苏教版高中数学高一必修三第一章《算法初步》教案
苏教版必修三第01课时《算法的含义》word教案
引入新课1把西瓜放进冰箱要几步?2. 2005年9月3日,南京地铁一号线正式投入运营,乘客可以通过自动售票机购票,按照自动售票机屏幕上的提示,乘客只要依次点击目的地车站的站名和购票的张数,再放入足够的钱,自动售票机就会输出你要的车票(同时退还多余的钱).你能写出购票的步骤吗?从以上实例中你能总结出算法的含义吗?例题剖析例1 写出求1 2 3 4 5的一个算法.例2 写出解方程2x - 3=0的一个算法.2x 亠v = 7例3 给出求解方程组的一个算法.£x +5y =11例4 一位商人有9枚银元,其中一枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?写出解决这一问题的一个算法.巩固练习1写出解方程2x ^0的一个算法.2•写出解方程1 3 5 7的一个算法.3•写出求12^ 100的一个算法时,可运用公式12^ n = 血耳直接2 计算,即:第一步: _________________________________________________________ ;第二步:_______________________________________________________ ;第三步:输出结果.1 1 14 •写出求的一个算法.1汇2 2^3 9汉10课堂小结了解算法的含义及其主要特点(有限性和确定性)课后训练3•已知直角坐标系中的两点 A -1, 0 , B 3, 2,写出求直线 AB 的方程的一个算法. 4•写出解不等式2x-3 0的一个算法.5•给出求解方程组丿3x —2,一14的一个算法.& 十 y = —2二提高题6•写出画边长为3的正三角形的一个算法.2. 班级:高二)班 姓名:基础题1 •下列关于算法的说法中,正确的是( A •算法就是某个问题的解题过程; 的结果;C .解决某个问题的算法可以不唯一的; 不停止.2 4写出求 的一个算法.3 5) B .算法执行后可以不产生确定 D •算法可以无限地操作下去而7.有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,现要求将其互换,请你设计一个算法解决这一问题.。
高中数学 第一章 算法初步 1.2.1 顺序结构学案 苏教版必修3(2021年最新整理)
2018版高中数学第一章算法初步1.2.1 顺序结构学案苏教版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章算法初步1.2.1 顺序结构学案苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章算法初步1.2.1 顺序结构学案苏教版必修3的全部内容。
1。
2。
1 顺序结构1.了解常用流程图符号(输入、输出框,处理框,判断框,起止框,流程线等)的意义.(重点)2.能用流程图表示顺序结构.(易错、易混点)3.能识别简单的流程图所描述的算法.(重点、难点)[基础·初探]教材整理1 流程图的概念阅读教材P7的内容,完成下列问题.1.流程图流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.流程图的图形符号及其作用图形符号名称符号表示的意义起止框表示算法的开始或结束,一般画成圆角矩形处理框表示赋值或计算,一般画成矩形判断框根据条件决定执行两条路径中的某一条,一般画成菱形输入、输出框表示输入、输出操作,一般画成平行四边形流程线表示执行步骤的路径,用箭头线表示判断正误:(1)流程图是描述算法的语言.( )(2)任何流程图都有起止框,它表示一个算法的起始和结束.( )(3)在流程图中,任何一个程序框都只有一个进入点和退出点.()【解析】(1)√.流程图是算法的图形表示,故正确.(2)√.由算法的含义知正确.(3)×.在程序框中,除判断框外,其他程序框符号只有一个进入点和一个退出点.故错误.【答案】(1)√(2)√(3)×教材整理2 顺序结构及形式阅读教材P8~P9“练习”以上部分,完成下列问题.1.顺序结构依次进行多个处理的结构称为顺序结构.顺序结构是任何一个算法都离不开的最简单、最基本的结构.2.顺序结构的形式顺序结构的形式如图1.2。
苏教版高中数学必修3《算法初步》复习教学案
必修3《算法初步》复习教学案扬州市邗江区甘泉中学 蒋庆富一、复习的目标、重点:1、理解算法的含义及特点;2、掌握算法的三种基本结构;3、会用算法语句解决数学问题和简单的实际问题。
二、知识结构:见同步导学P22。
注意:1、掌握用自然语言中的三种结构描述的步骤; 2、掌握用流程图中的三种算法结构描述的结构形式; 3、掌握用伪代码中的四种算法语句描述的一般形式。
三、基础训练:1、下列语句中:①② ③④ ⑤⑥ 其中是赋值语句的个数为( )A 、6B 、5C 、4D 、32、程序(1)输出结果与程序(2)中当 时的运行结果分别为( )A 、13,64B 、15,105C 、35 ,64D 、45,293、下面程序输出的n 的值是_____________________.23x x m -←I T T ⨯←A ←3222)1(2+*=+*←B B A 2+←A A 1)5)37((+-+←x x xp 21=x sfor End i s s step to from i For s )程序( int Pr 313101+←←Pif End x P Else x P then x If xad int Pr 7.01510 5 10 Re 2⨯-⨯←←≤)+( )程序( 4、有一个算法如下,试写出上述算法的流程图及相应的伪代码。
5、用循环语句描述求的算法.四、典例选讲:例1:试写出解决求函数y=的函数值这一问题的流程图及伪代码。
例2:设计一个算法,求平方后所有小于10000的正整数。
2)(x 2)(x ≥<⎪⎩⎪⎨⎧+--1x 1x 22100199********-+⋯+-+-例3:某纺织厂1997年的生产总值为300万元,如果年生产增产率为5﹪,用流程图或算法语句计算最早在哪一年生产总值超过400万元。
例4:已知算法(1)(2)试根据要求分别完成下列两道题: 根据算法(1)的伪代码,指出相应算法功能并画出 相应的流程图。
苏教版高中数学必修3教学课件第1章 算法初步第1章 算法初步复习与小结精选ppt课件
考点题型 1.概念的判 断和理解:
1.下面对流程图中的图形符号的说法错误的是 ( ) A.起、止框是任何流程不可少的,表明程序开始和结束; B.输入、输出可用在算法中任何需要输入、输出的位置; C.算法中间要处理数据或计算,可分别写在不同的注释框内; D.当算法要求对两个不同的结果进行判断时,要写在判断框内.
的函数值,若执行的
2.下列程序的运行结果是( )
I←1 suAm. 1←370/60 B. 3 C. 130/60 D.1/60 For I From 1 To 5
3.写出表示下列程序运算功能的算 术表达式(不计算,只写式子).
N←2
T←1
While N≤5 T←N × T
考点题型4 算法结果和方法的应用:
1.设计一个程序语句,输入任意三个 实数,将它们按从小到大的顺序排列 后输出.
2.某市电信部门规定:拨打市内电 话时,如果通话时间不超过3分
钟,则收取通话费0.2元,如果通话时 间超过3分钟,则不超过部分
收取0.2元,超过部分以每分钟0.1元 收取通话费(通话时间以分钟计
3.适合方程a2+b2=c2的一组正整 数称为勾股数或商高数,设计一个 满足a≤30,b≤40,c≤50的勾股数的 算法.
考点题型3 由程序框图、算法语句计算算法结果 :
1.下列程序是求一个 函数函数值的程序,
在键盘上输入一个自 变量x的值,输出它
程序:
Read x If x≤0 Then Print y←x Else If x>0 And x≤l Then Print y←0 Else Print y←x-1 End If
①WHILE语句
WHILE 条件 循环体 END WHILE
高中数学 第一章 算法初步 1.1 算法的含义学案 苏教版必修3(2021年最新整理)
2018版高中数学第一章算法初步1.1 算法的含义学案苏教版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章算法初步1.1 算法的含义学案苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章算法初步1.1 算法的含义学案苏教版必修3的全部内容。
1。
1 算法的含义1.通过实例体会算法的思想,了解算法的含义.(重点)2.能按步骤用自然语言写出简单问题的算法过程.(重点、难点)3.了解算法的主要特点.(重点、难点)[基础·初探]教材整理1 算法的概念阅读教材P5“例1”以上部分及P6“练习”上面一段,完成下列问题.1.算法的概念对于一类问题的机械的和统一的求解方法称为算法.2.算法的范围(1)我们过去学习的许多数学公式都是算法,加、减、乘、除运算法则以及多项式的运算法则也是算法.(2)算法是解决问题的步骤与过程,这个问题不仅仅限于数学问题.判断正误:(1)“从济南到巴黎可以先乘火车到北京,再坐飞机抵达”是算法.( )(2)“利用公式S=错误!ah计算底为1,高为2的三角形的面积"是算法.( )(3)“错误!x>2x+4”是算法.( )【解析】(1)√.表示了从济南到巴黎的步骤,故是算法.(2)√。
表示了求三角形面积的过程,故是算法.(3)×.没有体现出解决问题的过程与步骤,故不是算法.【答案】(1)√(2)√(3)×教材整理2 算法的特征阅读教材P5~P6倒数第二段,完成下列问题.1.有限性:一个算法的步骤是有限的,必须在有限操作之后停止,不能是无限的.2.确定性:算法中的每一步应该是确定的并且能有效地执行,可以得到确定的结果,而不是模棱两可.3.不唯一性:求解某一个问题的算法不一定是唯一的,可以有不同的算法,当然这些算法有繁简之分、优劣之别.4.普遍性:很多具体的问题,都可以设计合理的算法去解决.判断正误:(1)求解某类问题的算法是唯一的.( )(2)算法一定在有限个步骤后就能完成.( )(3)算法执行后必产生确定的结果.( )【解析】(1)×.由算法的不唯一性,知(1)不正确.(2)√。
第一章 算法初步全章教案
