轴向拉伸与压缩5(剪切与挤压)

合集下载

材料力学教案 第2章 拉伸、压缩与剪切

材料力学教案 第2章 拉伸、压缩与剪切

第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。

教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。

教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。

教具:多媒体。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。

教学学时:8学时。

教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。

(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。

(2)变形特点:主要变形是纵向伸长或缩短。

(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。

2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。

轴向拉伸与压缩和剪切挤压练习题

轴向拉伸与压缩和剪切挤压练习题

轴向拉伸压缩练习题一、判断题:1.在弹性范围内,杆件的正应力和正应变成正比。

(对)2.轴向拉压杆横截面上,只有一种内力,有两种应力。

(对)3.胡克定律仅适用于杆件的弹性变形范围(对)4.低碳钢受拉破坏时有屈服阶段,中碳钢和合金钢都没有屈服阶段。

(错)5.铸铁扭转破坏沿45度螺旋面断裂是因剪应力先达到极限所致。

(错)6.低碳钢扭转破坏沿轴横截面断裂是因剪应力先达到极限所致。

(对)7.低碳钢压缩实验曲线一直是上扬的,因此极限强度为无穷。

(错)8. 弹性极限是材料保持弹性的最大极限值,可以不保持线性。

(错)9.比例极限是材料能保持线性的最大值,必在材料的弹性范围内。

(错)10.构件内力的大小不但与外力大小有关,还与材料的截面形状有关(错)11.杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。

(对)12.两根材料、长度都相同的等直柱子,一根的横截面积为A1,另一根为A2,且A2>A1 如图所示。

两杆都受自重作用。

则两杆最大压应力相等,最大压缩量也相等。

(对)13. 受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。

所以纵向纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。

(错)14. 若受力物体内某电测得x和y方向都有线应变εx和εy,则x和y方向肯定有正应力σx 和σy。

(错)二、选择题1 塑性材料冷作硬化后,材料的力学性能发生了变化。

试判断以下结论哪一个是正确的:__ (A) 屈服应力提高,弹性模量降低;(B) 屈服应力提高,塑性降低;(C) 屈服应力不变,弹性模量不变;(D) 屈服应力不变,塑性不变。

2 低碳钢材料在拉伸实验过程中,不发生明显的塑性变形时,承受的最大应力应当小于的数值,有以下4种答案,请判断哪一个是正确的:_B_ (A) 比例极限;(B) 屈服极限;(C) 强度极限;(D) 许用应力。

3.关于低碳钢试样拉伸至屈服时,有以下结论,请判断哪一个是正确的:__ _ (A) 应力和塑性变形很快增加,因而认为材料失效;(B) 应力和塑性变形虽然很快增加,但不意味着材料失效;(C) 应力不增加,塑性变形很快增加,因而认为材料失效;(D) 应力不增加,塑性变形很快增加,但不意味着材料失效。

第五章拉伸剪切与挤压的强度计算

第五章拉伸剪切与挤压的强度计算

内力在截面上的集度称为 应力(垂直于杆 横截面的应力称为正应力,平行于横截面的 称为 切应力 ) 。应力是判断杆件是否破坏的 依据。
单位是帕斯卡,简称帕,记作 Pa ,即 l 平方米 的面积上作用1牛顿的力为1帕,1N/m2=1Pa。
1kPa=103Pa,1MPa=106Pa 1GPa=109Pa
二、拉(压)杆横截面上的正应力
平面假设
变形前的横截面,变形后仍为平面,仅其位置略作平移,这一假 设称为平面假设。
根据杆件变形的平面假设和材料均匀连续性假设可推 断:轴力在横截面上的分布是均匀的,且方向垂直于横截面。 所以,横截面的正应力σ计算公式为: m n F F F
σ=
N
A
MPa
m
n
FN 表示横截面轴力(N) F A 表示横截面面积(mm2)
40KN
B C
30KN
FN1= 10KN
L
10KN
L
σ1 =
FN1 / A1 = 50 MPa FN2= -30KN σ2 = FN2 / A2 = 100 MPa 轴力图如图:
FN1 FN2
10KN
30KN
FN
x
30KN
由于AB、BC两段面积不同,变形量应分别计算。
由虎克定律

FN L L EA
L1 —试件拉断后的标距 A1 —试件断口处的最小横截面面积
L1 L0 伸长率: 100 % L0 A0 A1 断面收缩率 : 100% A0
L0 —是原标距 A0 —原横截面面积。
、 值越大,其塑性越好。一般把 ≥5%的材 料称为塑性材料,如钢材、铜、铝等;把 <5%的 材料称为脆性材料,如铸铁、混凝土、石料等。

