大学物理基础(上) 复习资料
大学物理(1)总复习
k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.
大学物理上总复习知识要点和例题
Fi 0
ΔP 0
J t 0 M dt L L 0 L ω L r mv ΔL 0 Mi 0
i
F d r E k - E k0
d r dx i dy j dz k
L
M d θ E k E k0
Mi 0
i
ΔL 0
t=0
O
M l
v
t 0 L0 l mv t t L (J1 J2 )ω
J2 1 3 Ml
2
l mv (J1 J2 )ω J1 ml 2
ω mvl ( Ml ml ) 3
2 2
t=t
O
M l
ω
1
3mv (Ml 3ml )
ω mG ω mT ω TG
M Jα
J
F ma
F Fx Fy Fz F F n F
M rF
J
i
i
质
点
力
I
学
t
刚
t
体
力
学
I P P0
t0
F dt
i
1 1 1 1
2J J n
1 2 2
J J
1
2
30
18.有一半径为R的水平圆转台,可绕通过其中 心的竖直轴转动,质量为M,开始时转台以匀 角速度0转动,此时有一质量为m的人从边缘 向中心移动。当人走到R/2处停下来,求人停 下来后转盘的角速度,转盘受到的冲量矩。
J J1 J 2
相对运动
大学物理(上)复习要点及重点试题
刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。
《大学物理》上册复习资料
《⼤学物理》上册复习资料⼩飞说明:本资料纯属个⼈总结,只是提供给⼤家⼀些复习⽅⾯,题⽬均来⾃课件如有不⾜望谅解。
(若要打印,打印时请删去此⾏)第⼀章质点运动学1.描述运动的主要物理量位置⽮量:位移⽮量:速度⽮量:加速度⽮量:速度的⼤⼩:加速度的⼤⼩:2.平⾯曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的⾓量描述⾓位置:⾓速度:⾓加速度:圆周运动的运动⽅程:4.匀⾓加速运动⾓量间的关系ω= θ=5.⾓量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地⾯竖直向上抛出⼀个质量为m 的⼩球,若上抛⼩球受到与其瞬时速率成正⽐的空⽓阻⼒,求⼩球能升达的最⼤⾼度是多⼤?8.⼀飞轮以n=1500r/min的转速转动,受到制动⽽均匀地减速,经t=50s后静⽌。
(1)求⾓加速度β和从制动开始到静⽌时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的⾓速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上⼀点的速度、切向加速度和法向加速度9.⼀带蓬卡车⾼h=2m,它停在马路上时⾬点可落在车内到达蓬后沿前⽅d=1m处,当它以15 km/h 速率沿平直马路⾏驶时,⾬滴恰好不能落⼊车内,求⾬滴相对地⾯的速度及⾬滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'uP ),,(),,(z y x z y x '''第⼆章⽜顿运动定律 1.经典⼒学的时空观(1)(2)(3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌⾯上放置⼀固定圆环,半径为R ,⼀物体贴着环带内侧运动,如图所⽰。
大学物理上复习资料
大学物理上复习资料在大学物理学习中,复习资料是不可或缺的重要元素。
不同于初中、高中时期的课程,大学物理更注重深度和实践性,需要我们充分掌握基础知识,并能够熟练运用于实际问题的解决。
以下是针对大学物理复习的一些建议和资料推荐。
1. 基础知识总结在大学物理学习中,不可避免地会遇到大量的公式和概念。
为了更好地理解和掌握这些知识,我们可以制作一份基础知识总结的笔记。
这份笔记需要涵盖大学物理的基本概念、定律和公式,帮助我们快速回忆课程内容,为后续学习提供便利。
2. 经典题目选解大学物理的复习过程中,练习题是必不可少的。
然而,由于时间和精力的限制,我们可能无法做完所有的题目。
因此,需要针对性地挑选一些经典的题目来进行练习。
这些题目可以覆盖大学物理学习的重点知识点,对于深入理解课程内容和提高解题能力都非常有帮助。
3. 近年考试真题为了更好地了解大学物理考试的出题方向和考察内容,我们可以查找近年来的考试真题进行复习。
这些真题可以帮助我们熟悉考试的难度和形式,从而更好地调整备考策略和心理状态,提高应试能力。
4. 视频教程和课件除了传统的纸质资料外,现代科技的发展也为我们提供了更加丰富的学习资源。
在大学物理学习中,我们可以利用网络上的视频教程和课件来辅助学习。
这些资料通常生动形象,讲解清晰,可以更好地帮助我们理解和掌握课程内容。
5. 交流和讨论在学习的过程中,与同学和老师的交流和讨论也是非常重要的。
通过交流和讨论,我们可以更好地理解和消化课程内容,发现存在的问题并加以解决。
同时,听取他人的想法和见解,也可以帮助我们更好地拓展思路和提高解题能力。
大学物理复习资料的选择和使用需要因人而异,因为每个人的学习风格和需求都不同。
然而,细心地、有序地、有计划地利用各类复习资料,对于高效、系统地进行大学物理复习,是非常有益的。
希望以上建议和资料推荐能够帮助到大家,祝大家在复习和考试中取得好成绩!。
大学物理上总复习资料重点
3. 同一方程式中所有量都必须相对同一转轴。
解题步骤: 1. 认刚体;
2. 定转轴,找运动;
3. 分析力和力矩;
4. 定转向,列方程。(质心动力学 方程和定轴转动方程)
例: 一飞轮转速n=1500r/min,受到制动后均匀地减
速,经t=50s后静止。
(1)求角加速度和飞轮从制动开始到静止所转过的
此力为垒球本身重量的
F 845 616 倍 t2
mg 0.14 9.8
I Fdt
F
I
p
t t
t1
I
F(
解:如图,设垒球飞来方向为 x 轴
I
mv2
方向。棒对球的冲量大小为
I mv2 mv1
mv1
x
方向:与x轴夹角
m v12 v22 2v1v2 cos
16.9[N s] 180 arctan mv 2 sin
1522'
mv1 mv 2 cos
棒对球的平均冲力
F I 16.9 845[N] t 0.02
(3) 质点何时开始逆时针方向运动?