第一章 算法初步第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解→写出算法.③练习:举例更多的算法例子;→对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1.2.顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.第一课时 1.2.1 输入语句、输出语句和赋值语句教学要求:正确理解输入语句、输出语句、赋值语句的结构. 让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿. 通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想. 教学重点:会用输入语句、输出语句、赋值语句.教学难点:正确理解输入语句、输出语句、赋值语句的作用.教学过程:一、新课导入:1. 提问:学习了哪些算法的表示形式?(自然语言或程序框图描述)算法中的三种基本的逻辑结构?(顺序结构、条件结构和循环结构)2. 导入:我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的. 因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序. 程序设计语言有很多种. 如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB 等.各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输入语句、输出语句、赋值语句. 基本上对应于算法中的顺序结构.二、讲授新课:1. 教学三种语句的格式及功能:①出示例1:编写程序,计算一个学生数学、语文、英语三门课的平均成绩.(分析算法→框图表示→教师给出程序,学生试说说对各语句的理解.)①出示例2:用描点法作函数y=x3+3x2-24x+30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值②出示例3:给一个变量重复赋值. (程序见P16)③出示例4:交换两个变量A和B的值,并输出交换前后的值.(教法:先分析算法→画出框图→编写程序→分析各语句→变式→小结:先写算法,再编程)3. 小结:输入、输出和赋值语句的格式;赋值“=”及表达式;编写简单程序解决数学问题.三、巩固练习:1. 练习:教材P16 1、2题 2. 作业:P16 3、4题.第二课时 1.2.2 条件语句教学要求:正确理解条件语句的概念,并掌握其结构. 会应用条件语句编写程序. 教学重点:条件语句的步骤、结构及功能.教学难点:会编写程序中的条件语句.教学过程:一、复习准备:1. 提问:算法的三种逻辑结构?条件结构的框图模式?2. 提问:输入语句、输出语句和赋值语句的格式与功能?3. 一次招生考试中,测试三门课程,如果三门课程的总成绩在200分及以上,则被录取. 请对解决此问题的算法分析,画出程序框图. (变题:…总成绩在200分以下,则不被录取)二、讲授新课:1. 教学条件语句的格式与功能:①分析:复习题③中的两种条件结构的框图模式?②给出复习题③的程序,试读懂程序,说说新的语句的结构及含义.③条件语句的一般有两种:IF—THEN语句;IF—THEN—ELSE语句. 语句格式及框图如下.分析语句执行流程,并说明:①“条件”是由一个关系表达式或逻辑表达式构成,其一般形式为“<表达式><关系运算符><表达式>”,常用的运算符有“>”(大于)、“<”(小于)、“>=”(大于或等于)、“<=”(小于或等于),“<>”(不等于). 关系表达式的结果可取两个值,以“真”或“假”来表示,“真”表示条件满足,“假”则条件不满足. ②“语句”是由程序语言中所有语句构成的程序段,即可以是语句组. ③条件语句可以嵌套,即条件语句的THEN 或ELSE后面还可以跟条件语句,嵌套时注意内外分层,避免逻辑混乱.2. 教学典型例题:②出示例5:编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根.(算法分析→画程序框图→编写程序→给出系数的一组值,分析框图与程序各步结果)注意:解方程之前,先由判别式的符号判断方程根的情况. 函数SQR()的功能及格式.②讨论:例5程序中为何要用到条件语句?条件语句一般用在什么情况下?答:一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套③练习:编写程序,使得任意输入的2个实数从小到大排列.④出示例6:编写程序,使得任意输入的3个实数从小到大排列.(讨论:先用什么语句?→用具体的数值给a、b、c,分析计算机如何排列这些数?→写出程序→画出框图→说说算法→变式:如果是4个实数呢?3. 小结:条件语句的格式与功能及对应框图. 编程的一般步骤:①算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法. ②画程序框图:依据算法分析,画出程序框图. ③写出程序:根据程序框图中的算法步骤,逐步写出相应的程序语句.三、巩固练习: 1. 练习:教材P22 1、2题.2. 试编写程序进行印刷品邮资的计算. (前100g 0.7元,以后每100g 0.4元)3. 作业:P22 3、4题.第三课时 1.2.3 循环语句教学要求:正确理解循环语句的概念,并掌握其结构. 会应用循环语句编写程序. 教学重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法.教学难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句. 教学过程:一、复习准备:1. 设计一个计算1+2+3+……+10的算法,并画出程序框图.2. 循环结构有哪两种模式?有何区别?相应框图如何表示?答:当型(while 型)和直到型(until 型). 当型循环语句先对条件判断,根据结果决定是否执行循环体,可能一次也不执行循环体,也称为“前测试型”循环;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.二、讲授新课:1. 教学两种循环语句的格式与功能:① 给出复习题①的两种循环语句的程序,试读懂程序,说说新的语句的结构及含义.② 两种循环语句的语句结构及框图如下.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 当使用WHIL 语句时,循环内部应当有改变循环的条件,否则会产生无限循环. 学习时注意两种循环语句的区别.③ 讨论:两种循环语句的区别?当型循环先判断后执行,直到型循环先执行后判断,则:在WHILE 语句中,是当条件满足时执行循环体;在UNTIL 语句中,先执行循环体,再当条件不满足时再执行循环体.2. 教学例题:① 出示例:编写程序,计算1+2+3+……+99+100的值.(分析:实现累加的算法 → 分别用两种循环语句编写 → 变题:计算20以内偶数的积.② 给出下列一段程序,试读懂程序,说说各语句的作用,分析程序的功能. (见教材P24)(读,找疑问 → 说各语句 → 分析功能)③ 练习:用描点法作函数y =x 3+3x 2-24x +30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x =-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. ④ 分析右边所给出程序:当n=10时,结果是多少?程序INPUT “n=”;ni =1 a =0 WHILE i <= n a = a +(i +1)/i i = i+1WENDPRINT “…”;aEND实现功能?3. 小结:① 循环语句的两种不同形式:WHILE 语句和UNTIL 语句(还可补充了For 语句),掌握它们的一般格式.② 在用WHILE 语句和UNTIL 语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法. WHILE 语句中是当条件满足时执行循环体,而UNTIL 语句中是当条件不满足时执行循环体.③ 循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务. 如累加求和,累乘求积等问题中常用到.三、巩固练习: 1. 练习:教材P24 1题.2. 编写程序,实现输出1000以内能被3和5整除的所有整数. (算术运算:5 MOD 3 =2)3. 作业:P24 2、3题.第一课时 1.3.1 算法案例---辗转相除法与更相减损术教学要求:理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析; 基本能根据算法语句与程序框图的知识设计出辗转相除法与更相减损术完整的程序框图并写出它们的算法程序.教学重点:理解辗转相除法与更相减损术求最大公约数的方法.教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言. 教学过程:一、复习准备:1. 回顾算法的三种表述:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句).2. 提问:①小学学过的求两个数最大公约数的方法?(先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.)口算出36和64的最大公约数. ②除了用这种方法外还有没有其它方法?6436128=⨯+,36∴和28的最大公约数就是64和36的最大公约数,反复进行这个步骤,直至842=⨯,得出4即是36和64的最大公约数.二、讲授新课:1. 教学辗转相除法:例1:求两个正数1424和801的最大公约数.分析:可以利用除法将大数化小,然后逐步找出两数的最大公约数. (适用于两数较大时)①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的. 利用辗转相除法求最大公约数的步骤如下:(1)用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2)若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3)若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;……依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数.②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数是否等于0来决定,所以我们可以把它看成一个循环体,它的程序框图如右图:(师生共析,写出辗转相除法完整的程序框图和程序语言)练习:求两个正数8251和2146的最大公约数. (乘法格式、除法格式)2. 教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之.翻译为:(1)任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执行第二步.(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.例2:用更相减损术求91和49的最大公约数.分析:更相减损术是利用减法将大数化小,直到所得数相等时,这个数(等数)就是所求的最大公约数. (反思:辗转相除法与更相减损术是否存在相通的地方) 练习:用更相减损术求72和168的最大公约数.3. 小结:辗转相除法与更相减损术及比较①都是求最大公约数的方法,辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少;②结果上,辗转相除法体现结果是以相除余数为0得到,而更相减损术则以减数与差相等而得到.三、巩固练习:1、练习:教材P35第1题 2、作业:教材P38第1题 第二课时 1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为:5432()254367f x x x x x x =--+-+=,依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式) ④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值. (学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?)⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++. 首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+. ⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩.这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题 2、作业:教材P36第2题 第三课时 1.3.3 算法案例---进位制教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化.