材料力学之四大基本变形

材料力学之四大基本变形
内径d=15mm,承受轴向载荷F=20kN作用, 材料旳屈服应力σs=235MPa,安全因数ns= 1.5。试校核杆旳强度。
解:杆件横截面上旳正应力为
N
A
4F
(D2 d2)
4(20103 N ) [(0.020m)2 (0.015m)2
]
1.45108 Pa 145MPa
材料旳许用压力为
IZ
(D4 d 4)
64
D4
64
(1 4 )
WZ
D3
32
(1 4 )
(1)求支座反力
M A 0, M 0 RBl 0 M B 0, RAl M 0 0
(2)列剪力方程和弯矩方程
RB
M0 l
RA
M0 l
AC段 :
Q1
RA
M0 l
M1
RA x
M0 l
x
(0 x a)
CB段 :
许用剪应力
其中,F 为剪切力——剪切面上内力旳合力
A 为剪切面面积
可见,该实用计算措施以为剪切 剪应力在剪切面上是均匀分布旳。
2、挤压强度旳工程计算
由挤压力引起旳应力称为挤压应力 bs
与剪切应力旳分布一样,挤压应力旳分布
也非常复杂,工程上往往采用实用计算旳
方法,一般假设挤压应力平均分布在挤压
面上
首先计算各杆旳内力:
需要分析B点旳受力
X 0
F1 cos 30 F2 0
Y 0
F1 cos 60 Q 0
F1 2Q 20KN
30 B
A
y
F1
F2
x
Q
1 F2 2 3F1 17.32KN
F1 2Q 20KN
F2

2第二章拉伸、压缩与剪切概述

2第二章拉伸、压缩与剪切概述

22
屈服极限的确定方法
σ
b
0.2
o
0.2%
在ε轴上取0.2%的点, 对此点作平行于σ-ε曲线 的直线段的直线(斜率亦为 E),与σ-ε曲线相交点对 应的应力即为σ0.2 .
ε
σb是衡量脆性材料强度的唯一指标。
材料力学 土木工程系 陈爱萍
23
§2.5 材料压缩时的力学性能
国家标准规定《金属压缩试验方法》(GB7314—87)
材料力学 土木工程系 陈爱萍
28
§2.7 失效、 安全因数和强度计算
一、极限应力、安全系数、许用应力
材料破坏时的应力称为极限应力。 由于各种原理使结构丧失其正常工作能力的现象,称为失效

jx


s b
塑性材料 脆性材料
构件工作时允许达到的最大应力值称许用应力
jx
n
材料力学 土木工程系 陈爱萍
(3) 必须是等截面直杆,否则横截面上应力将不是均匀 分布,当截面变化较缓慢时,可近似用该公式计算。
材料力学 土木工程系 陈爱萍
12
§2.3 直杆拉伸或压缩时斜截面上的应力
F
FF


p cos
FN A
cos cos2


p
sin
cos sin
1 sin 2
材料力学 土木工程系 陈爱萍
37
求解超静定问题的基本步骤:
(1)平衡方程; (2)几何方程——变形协调方程; (3)物理方程——弹性定律; (4)补充方程:由几何方程和物理方程得; (5)解由平衡方程和补充方程组成的方程组。
材料力学 土木工程系 陈爱萍
38

建筑力学与结构之轴向拉伸与压缩培训课件

建筑力学与结构之轴向拉伸与压缩培训课件

拉伸时大。
b
铸铁拉应力图
压缩时的强度极限b是拉伸 时的4—5倍。
铸铁常作为受压构件使用。 铸铁破坏时断口与轴线成450。
第五节 拉压杆的强度条件及应用
一、许用应力与安全系数
(1)极限应力(危险应力、失效应力):构件发生破坏或产
生过大变形而不能安全工作时的最小应力值。“ ” (2)许用应力:构件安全工作时的最大应力。“[]”
横向 线应变:
a a
杆件在轴向拉(压)变形时,横向尺寸的改变 量称为横向变形。
a a1 a
符号: 拉伸时为负值;压缩时为正值。
第三节 轴向拉(压)杆的变形、虎克定律
三、泊松比
当杆件的变形在弹性范围内时,材料的横向线应变 与纵向线应变的比值的绝对值是一个常数,称为材料的 横向变形系数或泊松比,即
第一节 轴向拉伸和压缩时的内力
二、轴向拉(压)杆的内力及内力图
➢ 分析内力最基本的方法是截面法。
➢截面法计算内力的步骤:
①将构件沿需要求内力的位置用假设截面截开,把构 件分为两部分,取其中一部分为研究对象;
②画研究对象的受力图时,另一部分对研究对象的作 用力用内力来代替;
③根据研究对象的平衡条件列平衡方程求解内力。
第三章 轴向拉伸与压缩
• 第一节 轴向拉伸和压缩时的内力 • 第二节 轴向拉(压)杆横截面上的应力
目 • 第三节 轴向拉(压)杆的变形、虎克定律 录 • 第四节 材料在拉伸和压缩时的力学性能
• 第五节 拉(压)杆的强度条件及应用 • 第六节 拉(压)杆连接部分的强度计算
第三章 轴向拉伸与压缩
➢ 物体的简化模型,根据具体情形可分为刚体和变形体。
解: max
FN max A