解:(1)
an
v2 R
at
dv dt
d 2s dt 2
an
V0
bt2
R
at b
a at an
大小: a V0 bt4 b2 2 R
at a
m
v
o .an
方向:
arctan
abt2
Rb
(2)
a
b时
V0 bt4 b2 b
匀加速运动
微分法:由
积分法: a v r
初始条件
求得速度方程: 求得运动方程:
大学物理上册复习提纲
引言概述:正文内容:
1.运动学
1.1匀速直线运动
1.1.1位移、速度和加速度的概念
1.1.2匀速直线运动的数学描述
1.1.3匀速直线运动的图像解析
1.2匀变速直线运动
1.2.1加速度和速度的关系
1.2.2匀变速直线运动的数学描述
1.2.3匀变速直线运动的图像解析
1.2.4自由落体运动
2.力学
2.1牛顿力学基本概念
2.1.1质点、力和力的合成
2.1.2牛顿三定律及其应用
2.2静力学
2.2.1物体的平衡条件
2.2.2弹力、摩擦力和力的矩
2.3.1动量、动量守恒定律和冲量
2.3.2力的合成和动量定理
2.3.3动能、功和功率
2.3.4动力学的应用:斜面和圆周运动
3.能量与能量守恒
3.1动能和势能
3.2机械能守恒定律
3.2.1弹性碰撞
3.2.2完全非弹性碰撞
3.2.3弹簧振子
4.流体力学
4.1流体的基本性质
4.1.1流体的压强、密度和体积弹性模量4.1.2静力学中的流体平衡条件
4.2流体的动力学性质
4.2.1流体运动的流速、流量和连续性方程4.2.2流体的伯努利定律
4.3流体的应用:大气压力和沉浮
5.1温度和热平衡
5.2热传导和热量
5.3热力学第一定律
5.4理想气体的状态方程
5.5热力学第二定律和熵
5.6热力学过程中的功和热量的转化总结:。
大学物理复习资料(超全)(一)
大学物理复习资料(超全)(一)引言概述:大学物理是大学阶段的一门重要课程,涵盖了广泛的物理知识和原理。
本文档旨在为大学物理的复习提供全面的资料,帮助学生回顾和巩固知识,以便更好地应对考试。
本文档将分为五个大点来详细讲解各个方面的内容。
一、力学1. 牛顿力学的基本原理:包括牛顿三定律和作用力的概念。
2. 运动学的基本概念:包括位移、速度和加速度的定义,以及运动的基本方程。
3. 物体的受力分析:重点介绍平衡、力的合成和分解、摩擦力等。
4. 物体的平衡和动力学:详细解析物体在平衡和运动状态下所受的力和力矩。
5. 力学定律的应用:举例说明力学定律在各种实际问题中的应用,如斜面、弹力等。
二、热学和热力学1. 理想气体的性质:通过理想气体方程和状态方程介绍气体的基本性质。
2. 热量和温度:解释热量和温度的概念,并介绍温标的种类。
3. 热传导和热辐射:详细讲解热传导和热辐射的机制和规律。
4. 热力学定律:介绍热力学第一定律和第二定律,并解析它们的应用。
5. 热力学循环和热效率:介绍热力学循环的种类和热效率的计算方法,以及它们在实际应用中的意义。
三、电学和磁学1. 电荷、电场和电势:介绍电荷的基本性质、电场的概念,以及电势的计算方法。
2. 电场和电势的分析:详细解析电场和电势在不同形状电荷分布下的计算方法。
3. 电流和电路:讲解电流的概念和电路中的串联和并联规律。
4. 磁场和电磁感应:介绍磁场的基本性质和电磁感应的原理。
5. 麦克斯韦方程组:简要介绍麦克斯韦方程组的四个方程,解释它们的意义和应用。
四、光学1. 光的传播和光的性质:解释光的传播方式和光的特性,如反射和折射。
2. 光的干涉和衍射:详细讲解光的干涉和衍射现象的产生机制和规律。
3. 光的色散和偏振:介绍光的色散现象和光的偏振现象的产生原因。
4. 光的透镜和成像:讲解透镜的类型和成像规律,包括凸透镜和凹透镜。
5. 光的波粒二象性和相干性:介绍光的波粒二象性和相干性的基本概念和实验现象。
大学物理1复习资料(含公式,练习题)
第一章 质点运动学重点:求导法和积分法,圆周运动切向加速度和法向加速度。
主要公式:1.质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度3.4.5.线速度与角速度关系6.切向加速度法向加速度 总加速度第二章 质点动力学重点:动量定理、变力做功、动能定理、三大守恒律。
主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律3.4.5.6 动能定理7.机械能守恒定律:当只有保守内力做功时,0=∆E8. 力矩:F r M⨯=大小:θsin Fr M=方向:右手螺旋,沿F r⨯的方向。
9.角动量:P r L⨯=大小:θsin mvr L =方向:右手螺旋,沿P r⨯的方向。
※ 质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
※行星运动:向心力的力矩为0,角动量守恒。
第三章 刚体重点: 刚体的定轴转动定律、刚体的角动量守恒定律。
主要公式: 1. 转动惯量:⎰=rdm r J2,转动惯性大小的量度。
2. 平行轴定理:2md J Jc +=质点:θsin mvr L =刚体:ωJ L =4.转动定律:βJ M=5.角动量守恒定律:当合外力矩2211:,0,0ωωJ J L M ==∆=即时6. 刚体转动的机械能守恒定律: 转动动能:221ωJ E k =势能:c P mgh E = (c h 为质心的高度。
)※ 质点与刚体间发生碰撞:完全弹性碰撞:角动量守恒,机械能守恒。
完全非弹性碰撞:角动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:角动量守恒,机械能不守恒。