教学难点:除k 取余法的理解以及各进位制之间转换的程序框图及其程序的设计.教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f x x x =-+当3x =时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?二、讲授新课:1. 教学进位制的概念:① 进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制. 同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139==② 一般地,任意一个k 进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即1110()1...(0,n n n n k n n n n a a a a a k a a a k a k a ka k a k ----<<≤<=⨯+⨯+⨯+⨯.如:把(2)110011化为十进制数,(2)110011=1⨯25+1⨯24+0⨯23+0⨯22+1⨯21+1⨯20=32+16+2+1=51.把八进制数(8)7348化为十进制数,3210(8)7348783848883816=⨯+⨯+⨯+⨯=.2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数.(学生板书→教师点评→师生共同总结将非十进制转为十进制数的方法) 分析此过程的算法过程,编写过程的程序语言. 见P34②练习:将(5)2341、(3)121转化成十进制数.③例2、把89化为二进制数.分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)上述方法也可以推广为把十进制化为k 进制数的算法,这种算法成为除k 取余法. ④练习:用除k 取余法将89化为四进制数、六进制数.⑤例3、把二进制数(2)11011.101化为十进制数.解:4(211-=⨯. (小数也可利用上述方法化进行不同进位制之间的互化. )变式:化为八进制→方法:进制互化3. 小结:进位制的定义;进位制之间的互化.三、巩固练习:1、练习:教材P35第3题 2、作业:教材P38第3题 第四课时 1.3.4 生活中的算法实例教学要求:通过生活实例进一步了解算法思想.教学重点:生活实例的算法分析.教学难点:算法思想的理解.教学过程:一、复习准备:1. 前面学习了哪几种算法案例?每种算法的作用及操作方法是怎样的?2. 算法思想在我们的生活中无处不在,如何利用我们所学习的知识解决生活中的实际问题?二、讲授新课:1. 霍奇森算法:提问:同学们经常会面对一个共同的问题,就是有时有太多的事情要做. 例如,你可能要面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你该怎么办?(霍奇森算法可以。
2019-2020年高中数学 第1章 算法初步 1.2 流程图 1.2.3 循环结构教案 苏教版必修3
2019-2020年高中数学第1章算法初步 1.2 流程图 1.2.3 循环结构教案苏教版必修3教材分析在现实生活中,除了用到选择结构进行问题的分支处理外,还会遇到“重复处理”的问题,循环结构(cycle structure)正是可以用来处理需要重复执行的某一组操作.循环结构也称为“重复结构”,即反复执行某一部分的操作.循环结构是程序设计中不可缺少的又富有变化的一种基本结构,是我们学习的第三种程序结构.在某一算法中,如果出现从某处开始,按照一定的条件反复执行同一操作,那么这种结构就称为循环结构,反复执行的处理步骤称为循环体.在循环体中一定有一个选择结构,否则将无法从循环结构中脱离出来,从而形成死循环.此外,循环结构中通常都有一个起到循环计数的变量,这个变量一直都含在执行或终止循环体的条件中.循环结构分为当型循环和直到型循环,它们之间是可以相互转化的.教材考虑到学生的接受能力,对直到型循环和当型循环没有加以定义和区分,仅仅是在《探究·拓展》中以阅读题的形式作了介绍,这样处理是有用意的,教师没有必要在这里提出这两种概念,可待学生有了感性认识和一定的算法基础后,再做适当的回顾与补充.如果某一操作需要重复一定的次数,那么我们可以设置一个统计循环次数的变量,当这个变量的值没有超过我们给定的数值时,就一直重复执行需要的操作,当这个变量的数值超过给定的数值时就脱离循环结构.三维目标通过实例的训练,使学生理解循环结构的意义,并能够用循环结构的流程图表示简单问题的算法,养成良好的逻辑思维习惯,发展有条理的思考与表达能力,达到提升学生逻辑思维能力的目标.重点难点教学重点:用循环结构的流程图表示算法.教学难点:多种结构的嵌套使用.课时安排1课时教学过程导入新课设计思路一:(情境导入)同学们小时候一定都有过缠着父母听故事的经历,有时候爸爸妈妈实在想不出故事了,就会用一个“故事”来哄骗孩子:从前有座山,山里有个庙,庙里有个老和尚.有天老和尚对小和尚说,我给你讲个故事说啊:从前有座山,山里有个庙,庙里有个老和尚.有天老和尚对小和尚说,我给你讲个故事说啊:从前有座山,山里有个庙,庙里有个老和尚.有天老和尚对小和尚说,我给你讲个故事说啊:……现在考虑,为什么说这个“故事”是哄骗小朋友的?因为这个“故事”一直在重复着同样的环节:“从前有座山,山里有个庙,庙里有个老和尚,有天老和尚对小和尚说,我给你讲个故事说啊:……”所以这个“故事”可以无限次循环.我们可以把这个环节写成一个算法,这个算法是一直重复同样的操作,多次循环,直到孩子打断父母的“故事”为止.在现实生活中,还有好多这样的例子,在整个问题的执行过程中,一直循环执行相同的一部分步骤,直到符合或者不符合某个条件时才终止.请同学们举出这样的一些例子.例如:1.同学们从小学开始,每年9月初开学,到学校里上课,一个学期后放寒假,过了寒假再开学,又一个学期后放暑假,然后下一年9月初再开学回到学校上课→寒假→上课→暑假……,直到不再上学为止.2.今天是星期三,过了一天是星期四,过了两天是星期五……过了七天又是星期三,这样周而复始循环出现.3.计算1+2+3+4+ (100)第一步计算1+2;第二步将上一步中的运算结果与第三个数相加;第三步将上一步中的运算结果与第四个数相加;第四步将上一步中的运算结果与第五个数相加;……第i步将上一步中的运算结果与第i-1个数相加;……直到执行完第99步后才得到结果.上述例子都是在运行过程中循环执行相同的步骤,这样的算法结构就是循环结构.(引入新课,板书课题——循环结构)设计思路二:(问题导入)观察下面的流程图(图1),回答这个流程图的功能是什么?其中最主要的操作步骤是什么?图1这个流程图从学号为1的学生开始,输出他的成绩,然后判断学号是否为尾号,如果不是,让学号增加1,继续输出2号学生,再判断学号是否为尾号,如果不是,学号再增加1,输出下一位学生的成绩,直到学号为尾号,即最后一名学生才结束程序,因此这个流程图的功能是输出所有学生的成绩.其中最主要的就是多次重复执行的判断学号、改变学号、输出成绩的过程.要输出所有学生的成绩,应该有很多个输出框,为什么流程图中只有一个输出框?因为每次输出学生的成绩都是一种重复的操作:先确定要输出哪一位学生的成绩,然后再输出.这个过程将重复出现,进行循环操作,直到所有学生全部输出(即学号为尾号)才结束,这样的结构最主要的部分就是有循环形式的结构出现,我们把这样的结构称为循环结构.(引入新课,板书课题——循环结构)推进新课新知探究北京获得了xx年第29届奥林匹克运动会的主办权.你知道在申办奥运会的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对遴选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市将获得主办权;如果所有申办城市得票数都不超过总票数的一半,则将得票数最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.这个表决过程可以用算法写出,请同学们写出这个算法算法:S1 投票;S2 统计票数,如果有一个城市得票数超过总票数的一半,那么该城市获得主办权,转S3,否则淘汰得票最少的城市,转S1;S3 宣布主办城市.在这个过程中,如果统计票数后任意一个城市得票数都没有超过总票数的一半,那么将重复执行投票→统计票数这一过程,直到有一个城市得票数超过总票数的一半为止.这里出现了一个循环操作的内容,而最终应该循环多少次,在整个表决结果出来以前是无法知道的,也许第一次表决后就结束,也许要表决3次、4次,所以如果用流程图来表示,我们会发现仅仅利用前面学过的顺序结构和选择结构将无法实现,那么将怎样来画出这个问题的流程图呢?根据算法,是否要返回S1,即继续投票,就看是否有一个城市得票数超过总票数的一半,如果没有,将返回S1执行循环,如果有一个城市得票数超过总票数的一半,就立即结束表决,因此我们可以把流程图画成图2的形式:图2像上面的算法中的这种需要重复执行同一种操作的结构称为循环结构.重复执行的那些步骤就称为循环体.如图3,虚线框中的流程结构就是一种常见的循环结构,其功能是先执行框A,然后判断给定的条件P是否成立,若条件P不成立,则再执行框A,执行完框A后继续判断条件P是否成立,如果不成立,再执行框A,再判断条件P……,如此反复执行框A,直到判断条件P时发现成立为止,此时不再执行框A,而是脱离这个循环结构.图3 图4上面的这个循环结构实际上就是最常用的直到型(Until 型)循环.在循环结构中还经常出现当型(While 型)循环,其结构如图4中虚线框内的形式,它的功能是当给定条件P 成立时,先执行框A ,然后判断给定的条件P 是否成立,若条件P 成立,则再执行框A ,执行完框A 后继续判断条件P 是否成立,如果成立,再执行框A ,再判断条件P……,如此反复执行框A ,直到判断条件P 时发现不成立为止,此时不再执行框A ,而是脱离这个循环结构.比较上面的循环结构和上一节课学习的选择结构,它们都有一个判断框,选择结构中从判断框出来的两条分支都不再返回而是直接结束(当然也可以再执行其他步骤),这个判断框只会判断一次,而循环结构中从判断框出来的两条分支一条直接流向结束,另一条会返回上面的某一处继续执行相同的操作,这个判断框会判断多次.因此如果出现判断,就看判断后是不是返回执行相同的操作,如果不再返回,那就是选择结构,如果要返回重复执行某一些操作,那就是循环结构.应用示例思路1例1 用连加的方法写出求的算法和流程图.分析:本题指明了用连加的方法,所以先进行2+2的运算,然后把结果再加2,然后把结果再加2,……然后把结果再加2,这样一共需要进行9次加法运算就可以输出运算结果了.因此我们在流程图中应该有一个统计进行了多少次加法运算的计数器,这个计数器的功能是每进行一次加法运算就“加1”,直到计数器内的统计数据达到9时就结束加法,输出运算结果.解:算法如下:S1 加法计数器I 设置初值0;S2 和存储器S 设置初值2;S3 计算S+2,结果放入和存储器S ;S4 加法计数器I 加1;S5 如果I≥9,则输出S ,否则转S3.这个算法也可以用简洁的符号表示:S1 I←0;S2 S←2;S3 S←S+2;S4 I←I+1;S5 如果I≥9,则输出S ,否则转S3.流程图如图5所示:图5思考1.这个循环结构中的循环体由哪几个步骤组成?由流程图很清晰地看出,重复执行的循环体由处理框“S←S+2”、“I←I+1”和判断框“I≥9”组成.2.本题中,变量I和S分别起什么作用?为什么两个变量的初值一个为0,一个为2?变量I实际上就是一个统计进行了多少次加法运算的计数器.根据流程图,开始时I←0,说明还没有进行运算,经过一次“S←S+2”后,再执行“I←I+1”,这时I=1,说明进行了一次加法运算,然后判断“I≥9”,结果为“N”,判断后返回执行“S←S+2”(注意:现在进行的是第二次加法运算),再下一步就又是执行“I←I+1”,这时I=2,说明进行了二次加法运算,然后继续判断“I≥9”.