材料力学基础教案

材料力学基础教案

材料力学基础教案一、课程目标本课程旨在为学生提供材料力学的基础知识,使学生理解材料在受力情况下的行为和性能,掌握材料力学的基本理论和分析方法,能够解决简单的工程力学问题,并为后续的专业课程和实际工程应用打下坚实的基础。

二、课程内容(一)绪论1、材料力学的任务和研究对象介绍材料力学在工程中的地位和作用明确研究对象为杆件2、基本假设连续性假设均匀性假设各向同性假设(二)轴向拉伸与压缩1、内力与截面法介绍内力的概念详细讲解截面法求内力的步骤2、轴力图绘制轴力图的方法和要点通过实例进行练习3、应力正应力和切应力的概念应力的计算方法4、胡克定律胡克定律的表达式弹性模量和泊松比的概念(三)剪切与挤压1、剪切的实用计算剪切面和剪力的确定剪切强度条件2、挤压的实用计算挤压面和挤压力的确定挤压强度条件(四)扭转1、外力偶矩的计算功率、转速与外力偶矩的关系2、扭矩与扭矩图扭矩的计算扭矩图的绘制3、圆轴扭转时的应力和变形横截面上的切应力分布规律扭转角的计算(五)弯曲内力1、梁的分类和受力特点简支梁、悬臂梁、外伸梁集中力、集中力偶、分布载荷2、剪力和弯矩剪力和弯矩的计算剪力方程和弯矩方程3、剪力图和弯矩图绘制剪力图和弯矩图的方法和规律(六)弯曲应力1、纯弯曲时的正应力正应力的分布规律和计算公式2、横力弯曲时的正应力考虑切应力影响的修正3、弯曲切应力切应力的分布规律和计算公式(七)弯曲变形1、挠曲线方程挠曲线的近似微分方程2、用叠加法求梁的变形常见简单载荷下梁的变形叠加原理的应用(八)应力状态与强度理论1、一点的应力状态主应力和主平面的概念2、平面应力状态分析解析法和图解法3、强度理论四种常用强度理论及其应用(九)组合变形1、组合变形的概念和类型拉伸(压缩)与弯曲的组合扭转与弯曲的组合2、组合变形的强度计算分别计算各基本变形下的应力,然后进行叠加(十)压杆稳定1、压杆稳定的概念失稳现象和临界压力2、细长压杆的临界压力欧拉公式3、压杆的稳定性计算安全系数法三、教学方法1、课堂讲授讲解基本概念、原理和公式,通过实例加深学生的理解。

第三章 直杆的基本变形 复习资料(学生)

第三章  直杆的基本变形  复习资料(学生)

第三章直杆的基本变形复习资料机械和工程结构中的零部件在载荷的作用下,其形状和尺寸发生变化,为了了保证机械零部件正常安全工作,必须具有足够的、和。

零件抵抗破坏的能力,称为。

零件抵抗破坏的能力,称为。

受压的细长杆和薄壁构件,当所受载荷增加时,可能失去平衡状态,这种现象称为丧失稳定。

是零件保持原有平衡状态的能力。

基本的受力和变形有、、,以及由两种或两种以上基本变形形式叠加而成的组合变形。

一、轴向拉伸与压缩(一)拉伸与压缩1、在轴向力作用下,杆件产生伸长变形称为轴向拉伸,简称,在轴向力作用下,杆件产生缩短变形称为轴向压缩,简称.2、轴向拉伸和压缩变形具有以下特点:(1)受力特点——。

(2)变形特点——。

(二)内力与应力1、杆件所受其他物体的作用力都称为外力,包括和。

2、在外力作用下,构件产生变形,杆件材料内部产生变形的抗力,这种抗力称为。

3、外力越大,构件的变形越大,所产生的内力也越大。

内力是由于外力的作用而引起的,内力随外力。

当内力超过一定限度时,杆件就会被破坏。

4、轴向拉、压变形时的内力称为,用F N表示。

剪切变形时的内力称为,用F Q表示。

扭转变形时的内力称为,用M T表示。

弯曲变形时的内力称为(M)与F Q)5、内力的计算——截面法将受外力作用的杆件假想地切开,用以显示内力的大小,用以显示内力的大小,并以平衡条件确定其合力的方法,称为截面法。