说明:期中考试前的三章力学部分内容,请大家复习期中试卷,这里不再举例题。
大学物理上册复习资料
相互抵消.
(2)是同一性质的力.
38
物理学
第五版 4、牛顿运动定律的应用
一 解题步骤
隔离物体 受力分析 列方程 解方程
建立坐标 结果讨论
二 两类常见问题
➢ 已知力求运动方程 ➢ 已知运动方程求力
F a r r a F
P38例1
39
物第理五版学注意复习2—1、2、3、4、5、8、10、18、P40例3题 例:如图所示:已知F = 4N,m1 = 0.3kg, m2 = 0.2kg,两物体与水平面的的摩擦因 素匀为0.2.求质量为m2的物体的加速度 及绳子对它的拉力.(绳子和滑轮质量均不计)
力的叠加原理。
二、主要内容: 1、牛顿第一定律
任何物体都要保持其静止或匀速直线运动状态,
直到外力F迫使它0时改,变v运动恒状矢态量为止.
惯性和力的概念
35
物第理五版学下,2其动、动量牛量为顿随第p时的二间物定的体律变,化在率合应外当力等F 于(作用F 于i)物的体作的用
合外力. Fdpd(mv)
y
o
P
y'
r
D P'
uQ
r'
xx'
ut o ' tt
17
物理学
第五版
相伽牵绝对利连对速略速速度速度度度uvv变换dddrdtrv t v u 加dv速牵绝度连d对v速关速'度度系uv du相对速v度
注意: 当物体运动速度 接近光速时,速度变换
dt
若
dudt0dtaa'
不成立.
dt
18
物理学
物理学
第五版
第一章 教学基本要求
一 掌握描述质点运动及运动变化的
大学物理上册总复习
大学物理(上) 总复习第一部分 力学质点运动学描述质点运动 的物理量 运动描述的相对性 质点运动 的类型v v v v A对 B = v A对 C + v C对 B线量 位 矢 位 移 速 度 加速度角量 角位置 角位移 角速度 角加速度v v 已知:质点运动学方 r = r (t )、θ = θ (t ) 。
v v v 求: v , a , Δ r , ω , β 及轨迹方程等。
解法:求导。
v v 2 v d v d r dθ v dω v dr β= a= = 2 ω= v= dt dt dt dt dt v 已知: a、β 及初值条件。
v v 求: v 、 r ( t )、 ω 、 θ 等。
解法:积分。
t2 v v v v = v0 + ∫ a(t ) d t t1v v t2 v r = r0 + ∫ v(t ) d tt1ω = ω0 + ∫ β (t ) d tt1t2θ = θ 0 + ∫ ω (t ) d tt1t2一般曲线运动的描述 角量描述θ = θ (t )dv at = dtΔθ = θ 2 − θ 1dθ ω= dtdω β= dt切向与法向加速度v2 an = Rv ˆ a = atτˆ + an n角量与线量的关系v = Rω2 v a n = Rω 2 = Rdv at = = Rβ dt质点动力学牛顿运动定律 牛顿第一定律 力对时间的积累 冲量 动 量 动量 定 守恒 理 定律 角冲量 角 角动 动 量守 量 恒定 定 律 理 牛顿第二定律 力的瞬时效应 牛顿第三定律 力对空间的积累 功 力 力 矩 动 能 定 理 功 能 原 理 机械 能守 恒定 律v v dp v F = = ma dtv v v v dL M = r×F = dt质点质点系质点质点系质点及质点系动力学1 动量定理 基 本 原 理 角动量定理 动能定理 功能原理v I =∫t2t1v v F ⋅ dt = ΔPv ΔL =∫t2t1v M dtΔE k =∑AΔ E = A外 + A非保内质点及质点系动力学2 条 件 v v 守 动量守恒: F合外 = 0 v v 恒 角动量守恒: M 外 = 0 定 律 机械能守恒:A外 + A内非保 = 0 内 容v L =恒矢量v P = 恒矢量E = 恒 量平动质点运动学刚 体 力 学动力学 瞬时效应 时间积 累效应 空间积 累效应 运动学 力矩 定轴转动定律 角动量定理 角冲量 角动量守恒 定律 动能定理刚体定 轴转动力矩的功角量描述刚体定轴转动运动学 角量描述θ = θ (t )dθ ω= dtΔθ = θ 2 − θ 1dω β= dt角量与线量的关系v = Rω匀变速圆周运动dv at = = Rβ dtω = ω0+ βtβ = 常量1 Δ θ = ω 0t + βt2 2刚体定轴转动动力学 刚体定轴转动定律M = Jβ刚体定轴转动角动量原理d Lz Mz = dtΔ Lz = J z 2ω 2 − J z 1ω 1 =∫t2t1Mz dt刚体定轴转动角动量守恒定律若 M z = 0 ,则 Lz = J ω = 常量。
大学物理复习提纲(上册)
《大第一章 质点运动学一、基本要求:1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。
会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。
2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。