我们发现这样的规律:进行了多少次加法(S←S+2),I就等于这个次数.而题目一共要进行9次加法运算,所以如果“I≥9”不成立(判断结果为“N”),则继续累加,直到“I≥9”成立(判断结果为“Y”),才脱离循环结构,输出S,结束程序.当然,变量I只可能出现I=9,不可能出现I>9的情况,因为I=9时就跳出循环体,不再继续返回执行“S←S+2”和“I←I+1”了.图6变量S实际上就是一个存储加法运算的结果的存储单元.每次都是把上一次的运算结果加上2以后作为下一次的一个加数,所以我们把这个加法的结果一直存储在存储器S中.3.如果我们把判断框中的条件“I≥9”改为“I=9”是否可以?根据“思考2”的分析,变量I只可能出现I=9,不可能出现I>9的情况,所以这样修改也是可以的.4.如果我们把选择结构改变为如图6的形式,即把判断框中的条件“I≥9”改为“I<9”,再把“Y”和“N”交换是否也符合要求?根据图6,当加法的次数I满足“I<9”(判断结果为“Y”)时,说明加法的次数还不满9次,所以再返回执行加法运算“S←S+2”,再执行“I←I+1”(计数器增加1),然后继续判断“I<9”是否成立,直到判断结果为“N”(加法次数“不是小于9次”),说明已经加了9次了,这时脱离循环体,输出S,结束程序,所以这样的修改也是可以的.但是一般情况下,在这种循环结构中,我们总是习惯于“满足条件就脱离循环结构,否则返回继续执行”这种格式,这样统一以后便于他人阅读、理解和修改,也便于计算机专业人员把流程图翻译成计算机语言编成计算机程序.点评:特意设置一个难度较低的题目,是为了让学生容易着手,便于理解和掌握这种新型的程序结构.因此写出算法和流程图不难,老师不要急于做下一个例题,要把“思考”中的内容详细讲解,重点讲清变量I和S的意义,直到学生弄清楚循环结构的原理为止例2 写出求1+2+3+4+5值的一个算法,并画出流程图.分析:本题前面课时已讲过,一共也只有4次加法运算,所以可以直接连加五个数.但是这个方法只能适用于运算次数比较少的形式,对连加次数较多时就显得比较烦琐.当然本题也可以使用等差数列求和公式,直接求前五项的和,这样可以求任意多次连加运算,但是对于没有学习过这个公式的人就不适用了.其实本题实质是连加,每次都是把上一次加法的结果再继续加上下一个数,直到这个加数是5为止.但是与例1相比,这个加数不断在变化,而加法的次数是固定的5次,所以我们可以在判断框中设置条件“I>5”(I就是这个不断变化的加数),当条件成立时就脱离循环体,输出和“S”,否则还将继续进行加法运算.解:算法如下:S1 S←0;S2 I←1;S3 S←S+I;S4 I←I+1;S5 如果I>5,则输出S,否则转S3.流程图如图7所示:图7点评:循环结构的判断框中的条件可以直接是循环的次数,也可以是脱离循环体的条件,应根据不同的情况选择不同的条件.例3 写出求1×2×3×4×5的值的一个算法,并画出流程图.分析:这个变式和例2相比,仅仅是把连加换成连乘,其他没有改变,所以判断框中的条件应该不变,“和存储器”S应该变成“积存储器”T,同时存储器的初值不能是0了,否则每次相乘后的积永远只能是0.同学们思考,这个“积存储器”T的初值应该是多少?应该是1!原理和初值S←0类似.解:算法如下:S1 T←1;S2 I←1;S3 T←T×I;S4 I←I+1;S5 如果I>5,则输出T,否则转S3.流程图如图8所示:图8变式训练1.写出求1×3×5×7×9×11值的一个算法,并画出流程图.分析:与例题相比,最主要的变化是循环变量I增加的幅度(以后称为步长)由1变为2,另外乘积式中因式的个数也由5个变成了6个,所以脱离循环体的条件也应该发生相应的变化,因此算法和流程图中改变的应该就是这两个地方解:算法如下:S1 T←1;S2 I←1;S3 T←T×I;S4 I←I+2;S5 如果I>11,则输出T,否则转S3.流程图如图9所示:图92.对于输入的不同的正整数n,写出求1×2×4×8×…×2n值的一个算法,并画出流程图.分析:本题中最主要的变化是乘积式中因式的个数由输入的正整数n确定,且每次参与乘积的数都是上一次乘数的2倍,因此算法和流程图中改变的主要就是这两个地方.算法如下:S1 输入n;S2 T←1;S3 I←1;S4 T←T×I;I←I×2;S6 如果I>2n,则输出T,否则转S4.流程图如图10所示:图10点评:从以上例题和变式可以看出,循环结构中必须嵌套一个选择结构,即有一个判断框,这个判断框的用途是用来控制什么时候脱离循环体的.如果没有判断框,或者判断框中的条件永远不可能成立,那么这样的循环就只能永远循环下去,从而形成“死循环”,所以在编写循环结构的算法的时候,要注意不能形成“死循环”.例4 设计计算10个数的平均数的一个算法,并画出流程图.分析:我们用一个循环依次输入10个数,再用一个变量存放数的累加和,在求出10个数的累加和后,除以10,就得到10个数的平均数.解:算法如下:S1 S←0;{使S=0}S2 I←1;{使I=1}S3 如果I≤10,那么转S4,否则转S7;{当I≤10时循环}S4 输入G;{输入一个数}S5 S←S+G;{求S+G,其和仍存放在S中}S6 I←I+1,转S3;{使I的值增加1,并转到S3}S7 A←S/10;{将平均数S/10存放在A中}S8 输出A.{输出平均数}流程图如图11所示:图11点评:如果流程图太长,我们可以把它分割成几块,每块根据连接点可以重新连接(如图11可以分割成图12的形式).图12图13思路2例1 运行图13的流程图后,输出的值是________________.分析:变量I和T的初值为I=0和T=10,然后开始执行循环体.先判断T<22是否成立,如果成立,就让变量I增加1,累加存储器T加4,继续循环,再判断条件T<22是否成立,当条件T<22不成立才脱离循环结构,输出当时计数器I中的值,否则一直进行循环.实际上这个流程图就是统计10加上多少个4才能使得和不大于22的最大次数,容易知道,使10+4n≤22的最大的正整数n为3,所以输出的值为3.答案:3变式训练流程图13表示了一个什么算法?试把“当条件不成立时脱离循环体,并且先判断,再执行”改成“直到条件成立时才脱离循环体,并且先执行,再判断”的形式.分析:变量I和T的初值为I=0和T=10,然后开始执行循环体.先让变量I增加1,累加存储器T加4,然后判断T≥22是否成立,如果不成立,就继续循环,再让变量I增加1,累加存储器T加4,然后判断T≥22是否成立,直到条件T≥22成立才脱离循环结构,输出当时计数器I中的值,否则一直进行循环.解:这个流程图表示的是求使10+4n≤22的最大的正整数n的一个算法.改成“直到条件成立时才脱离循环体,并且先执行,再判断”的形式的算法流程图如图14所示.图14点评:实际上,图13是一个当型循环,图14是直到型循环,这两种循环是有区别的.直到型循环是“直到条件成立时才脱离循环体”,并且是先执行,再判断;当型循环是“当条件不成立时脱离循环体”,并且是先判断,再执行.它们的这个区别目前先不必和学生讲清,通过本题可以让学生先有一个感性认识,知道两种循环可以相互转化,它们的实质性区别可以等学生有了一定的算法基础后,再做适当的回顾与补充.例2 写出求100991...651431211⨯++⨯+⨯+⨯的一个算法,并画出流程图 分析:本例属连加问题,只是每次的加数复杂一些,因此和存储器S 置初值0,循环变量I 与加数的关系为,每次循环时增长的步长为2,直到满足条件I>99时脱离循环体,输出结果,结束程序.解:算法如下:S1 S←0;S2 I←1;S3 S←S+;S4 I←I+2;S5 如果I>99,则输出S ,否则转S3.流程图如图15所示:图15点评:本题继续巩固和深化循环结构的概念及算法,通过改变步长和加数的复杂化,达到灵活应用的目的.知能训练一、课本本节练习1、2.二、补充练习1.写出计算12+22+32+…+1002的算法的流程图.2.一个两位数,个位数字与十位数字之和为9,写出一个把所有这样的两位数都输出的算法,并画出流程图.解答:一、课本练习1.算法如下:S1 S←0;S2 I←2;S3 S←S+I;S4 I←I+2;S5 如果I>100,则输出S,否则转S3.流程图如图16所示:图162.本题表示的算法是将学号从1号到50号中成绩达到或超过80分的学生的学号和成绩找出来.二、补充练习1.流程图如图17所示.图172.算法如下:S1 a←0;S2 a←a+1;S3 b←9-a;S4 m←10a+b;S5 输出m;S6 如果a>9,则结束程序,否则转S2.流程图如图18所示.图18点评:对于循环结构,要弄清楚循环体是什么,即哪些步骤执行循环操作,另外何时执行循环,何时脱离循环.掌握了上面两个问题,就不难写出算法及流程图.同时算法及流程图还要符合规范.课堂小结在某一算法中,如果出现从某处开始,按照一定的条件反复执行同一操作,那么这种结构就称为循环结构,反复执行的处理步骤称为循环体.在循环体中一定有一个选择结构,否则将无法从循环结构中脱离出来,从而形成死循环.此外,循环结构中通常都有一个起到循环计数的变量,这个变量一直都含在执行或终止循环体的条件中.循环结构的关键在于搞清楚循环体是什么,何时执行循环,脱离循环体的条件是什么.作业课本习题1.1 6、7、8、9.设计感想循环结构是三种算法结构中最复杂的一种,如果在一开始学习时不搞清楚,那么学生就很容易陷入循环中无法解脱出来,把自己给绕进去.所以这节课的关键是讲清概念,弄明白循环结构中各步骤之间的关系,尤其是明确循环体由哪些步骤组成,判断是继续执行循环还是脱离循环的条件是什么.所以在讲解应用示例设计思路1的例1时,速度不宜快,应该把循环变量I和累加器S的作用讲清讲透,因此我们在设计这个课题的时候有意比教材降低了起点,设置了一个更加简单的问题,并且还增加了一些思考的问题,这些问题教师不要轻易放过,一定要让所有的学生都明白了循环变量I和累加器S的作用后才可以继续进行下面的教学.还有变式的设置也都是为了让学生理解循环结构中两个变量的作用.在例题和课堂练习中,可以让学生先写出算法,再用流程图表示出来.如果学生对脱离循环的条件不甚明白,老师可以把流程图实际操作一遍,用表格的形式列出各个变量(尤其是循环变量)的数值变化过程,便于学生找出判断框中的条件.对于溢出循环体的条件,有时候学生会比正确结果相差1,这个问题是由于学生对溢出的边界有些模糊导致的,教师可以引导学生观察循环变量的值和运算(或执行)的次数以及题目要求运算的总次数的关系,从中得到正确的判断条件.习题详解习题1.11.算法如下:S1 输入a,h的值;S2 S←ah.流程图如下(左)图所示.2.算法如下:S1 输入x;S2 判断是否x<2,若是,则输出“不退票”;否则,进入S3;S3 输出“y=x-(+1)×2”.流程图如下(右)图所示.第1题图第2题图3.令流程图如下(左)图所示.4.的整数部分用[]表示,则流程图如下(右)图所示.第3题图第4题图5.算法如下:S1 输入a,b,c;S2 如果a<b且a<c,则输出a,否则,进入S3;S3 如果b<c,则输出b,否则,输出c.流程图如下(左)图所示.6.算法如下:S1 输入a,b;S2 如果a>0,则输出x>-,否则,输出x<-.流程图如下(右)图所示.第5题图第6题图7.算法如下:S1 取序列的第一个数;S2 将所取出的数与18比较;S3 如果相等,则输出该数,结束算法;S4 如果不相等,则取下一个数,再执行第二步.流程图:用S i代表数列中的第i个数.第7题图第8题图8.算法分析:判断分别以这3个数为三边长的三角形是否存在,只需要验证这三个数当中任意两个数的和是否大于第三个数.这就需要用到条件结构.算法如下:S1 计算a+b,b+c,a+c;S2 判断a+b >c,b+c >a,c+a >b是否同时成立,如成立,则S △ABC =4/])2/)(([222222b a c a c -+-如不成立,则输出不存在这样的三角形.流程图如图所示:9.算法如下:S1 x←2+;S2 i←1;S3 x←2+;S4 i←i+1;S5 判断是否i≤n,若是,返回S3,否则,进入S6; S6 输出x.流程图如右图所示.第9题图。