F N=F6、应力1)同样的内力,作用在材料相同、横截面不同的构件上,会产生不同的效果。

2)构件在外力作用下,单位面积上的内力称为。

轴向拉伸和压缩时应力垂直于截面,称为,记作σ。

3)轴向拉伸和压缩时横截面上的应力是均匀分布的,其计算公式为A F N =σ,其中σ为横截面上的正应力,MPa ;F N 为横截面上的内力,N ;A 为横截面面积,mm 2。

4)正应力的正负号规定为:拉伸压力为 ,压缩应力为 。

7、强度计算1)、材料丧失正常工作能力的应力,称为 。

塑性材料的极限应力是其 应力σs ,脆性材料的极限应力是其 应力σb 。

考研复习—工程力学——第5章 剪切和挤压

考研复习—工程力学——第5章 剪切和挤压

第5章
5.1 剪切和挤压的概念
5.1.1 剪切
2、结论
在发生剪切变形的连接构件中,发生相对错动的截面称作剪切面。剪切 与轴向拉伸与压缩变形不同,轴向拉压发生在整个构件或一段构件的内部, 而剪切变形只发生在剪切面上,因此,要分析连接件的剪切变形,就必须 弄清剪切面的位置。按照受力与变形的机理,剪切面通常平行于产生剪切 的外力方向,介于反向的外力之间。因此,要正确分析剪切面的位置,首 先必须正确分析连接件的受力,找出产生剪切变形的反向外力,据此分析 剪切面的位置。
第5章
5.2 剪切和挤压的实用强度计算
5.2.1 剪切实用强度计算
1.剪切面上的内力——剪力Q
如图5-5,用平面将铆钉从m-m假想截面处截开,分为上下两部分,任取上 部分或下部分为研究对象。为了与整体一致保持平衡,剪切面m-m上必有与外 力F大小相等、方向相反的内力存在,这个内力沿截面作用,叫做剪力。为了 与拉压时垂直于截面的轴力N相对应,剪力用符号Q表示。由截面法,根据截取 部分的平衡方程,可以求出剪力Q的大小,得出
第5章 剪切和挤压
训教 重点
剪切和挤压的实用强度计算 胡克定律
第5章
剪切和挤压
能力 目标
能够计算工程实例中剪切面和挤压面的面积。 解决机构连接件剪切和挤压强度问题。
第5章
5.1 剪切和挤压的概念
5.1.1 剪切
1、剪切变形: 作用在构件上的外力垂直于轴线,两侧外力的合力大小相等、方向 相反、作用线错开但相距很近。这样的受力所产生的剪切变形的变形特 点是:反向外力之间的截面有发生相对错动的趋势。工程中,把上述形 式的外力作用下所发生的变形称为剪切变形。
Fx 0
F Q 0
Q=F
第5章

工程力学精品课程轴向拉压

工程力学精品课程轴向拉压

1-1截面上的应力
1
P A1

38 103 (50 22) 20 106
67.86MPa
2-2截面上的应力
2

P A2

38 103 2 15 20 106
63.33MPa
3-3截面上的应力
3

P A3

38 103 (50 22) 15 2 106
max 67.86MPa 102.8%
所以,此零件的强度够用。
例5-4
冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,承受的镦压力 P=1100 kN 。连杆的截面为矩形,高与宽之比为h/b=1.4。材料为45钢,许用应力为 []=58 MPa,试确定截面尺寸h和b。
A2 A4
A A1
A3
垂直位移是: A点的位移是:
A2 A3 A2 A4 A4 A3 AA1sin 30o ( AA2 AA1 cos30o )ctg30o 3mm
2
2
AA3 AA2 A2 A3 3.06mm
7 简单拉压静不定问题
例5-8 图示结构是用同一材料的三根杆组成;三根杆的横截面面积分别为:A1=200mm2、A2=300mm2 和A3=400mm2,载荷P=40kN;求各杆横截面上的应力。

- 2.62 103
102
33.4N / mm 2
33.4MPa
压应力
4
(b) 截面2-2上的应力。
2

FN2 A
- 1.32 103 16.8N / mm 2 16.8MPa
102
压应力
4

工程力学07轴向拉伸压缩和剪切

工程力学07轴向拉伸压缩和剪切

X 0 N1 PA PB PC PD 0
N1 5P 8P 4P P 0 N1 2P
10
内力 ·截面法 ·轴力及轴力图
同理,求得AB、BC、 N2 CD段内力分别为:
N2= –3P
N3= 5P
N4= P
BC
PB
PC
N3
C
PC N4
轴力图如右图 N
2P +

11
3P
5P
+
P
D
lim
Δ A0
Δ Δ
T A
dT dA
16
截面上的应力及强度条件
二、拉(压)杆横截面上的应力
1. 变形规律试验及平面假设:
变形前
ab cd
受载后 P