二、内容提要: 1、 位置矢量:k z j y i x r ++=位置矢量大小:222z y x ++=位置矢量方向:=αcos=βcos=γcos2、运动方程:位置随时间变化的函数关系t z t y t x t )()()()(++=3、 位移∆:z y x ∆+∆+∆=∆无限小位移:k dz j dy i dx r d ++=4、 速度:平均速度:tz t y t x ∆∆+∆∆+∆∆=瞬时速度:dt dzdt dy dt dx ++=5、加速度:瞬时加速度:dt zd dt y d dt x d dt dv dt dv dt dv z y x 222222++=++=6、 圆周运动:角位置θ 角位移θ∆角速度dt d θω= 角加速度22dtd dt d θωα==在自然坐标系中:tn t n e dt dve r v a a +=+=27、 匀加速直线运动与匀角加速圆周运动公式比较:ax v v at t v x atv v 221202200+=+=+= αθωωαωθαωω221202200+=+=+=t t t三、 解题思路与方法:质点运动学的第一类问题:已知运动方程通过求导得质点的速度和加速度,包括它沿各坐标轴的分量;质点运动学的第二类问题:首先根据已知加速度作为时间和坐标的函数关系和必要的初始条件,通过积分的方法求速度和运动方程,积分时应注意上下限的确定。
第二章 牛顿定律一、 基本要求:1、 理解牛顿定律的基本内容;2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。
能以微积分为工具,求解一维变力作用下的简单动力学问题。
《大学物理》上册复习资料
胤熙说明:本资料纯属个人总结,只是提供给大家一些复习方面,题目均来自课件如有不足望谅解。
(若要打印,打印时请删去此行)第一章质点运动学1.描述运动的主要物理量位置矢量:位移矢量:速度矢量:加速度矢量:速度的大小:加速度的大小:2.平面曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的角量描述角位置:角速度:角加速度:圆周运动的运动方程:4.匀角加速运动角量间的关系ω= θ=5.角量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地面竖直向上抛出一个质量为m 的小球,若上抛小球受到与其瞬时速率成正比的空气阻力,求小球能升达的最大高度是多大?8.一飞轮以n=1500r/min的转速转动,受到制动而均匀地减速,经t=50s后静止。
(1)求角加速度β和从制动开始到静止时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的角速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上一点的速度、切向加速度和法向加速度9.一带蓬卡车高h=2m,它停在马路上时雨点可落在车内到达蓬后沿前方d=1m处,当它以15 km/h 速率沿平直马路行驶时,雨滴恰好不能落入车内,求雨滴相对地面的速度及雨滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'u∙P ),,(),,(z y x z y x '''第二章 牛顿运动定律 1.经典力学的时空观(1) (2) (3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌面上放置一固定圆环,半径为R ,一物体贴着环带内侧运动,如图所示。
物体与环带间的滑动摩擦系数为μ。
100101大学物理(一)
《大学物理(一)》课程综合复习资料一、单选题1.一质点作匀速率圆周运动时:A.它的动量不变,对圆心的角动量也不变B.它的动量不变,对圆心的角动量不断不变C.它的动量不断改变,对圆心的角动量不变D.它的动量不断改变,对圆心的角动量也不断改变答案:C2.某人骑自行车以速率V向正西方行驶,遇到由北向南刮的风(设风速大小也为V),则他感到风是从:A.东北方向吹来B.东南方向吹来C.西北方向吹来D.西南方向吹来答案:C3.对功的概念有以下几种说法:(l)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.(l)、(2)是正确的B.(2)、(3)是正确的C.只有(2)是正确的D.只有(3)是正确的答案:C4.A.不变B.变小C.变大D.无法判断答案:C5.一个人站在有光滑固定转轴的转动平台上,双臂水平地举二哑铃.在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的:A.机械能守恒,角动量守恒B.机械能守恒,角动量不守恒C.机械能不守恒,角动量守恒D.机械能不守恒,角动量也不守恒答案:C6.A.匀速直线运动B.变速直线运动C.抛物线运动D.一般曲线运动答案:B7.A.向左运动B.静止不动C.向右运动D.不能确定答案:C8.质点系的内力可以改变:A.系统的总质量B.系统的总动量C.系统的总动能D.系统的总角动量答案:C9.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端。
他们由初速为零同时向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是:A.甲先到达B.乙先到达C.同时到达D.谁先到达不能确定答案:C10.在一根很长的弦线上形成的驻波是:A.由两列振幅相等的相干波,沿着相同方向传播叠加而形成的B.由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的C.由两列振幅相等的相干波,沿着反方向传播叠加而形成的D.由两列波,沿着反方向传播叠加而形成的答案:C11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态。
大学物理上复习资料(1)(1)
x 3t , y 4t 2