(教师用书)高中数学 第一章 算法初步教案 苏教版必修3
第一章算法初步§1.1算法的含义(教师用书独具)●三维目标1.知识与技能:了解算法的含义,体会算法的思想;能够设计解决具体问题的算法;理解算法应满足的要求.2.过程与方法:让学生感悟人们认识事物的一般规律:由具体到抽象,再由抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力.3.情感态度与价值观:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力.●重点难点重点:初步理解算法的含义,体会算法思想,能够用自然语言描述算法.难点:用自然语言描述算法.引导学生一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础而化解难点.引导学生回顾解一般的二元一次方程组的步骤,分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解.目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,从而强化重点.(教师用书独具)●教学建议算法这部分的应用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣.建议教师通过多媒体辅助教学,采用“问题探究式”教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力.●教学流程创设问题情境,引出问题:宋丹丹的小品中要把大象关冰箱总共分几步?⇒引导学生结合所提出的问题归纳,分析,总结算法的含义.⇒通过引导学生回答所提问题理解算法的特点及能够解决的问题.⇒通过例1及其变式训练,使学生理解算法的含义及特征.⇒通过例2及其变式训练,使学生能设计算法(直接应用数学公式的算法).⇒通过例3及其变式训练,使学生明确解方程或方程组的算法并掌握其设计的方法和策略.⇒归纳整理,进行课堂小结,整体认识本节课所学知识并分层布置作业.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.宋丹丹的小品中有一个问题,把大象关进冰箱里需要几步.【提示】总共分三步:第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.对一类问题的机械的、统一的求解方法称为算法.(1)有限性:一个算法的步骤是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行,可以得到确定的结果,而不是模棱两可.(3)不惟一性:求解某一个问题的算法不一定是惟一的,可以有不同的算法,当然这些算法有繁简之分、优劣之别.(4)普遍性:很多具体的问题,都可以设计出合理的算法去解决.下列叙述能称为算法的个数是________.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100; ③3x >x +1;④求所有能被3整除的正数,即3,6,9,12…. 【思路探究】 根据算法的特征逐一作出判断.【自主解答】 ①②都是算法;③中没有给出一个确定的逻辑步骤来确定下一步做什么,不符合算法的确定性;④中的步骤是无限的,与算法的有限性矛盾.故应填2.【答案】 21.算法的定义是一个描述性定义,而算法的特征:明确性、有限性、可行性等揭示了算法的内涵,因此对于算法的了解,应从其特征入手.2.算法与普通数学问题的求解步骤是共性与个性的统一,但不能认为算法就是数学问题的求解步骤,它是解决一类问题的求解方法.下列语句中是算法的有________个.①从济南到巴黎,可以先乘火车到北京,再坐飞机抵达; ②利用公式S =12ah ,计算底为1、高为2的三角形的面积;③方程2x 2-x +1=0无实数根;④求M (1,2)与N (-3,-5)两点连线所在直线的方程,可先求直线MN 的斜率,再利用点斜式求得方程.【解析】 算法是解决某类问题而设计的一系列可操作或可计算的步骤,通过这些可有效地解决问题,显然四个语句中,①②④都是算法,③不是算法.【答案】 3设计一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积.【思路探究】 由底边长可求底面积.由底面边长及侧棱长可求出正四棱锥的高,然后代入体积公式即可.【自主解答】S1 取a =42,l =5; S2 计算R =2·a2;S3 计算h =l 2-R 2; S4 计算S =a 2; S5 计算V =13Sh ;S6 输出运算结果.1.设计算法的步骤为:(1)认真分析问题,找出解决此问题的一般数学方法; (2)借助有关的变量或参数对算法加以表述; (3)将解决问题的过程划分为若干步骤;(4)用简练的语言将各个步骤表示出来,即为该具体问题的算法.2.设计算法要做到以下几点:(1)写出的算法必须能解决一类问题,并且能够重复使用;(2)要使算法尽量简单,步骤尽量少;(3)要保证算法正确,且计算机能够执行.(2013·潍坊高一检测)求两底面半径分别为2和4,高为4的圆台的表面积及体积,写出解决该问题的一个算法.【解】S1 取r 1=2,r 2=4,h =4; S2 计算l =r 2-r 12+h 2;S3 计算S =πr 21+πr 22+π(r 1+r 2)·l ; S4 计算V =13π(r 21+r 22+r 1r 2)·h ;S5 输出S 、V .写出解方程x 2-2x -3=0的一个算法.【思路探究】 解一元二次方程可用因式分解法和分式法,根据这两种方法写出算法. 【自主解答】 法一 S1 移项,得x 2-2x =3①; S2 将①两边同时加上1,并配方,得(x -1)2=4②; S3 将②两边开平方得x -1=±2③; S4 解③得x 1=3,x 2=-1.法二 S1 计算判别式Δ=(-2)2-4×1×(-3);S2 将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac 2a ,得x 1=3,x 2=-1.1.对于这类解方程(或方程组)的问题,设计其算法时,一般按照数学上解方程(或方程组)的方法进行设计.2.设计时要注意全面考虑方程(或方程组)的解的情况,即先确定方程(或方程组)是否有解,有解时,还需确定几个解,然后按照求解的步骤设计.写出求方程组⎩⎨⎧3x -2y =14, ①x +y =-2, ②的解的算法.【解】 法一 S1 ②×2+①,得5x =14-4③; S2 解方程③,得x =2④; S3 将④代入②,得2+y =-2⑤; S4 解⑤得y =-4; S5 得到方程组的解为⎩⎪⎨⎪⎧x =2,y =-4.法二 S1 由②式移项可得x =-2-y ③; S2 把③代入①,得y =-4④; S3 把④代入③,得x =2;S4 得到方程组的解为⎩⎪⎨⎪⎧x =2,y =-4.忽视算法的确定性致错给出将1 573分解成奇因数的乘积的形式的一个算法.【错解】 算法步骤如下: S1 判断1 573是否为素数:否;S2 寻找1 573的最小奇因数;不是2,不是3…….【错因分析】 第二步的结果是不确定的,“不是2,不是3……,到底有多少不确定”. 【防范措施】 算法的每一步都要有明确具体的结果,设计算法时要明确每一个步骤,只能有一个确定的后续步骤并且得到确定的结果,不能模棱两可.【正解】 算法步骤如下: S1 判断1 573是否为素数:否;S2 确定1 573的最小奇因数:11,即1 573=11×143; S3 判断143是否为素数:否;S4 确定143的最小奇因数:11,即143=11×13; S5 判断13是否为素数:是; S6 1 573=11×11×13.算法的含义要明确以下两点:1.算法是建立在解法基础上的操作过程,算法不一定有结果,答案可以由计算机解决.2.算法没有固定的模式,但有以下几个要求.(1)符合运算规则,计算机能操作.(2)每一个步骤都有一个明确的计算任务.(3)对重复操作步骤返回处理.(4)步骤个数尽可能少.(5)每个步骤的语言描述要准确,简明.1.给出以下叙述:①过河要走桥或乘船;②老师提出的问题能回答正确;③做米饭需刷锅、淘米、添水、加热等几个步骤;④学习通常需要预习、听讲、质疑、练习、复习巩固等步骤.其中能称为算法的是________.【解析】①②具有不确定性,③④与实际相符,每一步都具有确定性和可执行性,都可称为一个算法.【答案】③④2.在教材中的“猜数”游戏中,主持人告诉竞猜者某商品的价格低于4 000元,而该商品的实际价格为1 500元,则竞猜者用二分搜索法猜数时第一次的报数为________,按照教材中的规则,此人需要________次即可猜中.【解析】每次报数都是取中间值,所以第一次报数应该取0与4 000的中间值2 000,第二次报数0与2 000的中间值1 000,第三次报1 000与2 000的中间值1 500.【答案】 2 000 33.下面给出了一个计算圆的面积的算法:S1 取R=5;S2 计算S=πR2;S3 输出S.则S=________.【解析】S=π×52=25π.【答案】25π4.已知直角三角形两直角边长a,b,设计求斜边长c的一个算法.【解】S1 输入直角三角形的两直角边长a、b的值;S2 计算c=a2+b2;S3 输出斜边长c的值.一、填空题1.看下面的三段话,其中不是解决问题的算法的是________.①解一元二次方程的步骤是去分母,去括号,移项,合并同类项,系数化为1.②方程x2=4有两个实根.③求1+2+3+4的值,先计算1+2=3,再计算3+3=6,最后计算6+4=10,最终结果为10.【解析】结合算法的含义知②不是解决问题的算法.【答案】②2.下列关于算法的描述正确的是________.①算法与求解一个问题的方法相同②算法只能解决一个问题,不能重复使用③算法过程要一步一步执行,每步执行的操作必须确切④设计算法要本着简单可行的原则【解析】根据算法的含义及特点,只有③④正确.【答案】③④3.下列所给问题中,其中不能设计一个算法求解的是________.①二分法解方程x 2-3=0(精确到0.01); ②解方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +3=0;③求半径为2的球的体积; ④证明y =x 2为偶函数.【解析】 根据算法特征知①②③都可以设计算法求解,而④不可以. 【答案】 ④4.用电水壶烧开水的一个算法过程如下: S1 打开电水壶的盖子,加水后盖上盖子; S2 接通电源;S3 在水开后,断开电源. 对于上述算法,有以下几种说法: ①顺序不能改变;②第一步与第二步可以互换; ③第二步是必须具有的步骤;④第三步可以变为“在水开后,倒出开水”. 其中说法正确的是________.【解析】 ①③正确,②④的说法不符合安全用电常识. 【答案】 ①③5.(2013·广州高一检测)完成不等式-2x -5>x +1的算法过程. S1 移项并合并同类项,得________.S2 在不等式的两边同时除以x 的系数,得________. 【解析】 依据解一元一次不等式的步骤进行. 【答案】 -3x >6 x <-26.已知一个学生的语文成绩是89,数学成绩是96,外语成绩是99,求他的总分和平均分的一个算法如下,请补充完整:S1 取A =89,B =96,C =99; S2 计算总分S =________; S3 计算平均分M =________; S4 输出S ,M .【解析】 总分S =89+96+99; 平均分M =89+96+993=S3.【答案】 89+96+99 S37.(2013·西宁高一检测)对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,设计解此方程组的算法时,第一步为________.