P
平面假设:原为平面的横截面在变形后仍为平面。 纵向纤维变形相同。
17
截面上的应力及强度条件
均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力: P
杆的轴力图。
解:x 坐标向右为正,坐标原点在
q(x)
自由端。取左侧x 段为对象,
L
内力N(x)为:
O x
O x
q N
13
q(x)
Nx x
kL
N(x )+ x kxdx 0 N(x ) 1 kx2
0
2

k L2
N
(
x)max
1 2
k
L2
2
截面上的应力及强度条件
问题提出: P P
横截面上 P 内力相同
内力系的合成(附加内力)。
6
内力 ·截面法 ·轴力及轴力图

第4章 材料力学基础

第4章  材料力学基础
I p d 3 Wt r 16
4 π π D I p (D4 d 4 ) (1 4 ) 32 32
(4-32)
3 Ip π π D Wt ( D4 d 4 ) (1 4 ) (4-33) r 16D 16
4.4 梁的弯曲
4.4.1 梁的弯曲内力
图4-12 剪切
4.2.2 挤压与挤压应力
图4-13 剪切与挤压
图4-14 挤压应力的分布
4.2.3 剪切与挤压的强度
1.剪切强度计算
由于受剪构件的变形及受力比较复 杂,剪切面上的应力分布规律很难用理 论方法确定,因而工程上一般采用实用 计算方法来计算受剪构件的应力。
在这种计算方法中,假设应力在剪 切面内是均匀分布的。 若以A表示销钉横截面面积,则应 力为 FQ (4-19)
图4-11 应力集中现象
4.2 剪切和挤压
4.2.1 剪切与剪应力
在工程实际中,经常遇到剪切和挤压 的问题。 剪切变形的主要受力特点是构件受到 与其轴线相垂直的大小相等、方向相反、 作用线相距很近的一对外力的作用,如图 4-12(a)所示。
构件的变形主要表现为沿着与外力 作用线平行的剪切面( m-n面)发生相 对错动,如图4-12(b)所示。
第4章 材料力学基础
4.1
轴向拉伸与压缩
4.2
剪切和挤压
4.3
圆轴扭转
4.4
梁的弯曲
4.5
组合变形的强度计算
【学习目标】 1.掌握受拉压杆件的强度及变形量的计 算方法 2.理解剪切与挤压的特点和实用计算 3.理解受扭转杆件的应力特点
4.理解受纯弯曲梁的内力及应力特点, 掌握弯矩图的作法 5.理解组合变形的类型及特点,了解强 度理论的涵义及应用特点

工程力学第5单元 剪切与挤压

工程力学第5单元  剪切与挤压
机械工业出版社
5.3 挤压的实用计算
案例5-3 图5-15所示宽度b=300mm的两块矩形木杆相 互联接,已知l=200mm,a=30mm,木材的许用切应力 [τ]=1.5MPa,许用挤压应力[σbs]=12 MPa。试求许可载荷 [F]
机械工业出版社
5.3 挤压的实用计算
案例5-4 图5-16所示,两直径d=100mm的圆轴由凸缘 联轴器和螺栓联接,凸缘联接器D0=200mm的圆周上均匀 分布8个螺栓。已知轴传递的外力偶矩M=14kN.m,螺栓 的许用切应力[τ]=60MPa,试求螺栓所需的直径d1 。
剪切面和挤压面。
机械工业出版社
5.2 剪切的实用计算
1.剪力 剪切面上内力的作用线与外力平行,沿截面作用。沿
截面作用的内力,称为剪力,常用符号FQ表示 剪力FQ的大小: 由 ∑Fx=0 F-FQ=0 得:FQ = F
机械工业出版社
5.2 剪切的实用计算
2.切应力 与剪力FQ对应,剪切面上有切应力τ切应力在剪切面上
塑性材料: [σbs]=(1.7~2.0) [σ] 脆性材料: [σbs]=(0.9~1.5) [σ]
机械工业出版社
5.3 挤压的实用计算
想一想 练一练
如图所示受拉力作用下的螺栓,试在图中指出螺栓的 剪切面和挤压面。
机械工业出版社
5.3 挤压的实用计算
案例5-2 如图5-14所示为轮毂与轮轴的键联接,该联 接传递的力偶矩M。已知 M=2kN.m,键的尺寸b=16mm, h=12mm,轴的直径d=80mm,键材料的许用应力 [τ]=80MPa,[σbs]=120MPa。试按强度要求计算键长应等 于多少?
机械工业出版社
5.3 挤压的实用计算
(2)若接触面是圆柱形曲面,如铆钉、销钉、螺栓等 圆柱形联接件,挤压面积为半圆柱的正投影面积。

第八章:拉伸(压缩)、剪切与挤压的强度计算(1)