消去参变量 t,得轨道方程:4x2 9 y 0 ,这是顶点在原点的抛物线,见图 1.15
由速度定义得
v d r 3i 8t j dt
其模为 v 32 (8t)2 ,与 x 轴的夹角 arctan 8t 3
由加速度的定义得
[答案: (E)] 10、容器中贮有一定量的理想气体,气体分子的质量为 m,当温度为 T 时,根据理想气 体的分子模型和统计假设,分子速度在 x 方向的分量平方的平均值是:
(A)
x2
1 3
3kT . m
(C)
2 x
3kT m
.
[答案:D]
(B) x2
3kT . m
(D)
2 x
kT m
.
[]
2
11、一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,
(B) 1 / 2.
(C) 5 / 6.
(D) 5 / 3.
[答案:C]
13、一定质量的理想气体的内能 E 随体积 V 的变化关系为一直线,其延长线过 E~V 图
的原点,题 7.1 图所示,则此直线表示的过程为: (A) 等温过程. (B) 等压过程. (C) 等体过程.
[] (D) 绝热过程.
E
O
(2) 物体的内部结构;
(3) 所研究问题的性质。
[答案:所研究问题的性质]
5、某质点在力 F (4 5x)i(SI)的作用下沿 x 轴作直线运动。在从 x=0 移动到 x=10m
的过程中,力 F 所做功为
。
[答案:290J]
6、质量为 m 的物体在水平面上作直线运动,当速度为 v 时仅在摩擦力作用下开始作匀
(大学物理上册)复习题前两章
《大学物理(一)》综合复习资料第1章 质点运动学1 一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) -2 m . (E) -5 m. [ B ]2 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b为常量), 则该质点作 [ C ] (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动.3 一质点沿x 方向运动,其加速度随时间变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v = 32 ? 23 .4 一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 3 秒瞬时速度为零;在第 3 秒至第 6 秒间速度与加速度同方向.5 质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x =-A sin ω t (SI) (A 为常数)(1) 任意时刻t,质点的加速度 a =____________; (2) 质点速度为零的时刻t =______________.6 一质点沿直线运动,其坐标x 与时间t 有如下关系:t A x tωβcos e-= (SI) (A 、β 皆为常数) (1) 任意时刻t质点的加速度a =____; (2) 质点通过原点的时刻t =___.7 一物体悬挂在弹簧上,在竖直方向上振动,其振动方程为 y = A sin ω t , 其中A 、ω 均为常量,则(1) 物体的速度与时间的函数关系式为________ok___________; (2) 物体的速度与坐标的函数关系式为________________________.8 在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0, 加速度2Ct a =(其中C 为常量),则其速度与时间的关系为=v __________, 运动学方程为=x __________.OK9 质点沿半径为R 的圆周运动,运动学方程为 223t +=θ(SI) ,则t时刻1 4.5432.52-112t (s )v (m /s )Ox (m)t (s)513456O 2质点的法向加速度大小为a n = ;角加速度β= .OK10 一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规 律是β =12t 2-6t (SI), 则质点的角速ω =_________;切向加速度 a t =__________.OK11 一质点沿半径为 0.1 m 的圆周运动,其角位移θ 随时间t 的变化规律是θ = 2 + 4t 2 (SI).在t =2 s 时,它的法向加速度a n =______;切向加速度a t =_______.12 在xy 平面内有一运动质点,其运动学方程为:j t i t r5sin 105cos 10+=(SI )则t 时刻其速度=v;其切向加速度的大小a t = ___;该质点运动的轨迹是___.13 知质点的运动学方程为24t r = i +(2t +3)j (SI),则该质点的轨道方程为____OK___.14 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;第2秒末的瞬时速度; OK (3) 第2秒内的路程. ?第2章 动力学基本定律一、选择题1. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为 [ B ] (A) 2v (B) v 2 (C)v 21 (D)2v3. 