【解析】 由于未知数的系数不确定,故该方程组不一定有解,当a 1b 2=a 2b 1时,该方程组无解,故第一步应为验证a 1b 2与a 2b 1是否相等.【答案】 验证a 1b 2=a 2b 1是否成立8.有一堆形状大小相同的珠子,其中只有一粒重量比其他的轻,某同学利用科学的算法,最多两次利用天平找出了这颗最轻的珠子,则这堆珠子最多的粒数是________.【解析】 最多是9粒,第一次是天平每边3粒,若平衡,则所求在剩余的3粒中,在这3粒中选出两粒,再放在天平的两边,若平衡,余下的一颗即为最轻的珠子,若不平衡,则天平高的一边即为最轻的珠子;若第一次天平不平衡,则在轻的一边选出两粒,再放在天平的两边,同样可以得到最轻的珠子.【答案】 9 二、解答题9.写出求一元二次方程ax 2+bx +c =0的根的一个算法. 【解】 算法如下:S1 计算Δ=b 2-4ac ; S2 若Δ<0,则方程无实根;S3 若Δ≥0,则x (1,2)=-b ±b 2-4ac2a.10.已知平面直角坐标系中点A (-2,0),B (3,1),写出求直线AB 的方程的一个算法. 【解】 法一 算法步骤如下. S1 求出直线AB 的斜率k =1-03--=15; S2 选定A (-2,0),用点斜式写出直线AB 的方程y -0=15[x -(-2)];S3 将第二步的运算结果化简,得到方程x -5y +2=0. 法二 算法步骤如下.S1 设直线AB 的方程为y =kx +b ;S2 将A (-2,0),B (3,1)代入第一步设出的方程,得到⎩⎪⎨⎪⎧-2k +b =0,3k +b =1;S3 解第二步所得的方程组,得到k =15,b =25;S4 把第三步得到的结果代入第一步所设的方程,得到y =15x +25;S5 将第四步所得的结果整理,得到方程x -5y +2=0.11.试写出一个判断圆(x -a )2+(y -b )2=r 2和直线Ax +By +C =0位置关系的算法. 【解】 S1 输入圆心的坐标(a ,b ),直线方程的系数A 、B 、C ; S2 计算Z 1=Ax 0+By 0+C ; S3 计算Z 2=A 2+B 2; S4 计算d =|Z 1|Z 2;S5 若d >r ,则相离;若d =r ,则相切,若d <r ,则相交.(教师用书独具)实际问题的算法设计有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.【思路探究】 本题实质上是考查交换两个变量值的算法.要交换两个变量的值,要先寻找第三个变量作为中间变量,再进行交换.【规范解答】 S1 找一个大小与蓝和黑两个墨水瓶相同的空瓶子A ; S2 将蓝墨水倒入空瓶子A 中;S3 将黑墨水倒入原来装蓝墨水的瓶子中; S4 将蓝墨水倒入原来装黑墨水的瓶子中.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳,他们如何渡河?请写出你设计的渡河的算法.【解】 S1 两个小孩同船渡过河去; S2 一个小孩划船回来;S3 一个大人独自划船渡过河去;S4 对岸的小孩划船回来;S5 两个小孩再同船渡过河去;S6 一个小孩划船回来;S7 余下的另一个大人独自划船渡过河去;S8 对岸的小孩划船回来;S9 两个小孩再同船渡过河去.§1.2流程图1.2.1 顺序结构(教师用书独具)●三维目标1.知识与技能:掌握顺序结构的特点,设计方法.2.过程与方法:学会用算法分析问题;能够使用顺序结构编写简单的程序解决具体问题.3.情感态度与价值观:体会用结构化方法解决数学问题的便捷性;明确结构化在程序设计中的重要作用;激励尝试使用多种方法解决问题;培养良好的编程习惯和态度.●重点难点重点:各种图框的功能,会用算法图框表示顺序结构.难点:对顺序结构的概念的理解;利用图框表示流程线顺序结构.(教师用书独具)●教学建议从知识结构上来说,学生在本章第一节已经了解了一些算法的基本思想,这是本节课的重要知识基础,从能力上来说,这个阶段的学生已经具有一定的分析问题、解决问题的能力,逻辑思维能力也初步形成,思维比较活跃但缺乏严谨性.因此,在设计教学中不仅要充分调动学生的学习积极性,更要注意培养学生严谨的数学思维和语言组织能力.由于学生首次接触算法图框,根据教学内容、教学目标和学生的认知水平,本节课主要采取问题导入式教学,即“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”,通过对问题的探究过程让学生掌握新知识,同时在解决问题的过程中掌握新知识的应用和解题过程,提高学生独立解题的能力.在老师的引导下,充分发挥学生的主观能动性,从问题入手,通过分析问题、交流方案、解决问题、运用问题的探索过程,让学生全程参与到问题的探索中而突破难点.通过学生对常见的图框及功能的理解和认识,结合典型例题及变式训练,使学生初步掌握顺序结构的流程图的设计而强化了重点.●教学流程创设问题情境,引出问题:如何形象直观的表示算法?⇒引导学生结合前面学习过的算法的含义理解常见的图框及功能,把握流程图的概念.⇒通过引导学生回答所提问题理解顺序结构的特点及能够解决的问题.⇒通过例1及其变式训练,使学生对流程图能够正确的认识和理解.⇒通过例2及其变式训练,使学生掌握较顺序结构流程图的画法.⇒通过例3及其变式训练,使学生明确顺序结构在实际生活中的应用并掌握求解策略.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.如何形象直观的表示算法?【提示】图形方法.2.用图形方法表示算法有何优点? 【提示】 简洁、直观.1.流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.常见的图框、流程线及功能顺序结构有何特点?【提示】 任何一个算法都离不开顺序结构,顺序结构是最简单、最基本的结构.依次进行多个处理的结构称为顺序结构.如图1-2-1,虚线框内是一个顺序结构,其中A 和B 两个框是依次执行的.顺序结构是一种最简单、最基本的结构.图1-2-1关于流程图的图形符号的理解正确的是______.(填序号)①流程图是描述算法的图形语言.②输入框可以在起始框后,也可以在判断框后.③判断框是唯一一个具有超过一个出口的图形符号.【思路探究】根据流程图的规则和每个框图所表示的功能逐一判断.【自主解答】①正确,由流程图的定义知.②正确,输入框可以在任何需要输入、输出的地方出现.③正确,判断框是具有多个出口的唯一符号.【答案】①②③正确理解流程图的概念,对构成流程图的各种图形符号的功能要准确把握,具体应用时注意其特点.掌握流程图的画法规则,画流程图的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类:一类判断框是“Y”与“N”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.下列说法正确的是________.①任何一个流程图都必须有起止框;②流程线表示算法步骤执行的顺序,用来连结图框;③一个自然语言描述的算法只能对应一个流程图;④流程图中的流程线可以箭头不朝下.【解析】一个自然语言描述的算法,可能有多个流程图与之对应.【答案】①②④(2013·连云港高一检测)利用梯形的面积公式计算上底长为2、下底长为4、高为5的梯形的面积,设计解决该问题的一个算法,并画出流程图.【思路探究】 根据梯形的面积公式S =12(a +b )·h ,其中a 为上底长,b 为下底长,h为高,只要令a ←2,b ←4,h ←5,代入公式即可.【自主解答】 算法如下: S1 a ←2,b ←4,h ←5; S2 S ←12(a +b )·h ;S3 输出S . 流程图如下:1.画流程图时,应先根据题意设计算法,再画流程图,一般不直接画流程图. 2.应用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法; (2)梳理解题步骤;(3)用数学语言描述算法,明确输入量、计算过程、输出量; (4)用流程图表示算法过程.已知一个三角形的三边长分别为2,3,4.利用海伦公式设计一个算法,求出该三角形的面积,并画出流程图.(海伦公式:已知三角形的三边长分别为a ,b ,c ,则三角形的面积S =pp -a p -bp -c ,其中p =a +b +c2)【解】 先将三角形的各边长赋值,求出三角形周长的一半,然后利用公式求解. 算法如下:S1 a ←2,b ←3,c ←4;S2 p ←a +b +c2;S3 S ←p p -a p -b p -c ;S4 输出S .流程图如图所示.如图1-2-2所示是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:图1-2-2(1)该流程图解决的是怎样的一个问题?(2)若最终输出的结果y 1=3,y 2=-2,当x 取5时输出的结果5a +b 的值应该是多少? (3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,输出结果ax +b 等于0?【思路探究】 先分析流程图的功能,然后根据函数关系式中变量间的关系依次解答,同时还要注意流程图中不同形式的图框的功能.【自主解答】 (1)该流程图解决的是求函数f (x )=ax +b 的函数值的问题. (2)y 1=3,即2a +b =3,y 2=-2, 即-3a +b =-2.由⎩⎪⎨⎪⎧2a +b =3,-3a +b =-2,得⎩⎪⎨⎪⎧a =1,b =1.∴f (x )=x +1.∴当x 取5时,5a +b =f (5)=5+1=6.(3)输入x 值越大,输出的函数值ax +b 越大.因为函数为增函数.(4)令f (x )=x +1=0,得x =-1,因此,当输入x 的值为-1时,输出的函数值为0.1.已知流程图,回答问题,首先应理清流程图的结构,本例中的流程图为——顺序结构.2.已知流程图的函数问题,将框图所表示的算法翻译成自然语言,是由用自然语言表达的算法画出流程图的逆向过程.对这两种语言的互译有助于熟练掌握算法的设计,而将流程图翻译成自然语言相对而言比较陌生,是一个难点.阅读如图1-2-3所示的流程图,回答下面的问题.图1-2-3(1)图框①中x ←4的含义是什么?(2)图框②中y 1←x 3+2x +3的含义是什么?计算y 1(3)图框④中y2←x2-2x的含义是什么?计算y2【解】(1)图框①的功能是初始化变量,令x=4.(2)图框②中y1←x3+2x+3的含义:该图框是在执行①的前提下,即当x=4时,计算x3+2x+3的值,并令y1等于这个值,y1=43+2×4+3=75.(3)图框④中y2←x2-2x的含义:该图框是在执行③的前提下,即当x=-1时,计算x2-2x的值,并令y2等于这个值,y2=(-1)2-2×(-1)=3.混淆构成流程图的符号及作用致误已知x=4,y=2,画出计算W=3x+4y的值的流程图.【错解】流程图如图(1)所示.(1) (2)【错因分析】输出框用平行四边形,而此题的错解中用了矩形框.【防范措施】 1.流程图中特定的符号表示特定的含义,不能乱用.2.熟练掌握流程图中的常见符号的含义及功能,掌握画流程图的技巧和方法.【正解】如图(2)画流程图时所遵循的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果,另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.1.下列是流程图的一部分,表示合理的是________.【解析】③是输入、输出框,不合要求,①②均可.【答案】①②2.流程图的图框“”可完成下列中的________.①输入a←10②判断a>10③输出a←10④赋值a←10【解析】图框为矩形框,其功能为计算或赋值,故④正确.【答案】④3.下列流程图1-2-4中输出S的值为________.图1-2-4【解析】该流程图的功能是求半径为r的圆的面积又r=5,∴S=25π.