第八章:拉伸(压缩)、剪切与挤压的强度计算(1)

第一节 轴向拉伸与压缩的概念、 截面法、轴力与轴力图
工程问题中,有很多杆件是受拉或受压的。
航空宇航学院
绳索与立柱
内燃机的连杆
航空宇航学院 第一节 轴向拉伸与压缩的概念、 截面法、轴力与轴力图
直杆受拉或受压时的特点:
O
受力特点:外力或其合力的作用线与杆轴线重合 沿轴线方向伸长或缩短 O 变形特点:
注释


线应变ε —— 一点在某方向上尺寸改变程度 的描述; 一点在某方向上 与点的位置有关; 与过点的方位有关; 伸长变形为正; 无量纲。 切应变γ —— 过一点两互相垂直截面的角度改变 ; 过一点 与点的位置有关; 与垂直两边的方位 有关; 与垂直两边的 直角减小为正; 无量纲。
绪论
例2 已知:薄板的两条边 固定,变形后a'b, a'd 仍为直线。 求: ab边的εm和 ab, ad 两边夹角的变化。 解:
x
x方向的平均应变: M点处沿x方向的线应变:
ε xm
Δs = Δx
Δs ε x = lim Δx → 0 Δ x
类似地,可以定义:
εy , εz
六、变形与应变 y 3. 应变 O 切应变(剪应变或角应变) L 定义:过一点在某平面内两 相互垂直的无限小线元所夹 Δx M 直角的改变量,称为该点在 o 称为 该面内的切(剪)应变。用γ 表示。
航空宇航学院
例 1 1 P2 3 P1 2 已知:P1=40kN, P2=30kN, P3=20 1 B 2 C 3 A kN。 求:1-1, 2-2和3-3截面的轴力, 并作杆的轴力图。 解:
P3 D
∑F
求支座反力
x
=0
FA
1 1 B 1 FN1 1

轴向拉伸与压缩、圆轴扭转变形

轴向拉伸与压缩、圆轴扭转变形

2Fl [s ]sin 2q
欲使VBD最小, sin 2q = 1 q = 45o
§3-5 拉伸与压缩
讨论题:杆钢段AB ,[]钢=200MPa, 铜段BC和CD, []铜=70MPa;AC段截
面积 A1=100mm2 , CD段截面积 A2=50mm2 ;试校核其强度。
解(1)画轴力图
(2)求各段应力
s AB
=
9´ 103 100
MPa =
90MPa
6´ 103
s BC = -
MPa = - 60MPa 100
4´ 103
s CD =
MPa = 80MPa 50
(3)强度校核
s AB = 90MPa<[s ]钢 强度足够;
9kN
A
9kN
15kN
10kN 4kN
B
C
D
FN图 4kN
6kN
s BC = 60MPa<[s ]钢 强度足够;
式中: s 为横截面上的正应力; FN为横截面上的轴
力; A为横截面面积。
正应力 s 的正负号规定为:拉应力为正,压应力为负。
公式的使用条件:轴向拉压杆。
§3-5 直杆轴向拉伸与压缩
例3-1 如图所示圆截面杆,直径 d 40,m拉m力
试求杆横截面上的最大正应力。
F 60kN
解(1)作轴力图
FN F 60 kN
零件抵抗破坏的能力,称为强度。 零件抵抗变形的能力,称为刚度。 学习基本变形、应力、强度是为了保证材料 具有足够的使用寿命。
§3-5 直杆轴向拉伸与压缩
一、轴向拉伸与压缩时的变形特点
实验:
F
ac
a
c
F

5-拉伸与压缩PPT模板

5-拉伸与压缩PPT模板

所示,根据平衡条件列出平衡方程:
4 F 0 : FN F 0 ,解得 FN F 求:利用静力学中的平衡条件,列平衡方程并求解内力。
(a)
截面法求内力
(b)
1.2 杆件拉压时的轴力和轴力图
1. 轴力及其求法 (3)轴力
对于发生轴向拉伸或压缩变形的杆件,由于外力的作用线与杆件的轴线重合, 故内力的合力必然也与轴线重合,因此这种内力称为轴力,通常用符号FN表示。
1.4 杆件的变形与胡克定律
2. 胡克定律
当杆内的应力不超过某一限度时,杆的纵向变形量Δl与轴力FN、杆长l成正比, 与杆的横截面面积A成反比,用公式表示为
l FNl A
引进比例系数E,则上式可改写为
l FNl EA
式中的常数E称为弹性模量,它表明了材料的弹性性质,量纲与应力相同,常
用单位为GPa。E的大小与材料有关,具体值可由实验测定。公式表明,在弹性范
应力,可利用强度条件计算杆件所需的横截面积 AFN/[ ],再根据截面形状确定尺寸。一般将工 作应力最大的截面称为危险截面。
3 确定许可载荷。当已知杆件的截面形状和材料的许
用应力,可利用强度条件计算杆件所能承受的最大 轴向载荷FN [ ] A。
1.5 杆件拉压时的强度计算
3. 拉压强度条件
利用强度条件求解工程中的强度问题时,一般可按以下步骤进行:① 分析杆件 的受力情况,利用平衡条件求出所有外力;② 计算杆件各个截面的内力;③ 根据要 求,利用强度条件,校核强度、设计截面尺寸或确定许可载荷。
工作应力不超过杆件材料的许用应力,即
max
FN A
[ ]
上式为杆件拉伸或压缩的强度条件。
应用强度条件可解决工程中强 度校核、设计截面尺寸、确定许可 载荷等三类问题。