如图2-1-54所示,一被压缩的弹簧, 两端分别连接A 、B 两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ C ] (A) 1 1 (B) 2 1 (C) 1 2 (D) 1 44关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是 [ C ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒 (D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒 5. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如水平面光滑,此后弹簧的最大势能为图2-1-54[ B ] (A)221v m(B))(2022m m m +v(C) 22202)(v m mm m + (D)222v m m6一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A)gl . (B)gl θcos .(C) gl π2. (D) gl θπcos 2 . [ ]二、填空题1. 质量为0.25 kg 的质点, 受力i t F =N 的作用, 当t =0时质点以-1s m 2⋅=j v 的速度通过坐标原点, 则该质点任意时刻的位置矢量是 (m).2. 质量为m 的质点在外力作用下运动, 其运动方程为t A x ωcos =,t B y ωcos =, 式中A 、B 、 都是正常数.则在t = 0到ω2π=t 这段时间内外力所作的功为 .3 一长为l ,质量为m 的匀质链条,放在光滑的桌面上,若其长度的51悬挂于桌边下,将其慢慢拉回桌面,需做功 .4. 一质量为m 的质点在指向圆心的力2rk F-=的作用下,作半径为r 的圆周运动,此质点的速度=v OK .若取距圆心无穷远处为势能零点,它的机械能=E ? .5 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_______OK__________. 6假如地球半径缩短 1%,而它的质量保持不变,则地球表面的重力加速度g 增大的百分比是____OK____.7 倾角为30°的一个斜面体放置在水平桌面上.一个质量为2 kg 的物体沿斜面下滑,下滑的加速度为 3.0 m/s 2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力f =____________.三、计算题θl第5题图m Bv1. 高为h 的光滑桌面上,放一质量为m 的木块.质量为0m 的子弹以速率v 0沿图示方向( 图中θ 角已知)射入木块并与木块一起运动.求: (1) 木块落地时的速率OK ;(2) 木块给子弹的冲量的大小.2 两物块分别固结在一轻质弹簧两端, 放置在光滑水平面上.先将两物块水平拉开,使弹簧伸长 l ,然后无初速释放.已知:两物块质量分别为m 1,m 2,弹簧的劲度系数为k ,求释放后两物块的最大相对速度.第1章 质点运动学(1) B (3) 23m/s (4) 3,3,6 (5) 2sin A t ωω-,()ωπ+1221n (n = 0,1,… )(6) ()[]t t A tωβωωωββsin 2cos e22+-- ,()ωπ/1221+n (n = 0, 1, 2,…)(7) t A t y ωωcos d /d ==v 22cos y At A -==ωωωv(8)3/30Ct+v ,400121Ct t x ++v (9)16 R t 2 , 4 rad /s 2(10)4t 3-3t 2(rad/s), 12t 2-6t (m/s 2) (11) 25.6 m/s 2 , 0.8 m/s 2(12))5cos 5sin (50j t i t+- m/s , 0 , 圆 (13)x = (y -3)2计算题14 解:(1) 5.0/-==∆∆t x v m/s (2) v = d x /d t = 9t - 6t 2 ,v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m第2章 动力学基本定律一、选择题 1. B 2 D 3 C 4. C 5. B 6 D二、填空题1. j t i t 2323+ 2. )(21222B A m -ω 3. mgl 501 4.mrk ,rk 2-5 g )sin cos (θθμ-6 2%7 5.2 N0mv θhm第3题图形1m 2m x lk三、计算题1 解:(1) 0m 和m 完全非弹性碰撞, 水平方向无外力,系统水平动量守恒v v )(c o s 000m m m +=θ (1)0m 和m 一起由桌边滑下至落地,无外力,只受重力(保守内力)作用,系统机械能守恒.以地面为重力势能零点,得20020)(21)()(21u m m gh m m m m +=+++v (2)由(1)、(2)式得0m 和m 落地的速率gh mm m gh u 2)cos (220002++=+=θv v(2) 对0m 用质点的动量定理,m 对0m 的冲量的两个分量为 m m m m m m I x +-=-=000000cos cos θθv v vθθs i n )s i n (00000v v m m I y =--=m 对0m 的冲量的大小为20020022)sin ()cos (θθv v m mm m I I I y x ++=+=2 解:选地面参考系,考查(m 1、m 2、弹簧)系统无水平外力,系统动量守恒 设两物块相对速度最大时,两物块的速度分别为1v 、2v ,则在x 向有02211=+v v m m (1)无非保守内力,系统机械能守恒,最大相对速度对应其初势能全部转化为动能,有2222112212121v