【答案】25π4.已知一个圆柱的底面半径为R,高为h,求出圆柱体积.设计解决该问题的一个算法,并画出相应的流程图.【解】算法如下:S1 输入R、h;S2 V←πR2h;S3 输出V.流程图如图.一、填空题1.下列关于流程线的说法.①流程线表示算法步骤执行的顺序,用来连结图框;②流程线只要是上下方向就表示自上向下执行可以不要箭头;③流程线无论什么方向,总要按箭头的指向执行;④流程线是带有箭头的线,它可以画成折线.其中正确的有________.【答案】①③④2.流程图中表示判断的图框是________.【解析】由各种图框的符号及含义表示可知一般用菱形框表示判断框.【答案】3.图1-2-5(2013·苏州高一检测)如图1-2-5所示,A杯原来装酒,B杯原来装油,C杯原来空杯,则流程图运行结果为(每次操作都全部倒完)A杯为______,B杯为________,C杯为________.【解析】运行结果为先把酒放到空杯C中,此时A杯空着,然后把B中的油放到A杯中,此时B杯空着,最后将C杯中的酒放到B杯中,此时C杯空着,此时A杯中为油,B 杯中为酒,C杯为空杯.【答案】油酒空杯4.如图1-2-6所示的流程图的输出结果P=________.图1-2-6【解析】P=m+5=2+5=7.【答案】75.图1-2-7(2013·宿迁高一检测)给出如图1-2-7所示流程图,若输出结果为12,则①处的图框中应填的是________.【解析】由b=a-3=12知a=15,∴3x-3=15即x=6,∴①中应填x←6.【答案】x←66.下列图1-2-8中的算法功能为________.(a>0,b>0)图1-2-8【解析】 d =a 2+b 2,c =d =a 2+b 2故可根据几何意义填,答案不唯一. 【答案】 求以a ,b 为直角的直角三角形斜边的长度7.图1-2-9(2)是计算图1-2-9(1)的阴影部分面积的一个流程图,则①中应该填________.图(1) 图(2)图1-2-9【解析】 设阴影部分面积为M ,则M =x 2-π·(x 2)2=(1-π4)x 2.【答案】 M ←(1-π4)x 28.图1-2-10如图1-2-10是一个算法的流程图,已知a 1=3,输出的结果为7,则a 2的值为________. 【解析】 由输出的结果为7易知a 1+a 2=14,又a 1=3,∴a 2=11. 【答案】 11。
最新苏教版第1章算法教案(苏教版必修3)
算法部分章质量检测本章知识结构一、知识点剖析1.算法的定义和特点掌握要点:算法定义:在数学中指按照一定规则解决某一类问题的明确和有限的步骤。
算法特点:①有穷性:一个算法的步骤是有限的,它应在有限步操作之后停止。
②确定性,算法的每一步操作必须是明确的,不能有歧义或模糊且算法执行后一定产生确定的结果,不能模棱两可。
③可行性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个明确的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都要准确无误才能解决问题。
④不惟一性:求解某一类问题的算法是不惟一的,对于一个问题可以有不同的算法。
⑤普遍性,很多具体的问题都可以设计合理的算法解决。
易混易错:(1)算法一般是机械的,有时要进行大量重复的运算,只要按部就班的做总能算出结果,通常把算法过程称为“数学机械化”,“数学机械化”的最大优点是它可以让计算机来完成。
(2)实际上,处理任何问题都需要算法。
如,邮购物品有其相应的手续。
购买飞机票也有一定的手续等。
(3)求解某个问题的算法不惟一。
易混易错:在所给的上述符号之中只有判断框有一个入口和两个出口,它是唯一有两个退出点的符号。
(2)三种基本逻辑结构①顺序结构②条件结构③循环结构顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
这是任何一个算法都离不开的基本结构。
条件结构:在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立会有不同的流向,条件结构就是处理这种过程的结构。
易混易错:在条件结构中无论条件是否成立,都只能执行两框之一,两框不可能同时执行,也不可能两框都不执行。
循环结构:算法结构中经常会遇到从某处开始,按照一定条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤成为循环体。
循环结构分为两种:当性循环结构和直到性循环结构。
当性循环结构:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环。
苏教版高中数学必修三-第一章-算法初步1.2.2ppt课件
课 时 作 业
课 堂 互 动 探 究
教 师 备 课 资 源
SJ ·数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
必修3
易 错 易 误 辨 析 当 堂 双 基 达 标
引导学生通过类比顺序结构明确选择结构与顺序结构的 异同,把握选择结构的两种形式,通过例题与练习让学生在 应用选择结构的过程中更深入地理解该种结构的特点和作 用;以强化重点.
课 时 作 业
课 堂 互 动 探 究
菜 单
教 师 备 课 资 源
SJ ·数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
必修3
易 错 易 误 辨 析 当 堂 双 基 达 标
选择结构
【问题导思】 画出解方程 ax+b=0 的流程图时能不能只用顺序结构表 示?为什么?
【提示】 不能,从算法中的第二步应以 a 是否等零为
必修3
易 错 易 误 辨 析 当 堂 双 基 达 标
课 时 作 业
课 堂 互 动 探 究
菜 单
教 师 备 课 资 源
SJ ·数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
必修3
易 错 易 误 辨 析 当 堂 双 基 达 标
课 时 作 业
课 堂 互 动 探 究
菜 单
教 师 备 课 资 源
SJ ·数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
必修3
易 错 易 误 辨 析 当 堂 双 基 达 标
课 时 作 业
课 堂 互 动 探 究
菜 单
教 师 备 课 资 源
SJ ·数学
高中数学第1章算法初步1.2流程图讲义苏教版必修3
1.2 流程图1.流程图的概念流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.流程图的图形符号及其应用依次进行多个处理的结构称为顺序结构.顺序结构的形式如图所示,其中A和B两个框是依次执行的.顺序结构是任何一个算法都离不开的最简单、最基本的结构.4.选择结构先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构,也称为分支结构.如图所示,虚线框内是一个选择结构,它包含一个判断框,当条件p成立(或称为“真”)时执行A,否则执行B.思考1:一个选择结构只能有两个执行选项吗?[提示] 一个选择结构只能有两个执行选项.思考2:若有多于两种选项的情况怎样处理?[提示] 可以用多个选择结构嵌套组合来处理.5.循环结构(1)定义:在算法中,需要重复执行同一操作的结构称为循环结构.(2)分类:循环结构分为当型循环和直到型循环.①当型循环:先判断所给条件p是否成立,若p成立,则执行A,再判断条件p是否成立;若p仍成立,则又执行A,如此反复,直到某一次条件p不成立时为止,这样的循环结构称为当型循环.其示意图如图1所示:图1 图2②直到型循环:先执行一次循环体,再判断所给条件是否成立,若不成立,则继续执行循环体,如此反复,直到条件成立时为止,这样的循环结构称为直到型循环.其示意图如图2所示.1.下列对流程图的描述,正确的是( )A.流程图中的循环可以是无止境的循环B.选择结构的流程图有一个入口和两个出口C.选择结构中的两条路径可以同时执行D.循环结构中存在选择结构D[根据选择结构与循环结构的定义可知,A、B、C不正确.D正确.特别提醒:本题易错选B,判断框是一个入口和两个出口,但是选择结构中的两条路径,只能执行其一,不能同时执行,故B不正确.]2.如图所示的流程图的运行结果是________.第2题图第3题图5 2[根据流程图的意义可知,当a=2,b=4时,S=24+42=52.]3.阅读如图所示的流程图,运行相应的算法,输出的结果是________.11 [第一次运行,a=3;第二次运行a=11,11<10不成立,退出.] 4.如图是求实数x的绝对值的算法流程图,则判断框①中可填________.x >0或x ≥0 [根据绝对值定义解答,|x |=⎩⎪⎨⎪⎧x , x ≥0,-x , x <0.]①流程图中的图形符号可以由个人来确定; ②也可以用来执行计算语句; ③输入框只能紧接在起始框之后;④用流程图表示算法,其优点是将算法的基本逻辑结构展现得非常直接.④ [①中框图中的图形符号有严格标准,不能由个人确定;②中只能执行判断语句,不能执行计算语句;③中输入框不一定只能紧接在起始框之后.故①②③不正确,④正确.]1.理解流程图中各框图的功能是解此类题的关键,用流程图表示算法更直观、清晰、易懂.2.起止框用“”表示,是任何流程不可少的,表明程序的开始和结束.3.输入、输出框图用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内.4.处理框图用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框.5.判断框是唯一具有超过一个退出点的图框符号.1.流程图中,符号“”可用于________.(填序号) ①输入;②输出;③赋值;④判断.③ [流程图中矩形方框的功能是赋值和计算.]2.对于流程图的图框符号的理解,下列说法中正确的是________.(填序号) ①输入框、输出框有严格的位置限定; ②任何一个流程图都必须有起止框;③对于一个流程图而言,判断框中的条件是唯一确定的; ④判断框是唯一具有超过一个退出点的图框符号.②④ [任何一个流程图都必须有开始和结束,因此必须有起止框;输入框和输出框可以用在算法中的任意需要输入和输出的位置;判断框中的条件不是唯一的.]思路点拨:对于套用公式型的问题,要注意所给公式中变量的个数及输入、输出部分的设计.先写出算法,再画出对应的流程图.本题可用顺序结构解决.[解] 算法如下: S1 输入a ,b ,h ; S2 S ←12(a +b )·h ;S3 输出S . 流程图如图.应用顺序结构表示算法的步骤(1)仔细审题,理清题意,找到解决问题的方法; (2)梳理解题步骤;(3)用数学语言描述算法,明确输入量,计算过程,输出量; (4)用流程图表示算法过程. 提醒:规范流程图的画法 (1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画,流程线要规范; (3)除判断框外,其他框图符号只有一个进入点和一个退出点; (4)在图形符号内描述的语言要非常简练、清楚.3.已知x =4,y =2,画出计算w =3x +4y 的值的流程图.[解] 本题可用顺序结构解决,利用流程图的定义及符号之间的联系即可画出流程图. 流程图如图:4.已知一个圆柱的底面半径为R ,高为h ,求圆柱的体积.设计一个解决该问题的算法,并画出相应的流程图.[解] 算法如下: 第一步,输入R ,h . 第二步,计算V ←πR 2h .第三步,输出V . 流程图如图所示:【例3】 设计一个算法,输入x 的值,计算并输出y 的值,且y =⎩⎪⎨⎪⎧-x +1,x <0,1,x =0,x +1,x >0,试画出该算法的流程图.[解] 该函数是分段函数,当给出一个自变量x 的值时,必须先判断x 的范围,然后确定利用哪一段的解析式求对应的函数值.