量x减少. 解方程(8.1)得通解 若已知当 时, 代入通解 中可得 则可得到方程(8.1)特解 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( )的半衰期约为50亿年;通常的镭( )的半衰期是1600年.半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克 衰变成半克所需要的时间与一吨 衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、逻辑斯谛(Logistic)方程:

逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型. 如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比. 设树生长的最大高度为H(m), 在t(年)时的高度为h(t), 则有 (8.2) 其中 是比例常数. 这个方程为Logistic方程. 它是可分离变量的一阶常数微分方程. 下面来求解方程(8.2). 分离变量得 两边积分 得

相关文档
最新文档