v m m kl+=(2)联立(1)、(2)式可得)(211221m m m klm +=v )(212212m m m klm +=v两物块的最大相对速度的大小为21221122121)(m m klm m m m m +=+=-v v v解图2-3-14 O m yx∙θvm 0v m I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)推导圆周运动质点的法向加速度, v =R 0n ,0n =cos θi+sin J ,v =t v d d =R t n d d 0 =R 0d d τθ t ,t v t t v d d d v d d d 00ττ +==a ∴a 0τ =dt d v 0τ v ∆=∆R 10τ∴当0τ ∆→0时,0Δt lim →0τ∆=R 10Δt lim →v ∆=R 10Δt lim →S ∆∴0Δt lim →0τ ∆=Rd θ(0-n )∴n a =v 0Δt lim →t ∆∆0τ=v t ∆∆θ (0n )∴n a =02n R v(2)已知匀变速圆周运动的角加速度β 推导θ=θ(t )解设t=0时角速度为0ω ω=0Δt lim →t ∆∆θ=t d 0d β=0Δt lim →t ∆∆ω=t d d ω=22d d t θ ω=⎰β0dt=βt+c t=0 c=0ωω=0ω+βt ∴θ=⎰tωdt —0t⎰ω+β tdt=21β2t +t 0ω+c 又 t=0,c=θ∴θ(t )=0θ+t 0ω+212t β(3)推导动能定理解设合外力为F ,加速度为a ,质量为m ,初速度为0v 位移方向合外力分力为1F =Fcos θ 1F =ma=m dt dv =Fcos θ∴Fcos θdv=m dt dv dv=mvdv ∴⎰v0Fcos θdv=⎰v 0v mvdv=21m 2v 0dv v ⎰∴Fcos θ=21m 2v --21m 20v4推导动量定理解 I =dtF t t ⎰21,F =m dt v d =dt v dm∴dt F t t ⎰21=v 21md v v ⎰∴I =m 2v -m 1v 应用动量守恒定律的主要是如下三种情况:(1)系统受到的合外力为零。
(2)系统所受的外力比相互作用力(内力)小的多。
以至可以忽略外力的影响。
(3)系统总体上不满足动量守恒定律,但是在某一特定的方向上,系统不受外力,或所受的外力远小于内力,则系统沿这一方向的分动量守恒 5推导质点系的动能定理解∑E 0ki 为初动能∑E ki 为末动能 n 个质点组成的系统,对第i 个质点用动能定理A外i +A 内i =E ki —E 0ki ∴n 个质点为∑A 外i +∑A 内i =∑E ki —∑E 0ki 即∑A 外+∑A 内=∑E k —∑E 0k6推导引力势能的公式解:质点m 相对于质量M 的初位置为ra末位置为rb ,r为质点位置矢量的单位矢量 F =—Gr m r2M ∴dA=F d r=—r m r2M d r 又 r d r =r r d cos θ=rdr 且r =r r ∴dA=—G r m r 2 M dr ∴A=⎰r r r m b a r 2 M —dr=—⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛r r a b m m M G M G ———7推导弹性势能公式解:设有一劲度系数为k 的弹簧,当弹簧形变量为x 时,弹性力为F=—kx 作用力只有x 的分量A=⎰x x b aF x dx=⎰x x ba —kxdx=—(21kx b 2—kx a 212)8能量守恒是一个定律,适用于经典物理。
量子物理。
不适用于相对论。
相对论里有质能转换。
物体系的功能原理的数学表达式为A 外+A保内+A非保内=∑∑==n1i 1ki n1i 2ki EE— 9一质点具有恒定加速度jt sin a -i t cos -a a 22 ωωωω=,在t=0时,i a r 0=,j a v 0ω=求:任意时刻的速度和位置矢量,质点在oxy 的轨道方程解:1)j t sin a -i t cos -a a 22 ωωωω=∴⎰⎰==dt j t sin b -i t cos a dt a v 22 ωωωω=j t sin b i t cos a - ωωωω+,jt bsin i t acos j t sin b i t cos a -dt v rωωωωωω+=+==⎰⎰2)由x=t acos ω,y=t bsin ω得t cos b axb 22222ω=,t sin b a y a 22222ω=∴1bya x 2222=+10一质点具有恒定的加速度j 4i 6a +=,在t=00i 10v r 00==, 时求任意时刻的速度和位置矢量,质点在xoy 的轨道方程。
解:(1)dt v d a=,在t=00i 10v r 00==,∴⎰⎰⎰+==t 0t 0v 0dt j 4i 6dt a v d )( 即j 4t i 6t v+=,⎰⎰⎰+==t 0t 0r 0dtj 4t i 6t dt v r d )(即j2i 310r t t 22++=)((2)由上述可得质点运动方程的分量式x=t2310+,y=t22,即3y=2x —2011分别选1m ,2m ,m 为研究对象,受力分析及运动方向所示,由牛顿第二定律和转动定律可得方程,a m mg T 11=-,a m T g m 222=-,JB R T R T =-12,βR a =,221mR J =,由上式联立,m m m m m a 21)(2112++-=,m m m g m m m T 21)212(21211+++=,mm m g m m m T 21)212(21122+++=。