材料力学 第二章 轴向拉压应力PPT课件

材料力学 第二章 轴向拉压应力PPT课件
第二章 轴向拉伸和压缩
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N

×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0

x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有

5第五章 结构的内力、应力计算

5第五章   结构的内力、应力计算
是反映一点处内力的强弱程度的基本量
应力
F A F4
p
F4
C
C
F3
F3
平均应力:某范围内单位面积上内力的平均集度
•一点的应力:当面积趋于零时,平均应力的大小和方向
都将趋于一定极限,得到
p lim F dF
应力总量P 可以分解成:
A0 A dA
垂直于截面的分量σ--正应力
平行于截面的分量τ--切应力
铸铁,抗拉许用应力 =6t 0Mpa,抗压许用应 力 =120c MPa,设计横截面直径。
20KN 20KN
20KN 30KN
d1 20.6mm
30KN
d2 17.8mm
30KN
3200110033
dd2122
ct
44
dd1 2 442300t1c1003 32107.6.8mmmm
d 21mm
FN1 0 1
FN 2 40kN
求图示直杆1-1和2-2截面上的轴力
1
2
2F
2F
F
F
1
2
2F
2
F
2
第二节 轴向拉伸与压缩
• 当杆受到多个轴向外力作用时,在杆的不 同横截面上的轴力将各不相同。 为了表明横截面上的轴力随横截面位置而 变化的情况,可用平行于杆轴线的坐标表示 横截面的位置,用垂直于杆轴线的坐标表示 横截面上的轴力的数值,从而绘出表示轴力 与截面位置关系的图线,称为轴力图。
第五章 结构的内力、应力计算
§5–1 §5–2 §5–3 §5–4 §5–5 §5–6
概述 轴向拉伸与压缩 剪切与挤压 扭转 弯曲内力 强度理论
第一节 概述
• 物体在受到外力作用而变形时,其内部各 质点间的相对位置将有变化。与此同时, 各质点间相互作用的力也发生了改变。这 种由外力作用而引起的受力构件内部质点 之间相互作用力的该变量称为内力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mechanics of Materials
25
Thursday, August 08, 2013
Mechanics of Materials
26
Thursday, August 08, 2013
Mechanics of Materials
27
Thursday, August 08, 2013
Байду номын сангаас
Mechanics of Materials
31
Thursday, August 08, 2013
Mechanics of Materials
32
Thursday, August 08, 2013
Mechanics of Materials
33
Thursday, August 08, 2013

