弦切角定理PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所夹弧 的度数
弦切角 的度数
90º
135º
45º
猜想: 猜想: 弦切角的度数等于它所夹的弧的度数的一半。 弦切角的度数等于它所夹的弧的度数的一半。
圆心在弦切角的一 边上 C O A 甲 m B C
圆心在弦切角 的内部 D O A 乙 m
圆心在弦切角的外部 D C m O A 丙 B
B
如图3, 与 的外接圆⊙ 例1 如图 ,AC与△ABD的外接圆⊙O 的外接圆 相切于A. 相切于A. (1)若弦切角∠ (1)若弦切角∠BAC=30º ,则 若弦切角 ⌒ AB = 度,∠AOB= ∠ 度,∠ABD= (2)若已知⊙ 的半径为3cm, ⌒长为 (2)若已知⊙O的半径为3cm,AB长为 若已知 3cm 的度数。 πcm,求弦切角∠BAC的度数。 ,求弦切角∠ 的度数 (3)若 ⊥ ,垂足为C (3)若AC⊥BC,垂足为 ,AC= BC= 2 , 求扇形 求扇形OAB的面积。 的面积。 的面积
C . O A B
C C .O .O B A B
A
顶点在圆上,并且一边和圆相交、 顶点在圆上,并且一边和圆相交、另一边 一边和圆相交 和圆相切的角叫做 和圆相切的角叫做
弦切角。
已知:如图, 切 于点A,AC与⊙O 已知:如图,AB切⊙O于点 于点 与
相交, 相交,
是弦切角。 即: ∠CAB是弦切角。 是弦切角
1.如图,AC是⊙O的弦,BD切⊙O于C,则 如图, 是 的弦, 切 如图 , 图中弦切角有 4 个 。 若上题, 若上题, ∠ AOC=120,则 则 度 . ∠ ACD = 120度 2.如图,直线MN切⊙O于C,AB是⊙O的 如图,直线 AB是 如图 切 直径, 直径,若∠ BCM=40度,则∠ ABC等 度 等 于( B ) A: 40度 度 B: 50度 度 C: 45度 D:60度 度 度
观察辨析
B C B A 切点) (切点) A D C 切点) (切点) B A m
C
A C
(切点) 切点) B A D
B A 切点) (切点)
m B C
概念应用
B A C O E 图一
1、 这是一个定滑轮装置示意 、 指出图中有哪几个弦切角。 图,指出图中有哪几个弦切角。 D 口答) (口答)
O A 图二 B
O B
A
C D
.O B M C
A D N
3.已知⊙O是△ABC的内切圆,D,E,F为切点, 已知⊙ 的内切圆, 为切点, 已知 的内切圆 为切点 若∠ A: ∠ B: ∠ C=4:3:2,则∠DEF = 50Байду номын сангаас度, , ∠FBC= 70 度。
变式练习1 如图4,连结DE、 , 变式练习 如图 ,连结 、DF, 你能找出图中有哪些相等的角, 你能找出图中有哪些相等的角, 哪些相似三角形。 哪些相似三角形。
动动脑筋
C o
B
问:弦切角 与所夹的弧、 与所夹的弧、 及所夹的弧 所对的圆心 角、圆周角 有何关系? 有何关系?
A
P
弦切角及其性质是证明相等的重要依据, 弦切角及其性质是证明相等的重要依据,它常常 与圆周角、圆心角等性质联合应用来进行证明、 与圆周角、圆心角等性质联合应用来进行证明、 计算。圆心角、圆周角、 计算。圆心角、圆周角、弦切角是与圆有关的三 种角,三者之间关系如图, 切 种角,三者之间关系如图,PA切⊙O于A,则有: ,则有: m ⌒ ∠PAB= ∠ ACB= 1/2∠ BOA= AB ∠
2、 AB与⊙O切于 ,请同 、 切于A 与 切于 学们画出三个以A为顶点的 学们画出三个以 为顶点的 弦切角, 弦切角,使它们所夹的弧分 别为180º、270º、90º。 别为 、 、 。
动手实验,猜想命题 动手实验,
通过测量得到弦切角度数。 通过测量得到弦切角度数。 C O A 甲 180º B C O A 乙 270º B O A 丙 90º B C
D O
A
C
B
度;
图3
6
,
A 如图, 是 例2 如图,AD是 △ABC中∠BAC的平分 中 的平分 经过点A的 线,经过点 的⊙O与BC 与 切于点D,与AB、AC分 切于点 , 、 分 别相交于E、 。 求证: 别相交于 、F。 求证: EF∥BC。 ∥ 。 证明:连结DF. 证明:连结DF. ∵AD是∠BAC的角平分线 是 的角平分线 ∴∠BAD=∠DAC ∴∠ ∠ ∵∠EFD=∠BAD 又∵∠ ∠ ∴∠EFD=∠DAC ∴∠ ∠ ∵⊙O切 于 又∵⊙ 切BC于D ∴∠FDC=∠DAC ∴∠ ∠ ∴∠FDC=∠DAC ∴∠ ∠ ∴ EF∥BC ∥ O E B D F C