12选物体A,B 和两个滑轮为研究对象,受力分析所示,设物体A 向上运动,运动加速度大小为1a ,物体B 向下运动,运动的加速度大小为2a ,滑轮顺时针转动,分别对A,B 列牛顿运动第二定律,对物体A,11ma g m T =-,对物体B,22ma T g m =-,对滑轮组,β)(''211122J J R T R T +=-,'11T T =,'22T T =,β11R a =,β22R a =,211121R M J =,222221R M J =,代入数值,联立得,2193.2s m a =,265.14s rad =β 13由牛顿第二定律和转动定律,对m ,ma T mg =-',对M ,βJ TR =,T 与'T 时作用力与反作用力,大小相等,即,'T T =,无相对滑动,则有βR a =,圆柱体的转动惯量221R M J =,将a 和J 代入,联立求解,N T 5.24=,28.9s rad =β,29.4s m a =, 14设氮分子的平均有效的直径为d=3.76⨯1010-m 。
解:(1)由n=kTp0得n=kTp 00=27338.1013.11010235⨯⨯⨯-=2.691025⨯m3-(2)v=πμRT8=1032814.327331.88-⨯⨯⨯⨯=454sm (3)λ=-n d 221π=252101069.2)1076.3(14.341.11⨯⨯⨯⨯⨯-=6.0810-⨯m (4)Z =λv =8106454-⨯=7.56⨯9101-s15推导理想气体绝热过程方程解:对于一微小的绝热过程有:—pdV=μMCvTd 作为理想气体要满足pV μM =RT ,可得pdV+Vdp=μMRdT ,∴(C v +R )pdV=—C v Vdp 又C p =C v +R ,令CC v p=γ则p dp =—V Vd γ由于C p ,C v 是温度的函数,∴γ也是温度的函数∴lnp+γlnV=常量(1) 将pV=μM RT 代入得T V 1—γ=常量(2) p 1——γγT=常量(3)∴综上所述(1)(2)(3)为理想气体绝热方程16推导理想气体摩尔热容量的万耶公式解:由于理想气体的内能为E=μM 2i RT ∴=vQ μM 2i R )(12T T -令v C =2iR 则=v Q μM v C )(12T T -即v C =Ri dT dE dT pdV dE dT dQ v v v 2)()()(==+=17证明卡诺循环的效率cη=1—TT12解:在等温膨胀过程中1Q =μMR T 1ln 12V V 在等温压缩过程中2Q =μMR T 2ln 43V V 由于绝热过程中无热量传递∴卡η=1Q A =1—12Q Q =1—121432ln lnV V V V T T 根据绝热方程T 112—γV =T 213—γV ,T111—γV =T214—γV 得12V V =43V V ∴卡η=1—12Q Q =1—T T 1218证明卡诺循环的制冷系数T T T 212c —=ξ解:在等温膨胀过程中1Q =μMR T 1ln 12V V 在等温压缩过程中2Q =μMR T 2ln 43VV 且由热力学第一定律1Q =A+2Q ∴卡ξ=A Q 2=212Q Q Q -=432121432lnln lnV V V V V V T T T -根据绝热方程T112—γV =T213—γV ,T 111—γV =T214—γV 得12V V =43V V ∴卡ξ=A Q 2=212Q Q Q -=T T T 212—18一容器内储存有质量为32g 的氧气,经历等体过程后,气体的温度由300K 升到310K 。
解:(1)根据V=常量,有A=0(2)根据E ∆=μM 2i)(12T T R -,并考虑氧气i=5有E ∆=)(75.207)300310(31.825103210323--3J =-⨯⨯⨯⨯⨯-(3)根据热力学第一定律Q=E ∆+A=207.75+0=207.75(J )即系统从外界吸收的热量19汽缸内储有质量为28g ,温度为C 027,1atm 的氮气,经历一个等压膨胀过程使体积变为原来的两倍。
解:(1)根据理想气体状态方程pV=μMRT ,可得初始气体体积为1V =μM p 1R 1T =2.46210-⨯(3m )由A=p (2V —1V ),2V —1V =1V 得A=p (2V —1V )=1.013510⨯⨯2.46210-⨯=2.49310⨯(J )(2)由理想气体状态方程pV=μMRT 且p=常量。
得2211T V T V =又由2V =21V 得2T =21T =600(K )根据E ∆=μM 2i)(12T T R -,氧气i=5得E ∆=)(1023.6)300600(31.8251028102833--3J ⨯=-⨯⨯⨯⨯⨯-(3)根据热力学第一定律Q=E ∆+A=6.23310⨯+2.49310⨯=8.72310⨯(J )即系统从外界吸收热量20容器内储有质量为44g ,温度为300K 的二氧化碳气体,经历等温压缩过程,使体积变为原来的一半。
解:(1)根据等温过程系统对外做功的公式A=μMRTln 12VV 得A=1J 31073.15.0ln 30031.8⨯-=⨯⨯⨯代表此过程外界对系统做功(2)根据等温过程特点T=常量,得E ∆=μM 2i)(12T T R -=0(3)根据热力学第一定律Q=E ∆+A=—1.73J 310⨯即外界对系统做功,系统把这部分功转化为向外界放出的热量。