3、塑性材料与脆性材料的比较 4、对σ~ε曲线作正确的分析
---强度,弹性,塑性等
六、静不定问题的特点:
1、未知量的数目大于独立的静力方程数; 2、部分杆件有强度储备;
3、各杆的内力分配与杆的刚度有关; 4、产生温度应力与装配应力。
七、解静不定问题的步骤:
1、根据约束性质,正确分析约束力,确定静不定次 数。 2、列出全部独立的平衡方程。 3、解除多余约束,使结构变为静定的,根据变形几何关系, 列出变形谐调方程。 4、将物理关系代入变形谐调方程,将其与平衡方程联立,求 出全部未知力。
Mechanics of Materials
28
Thursday, August 08, 2013
Mechanics of Materials
29
Thursday, August 08, 2013
Mechanics of Materials
30
Thursday, August 08, 2013
d 0.003 m
3、结论
d 0.013 m
例题3 确定下列两图中构件的剪切面和挤压面 D 剪切面
h
d P 剪切面 P 挤压面 挤压面 P
剪切面
例题4 确定下列两图中构件的剪切面和挤压面
图2
图1
图3
挤压面
P 剪切面
P/2
P
P/2
一、基本概念
本章小结
内力与应力;变形与应变;弹性变形与塑性变形;正应力与 剪应力;工作应力、极限应力与许用应力;静定与超静定问 题;剪切与挤压。
八、斜截面上的应力及所得到的结论
1、同一点,不同的方位,应力不同; 2、最大应力出现的方向。
九、剪切与挤压
1、分析计算剪切面与挤压面
剪切面-----与外力平行;
挤压面----与外力垂直的有效面积。 2、剪力与挤压力的确定 P---外力,FS---内力,用截面法及静力方程求得 3、τ、σbs实用计算
第二章
轴向拉伸与压缩
挤压与剪切
§2-13
本章 小结
§2-13 剪切及剪切的实用计算
一、剪切的实例
P
P
(a)
Thursday, August 08, 2013
Mechanics of Materials
4
二、剪切的概念
受力特点: 作用在构件的两个侧面上且与构件的轴向垂 直,大小相等,方向相反,作用线相距很近 的平行力 作用。 变形特点: 构件沿某一截面发生相对的错动,此截面称 为剪切面。
例题2
如图示。拖车挂钩靠销钉联接,已知挂钩部分的钢板 厚t=8mm,销钉的材料为20号钢,其许用剪应力 [τ]=60MPa,许用挤压应力[σbs]=100MPa,已知拖车 的拖力为15KN,试设计销钉的直径。
t P
2t
P
d
P/2 1 P/2 2 解:1、剪切 1 P 2
FS P
FS P FS
1 2 P/2 d 4 [ ]
3)确定许可载荷。
5、三方面的设计 1)剪切的强度校核; 2)截面设计;
例1:已知钢板厚度t=10mm,其剪切极限应力 b=300 MPa ,若
用冲床将钢板冲出直径d=25mm的孔,问需要多大的冲 剪力P。 解:1、剪切面形状及位置 P
P
FS 2、截面法求内力 FS-P=0
FS P 3、剪应力 A dt
4、连接件的强度计算
FS [ ] A
四、分析思路
外力 内力 变形 应力
P [ bs ] Abs
五、材料的力学性能
1、一些重要的性能指标
2、卸载定律与冷作硬化
强度条件 三方面设计 轴向 横向 (超静定问题) 变形能 a、强度 s p b b、塑性 c、弹性
E p
例题1 ABCD中哪些部分是轴向拉压? A B C D
P
(a) A q B
2a
P
C
3a
D q
(b)
例题2 实验结果如图所示,问哪一曲线所代表的材料强 度最大?刚度最大?塑性最好?
(1)
σ
(2)
(3)
ε
例题3 判断下列问题静定与否?
P P
1 3 2
4
5 P 6
Thursday, August 08, 2013
1)取销钉,受力如图 2)截面法求内力 3)剪应力假定计算 2、挤压
d 0.013 m
上下部分,外力P/2
FS [ ] A
Abs d t
bs
P/2 dt
中间部分,外力P
Abs d 2t
bs
P d 2t
FS P FS 取 d=14mm
bs [ bs ]
P
错动截面
FS
剪切面
P
三、剪切的实用计算
1、剪切面A: 发生错动的面。 2、剪力FS: 横截面上的内力---截面法求之
P
3、名义剪应力:
FS A
4、 剪 切 强 度 条 件 ( 准 则 ) : 1)由实验测得材料的 b
2)选择安全系数n
3)确定材料的许用应力 4)强度条件
[ ]
b FS [ ] 其 中: n A
二、基本方法
1、求内力的截面法;
2、内力图的作法; 3、解静不定问题的“三关系”法。
三、基本公式
1、应力
2、变形
FN l l EA
FN A
条件:1)轴向拉压 ; 2)圣维南原理。
E ( P )
3、强度条件
[ ]
bs
可作三方面设计
4、冲断钢板
b
P 235 .5 KN
四、挤压及挤压的实用计算
1、挤压
螺栓、销钉、键、铆钉等连接件,除受剪切外,在连接件和被连 接件的接触面上,还有相互压紧的现象,这种现象称为挤压。
P
P
P P
上钢板
下钢板
被挤压的面
上半部分销钉
3、挤压应力:
挤压面上单位面积上承受的压力。
被挤压的面
★挤压力:
外力,是相互压紧的面上的相 互作用力.
挤压面有效面 积Abs
★挤压面: 垂直于外力P的面上的投影,是一个有效的面积。 ★挤压应力: 假设挤压力在挤压面上均匀分布 P bs Abs ★误差: 由此而计算的挤压应力与实际的应力有一定差距,但考虑
其他因素的影响,足以满足工程精度要求。
4、挤压的强度条件
P bs [ bs ] Abs 通常情况下 [ bs ] (1.7 ~ 2.0)[ ]
对于塑性材料: [ ] (0.6 ~ 0.8)[ L ]
对于脆性材料: [ ] (0.8 ~ 1.0)[ L ]
***** 连接件的破坏形式:
1)沿错动面被剪断; 2)在接触面上被挤坏。
Mechanics of Materials
34
相关文档
最新文档