因为解析式分了三段,所以判断框需要两个,即进行两次判断.算法步骤如下: 第一步 输入x ;第二步 若x <0,则y ←-x +1;否则执行第三步; 第三步 若x =0,则y ←1;否则,y ←x +1; 第四步 输出y . 流程图如图所示:1.选择结构是在需要进行分类讨论时所应用的逻辑结构,但是在某些问题中,需要经过几次分类才能够将问题讨论完全,这样就需要选择结构的嵌套.所谓嵌套,是指选择结构内,又套有小的分支,对条件进行两次或更多次的判断.常用于一些分段函数的求值问题.选择结构中算法的流程要根据条件流向不同的方向,此结构中的主要部分是判断框.选择结构的嵌套中可以含有多个判断框.一般地,如果是分三段的函数,需要引入两个判断框;如果是分四段的函数,需要引入三个判断框…以此类推.其流程图如图所示.2.在选择结构中,反映的是“先判断,后执行”的思想.选择结构的两个分支在写算法时实质上是一个步骤,不能写成两个步骤.如果一个分支中还有两个子分支,这时有两种处理方法:(1)直接嵌套在这一步中; (2)用“转到”某一步.提醒:根据分段函数,设计算法流程图时,必须引入判断框,运用选择结构,当题目出现多次判断时,一定要先分清判断的先后顺序,再逐层设计流程图.5.如图所示的流程图,若输入的x的值为0,则输出的结果为________.1 [这是一个嵌套的选择结构,当输入x=0时,执行的是y←1,即y=1.故输出的结果为1.]6.设计一个求解一元二次方程ax2+bx+c=0的算法,并画出流程图.[解] 依据求解一元二次方程的方法步骤设计算法,算法步骤如下:S1 输入3个系数a,b,c;S2 计算Δ←b2-4ac;S3 判断Δ≥0是否成立.若是,则计算p←-b2a,q←Δ2a;否则,输出“方程没有实数根”,结束算法;S4 判断Δ=0是否成立.若是,则输出x1=x2=p;否则,计算x1←p+q,x2←p-q,并输出x1,x2.流程图如图所示:[1.循环结构有哪两种形式?[提示] 循环结构有当型循环结构和直到型循环结构两种常见形式.2.当型循环结构和直到型循环结构有何区别?[提示] 当型循环结构与直到型循环结构的区别为当型循环结构首先进行条件的判断,然后再执行循环体,而直到型循环结构是先执行一次循环体,然后再进行条件的判断.3.当型循环结构和直到型循环结构是否可以相互转化?[提示] 这两种循环结构可以相互转化,需要注意的是,两者相互转化时,所满足的条件不同.【例4】指出图中流程图的功能.如果用的是循环结构,则写出用的是哪一种循环结构,并画出用另一种循环结构表示的流程图.思路点拨:依据当型循环和直到型循环的结构特征判断、改写.图中是先执行再判断,故采用的直到型循环结构,可用当型循环结构改写.[解] 题图所示的是计算12+22+32+…+992的值的一个算法的流程图,采用的是直到型循环结构,可用当型循环结构表示,如图所示:1.读如图所示的流程图,完成下面各题:(1)循环体执行的次数是________.(2)输出的结果为________.(1)49 (2)2 450 [(1)∵i←i+2,∴当2n+2≥100时循环结束,此时n≥49.(2)S=0+2+4+6+…+98=2 450.]2.指出图中流程图的功能,如果是循环结构,指出是哪一种循环结构,并画出用另一种循环结构表示的流程图.[解] 依据当型循环和直到型循环结构的特征判断改写.此流程图的功能是计算1×3×5×7×…×97的值.是当型循环结构,可用直到型循环结构表示,如图所示:1.循环结构主要用于解决有规律的重复计算问题,如累加求和、累乘求积等.如果算法问题里涉及的运算进行了多次重复的操作,且先后参与运算的各数之间有相同的变化规律,就可以引入循环变量参与运算,构成循环结构.2.要用好循环结构,需要注意三个环节:(1)确定循环变量和初始值,初始值的确定要结合具体问题,这是循环的基础;(2)确定循环体,循环体是算法中反复执行的部分,是循环进行的主体;(3)确定终止循环的条件,因为一个算法必须在有限步骤内完成.3.转化与化归思想在循环结构中有重要应用.循环结构的两种形式,当型循环结构与直到型循环结构可以相互转化,需要注意的是,相互转化时所满足的判断条件不同.1.本节课的重难点是理解流程图的作用,能用顺序结构,选择结构,循环结构书写算法.2.含条件结构问题的求解策略(1)理清所要实现的算法的结构特点和流程规则,分析功能;(2)结合框图判断所要填入的内容或计算所要输入或输出的值;(3)明确要判断的条件是什么,判断后的条件对应着什么样的结果.3.利用循环结构表示算法的步骤利用循环结构表示算法,第一要先确定是利用当型循环结构,还是直到型循环结构;第二要选择准确的表示累计的变量;第三要注意在哪一步开始循环,满足什么条件不再执行循环体.1.任何一种算法都离不开的基本结构为( )A.顺序结构B.选择结构C.循环结构D.顺序结构和选择结构A[顺序结构是最简单、最基本的结构,是任何一个算法都离不开的基本结构.]2.下列关于流程线的说法,不正确的是( )A.流程线表示算法步骤执行的顺序,用来连接图框B.流程线只要是上下方向就表示自上向下执行,可以不要箭头C.流程线无论什么方向,总要按箭头的指向执行D.流程线是带有箭头的线,它可以画成折线B[依据流程线的画法及其功能判断,A、C、D正确,B不正确.]3.根据所给流程图,当输入x=10时,输出的y的值为________.14.1 [由流程图可知,该流程图的作用是计算分段函数y =⎩⎪⎨⎪⎧1.2x , x ≤7,.9x -4.9, x >7的函数值.当输入x =10时,输出的y 值为1.9×10-4.9=14.1.]4.设计求1+3+5+7+…+99的算法,并画出相应的流程图.[解] 这是求50个数和的一道题,多次求和,可以利用循环结构完成.用变量S 存放求和的结果,变量I 作为计数变量,每循环一次,I 的值增加2.算法如下: S1 S ←0; S2 I ←1;S3 如果I ≤99,那么转S4,否则转S6; S4 S ←S +I ; S5 I ←I +2,转S3; S6 输出S . 流程图如图所示:。
高中数学必修三第一章算法初步全章教案
1.1算法的定义教学目标:1.通过实例体会算法的思想,了解算法的含义;2.能按照步骤用自然语言写出简单问题的算法过程;3.了解算法的主要特点.教学重点:算法的概念.教学难点:算法的理解及设计.教学过程:一、问题情境情境1:现代科学技术的发展,给我们的日常生活带来了很大的变化,和远方的朋友相联系,很少再有人去写纸质的信了,代之以打电话或上网发电子邮件等,我们在座的各位同学可能都有收发电子邮件的经历,有哪位同学能把发电子邮件的方法和步骤说一下?情境2:大家可能都看过中央电视台李咏曾经主持的“猜价格,赢商品”的节目,竞猜者如果在规定的时间内猜出某种商品的价格,就可赢得该商品.现有一商品,价格在0~8000元之间,如果让你去猜,你如何在较短的时间内猜中价格?二、学生活动1.第一步:上网打开电子邮箱;第二步:点击“写邮件”;第三步:输入发送地址;第四步:输入主题;第五步:输入信件内容;第六步:点击“发送邮件”.2.第一步:报“4000元”;第二步:若主持人说“高”了(说明价格在0~4000之间),就报“2000”,否则(价格在4000~8000之间)报“6000”;第三步:重复第二步的报数方法,直到得到正确的结果.3.小结:从以上两例可以看出,我们都是在按一定的程序进行了一系列机械的操作来完成一事件,其中就蕴含了算法的思想.三、建构数学1.算法的概念.对于一项任务,按照事先设计好的步骤,一步一步地执行,并在有限步内完成任务,则这些步骤称为完成该任务的一个算法.2.算法的特征.(1)确定性:即求解的过程是事先确定的,有确定的步骤.在执行算法的过程中,我们只是机械地一步一步地照着做.(2)可行性:即算法执行过程中的每一步都是能够做到的.(3)有穷性:即算法在有穷步骤之后结束,这包含着算法运行的时间是有限的,运行时(在计算机中需要的存储)空间也是有限的.不满足有穷性的算法是没有实际意义的.(4)通用性:一般来说,算法应有某种通用性,可以解决某一类问题.(5)有输出特征:算法执行之后应有结果,应完成给定的任务.四、数学运用1.例题.例1给出求1+2+3+4+5+6+7的一个算法.解析:本例主要是培养学生理解概念的程度,了解解决数学问题都需要算法.算法一:按照逐一相加的程序进行.第一步计算1+2,得到3;第二步将第一步中的运算结果3与3相加,得到6;第三步将第二步中的运算结果6与4相加,得到10;第四步将第三步中的运算结果10与5相加,得到15;第五步 将第四步中的运算结果15与6相加,得到21; 第六步 将第五步中的运算结果21与7相加,得到28. 算法二:可以运用公式1+2+3+…+n =n (n +1)2直接计算. 第一步 取n =7; 第二步 计算n (n +1)2 ;第三步 输出运算结果.例2给出求解方程组⎩⎪⎨⎪⎧2x +y =5 ①4x +5y =13 ② 的一个算法.解析:消元法,步骤:第一步 方程①不动,将方程②中的x 的系数除以方程①中x 的系数,得到乘数m =42 =2;第二步 方程②减去m 乘以方程①,消去方程②中的x项,得到⎩⎪⎨⎪⎧2x +y =53y =3第三步 将上面的方程组自下而上回代求解,得到y =1,x =2,所以原方程组的解为⎩⎪⎨⎪⎧x =2y =1,这种消元回代的算法适用于一般线性方程组的求解.点评:一个算法,就是一个有穷规则的集合,它为某个特定类型问题提供了解决问题的运算序列.其中的每条规则必须是明确定义的、可行的.序列的终止表示问题得到解答或指出问题没有解答.2.练习.课本P36页第1题. 五、要点归纳与方法小结 本节课学习了以下内容: 算法的概念和算法的特征.1.2流程图教学目标:1.理解流程图的概念;2.能识别和理解简单框图的功能.教学过程:一、建构教学 1.流程图的概念:流程图是用一些图框和流程线来表示算法程序结构的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.规范流程图的表示: ①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范; ③除判断框外,大多数框图符号只有一个进入点和一个退出点. ④在图形符号内描述的语言要非常简练、清楚. 二、数学运用 例1 已知1()21xf x =+,写出求(4)(3)(2)(4)f f f f -+-+-++的一个算法,并画出流程图.解 1S 0S ←;2S 4I ←-;3S 1()21I f I ←+; 4S ()S S f I ←+;5S 1I I ←+; 6S 若4I ≤,转3S ,否则输出S . 例2 高一某班一共有50名学生,设 计一个算法,统计班上数学成绩良好(分数大于80且小于90)和优秀(分数大或等于90)的学生人数,并画出流程图. 解:算法如下:1S 1n ←,0a ←,0b ←;2S 输入成绩r ;3S 若89r >,则1a a ←+,转5S ; 4S 若80r >,则1b b ←+; 5S 1n n ←+;6S 若50n ≤,转2S ,否则,输出a 和b ;1.2.1顺序结构教学目标:1. 理解流程图的概念以及顺序结构.2. 能识别和理解简单的框图的功能.3. 能运用顺序结构设计流程图以解决简单的问题.N50n >输出a ,b Y1b b ←+1a a ←+1n ←,0a ← ,0b ←输入成绩r89r > 80r >Y1n n ←+ NY结束开始教学方法:1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.2. 在具体问题的解决过程中,掌握基本的流程图的画法和顺序结构.教学过程:一、问题情境1.情境:回答下面的问题:(1)123100++++=;(2)123n++++=;2.问题:已知1232006n++++>,求n的最小值,试设计算法.二、学生活动学生讨论,教师引导学生进行表达.解1S取1n=;2S计算2)1(+nn;3S若(1)20062n n+>,则输出n;否则,使1n n=+,转2S.上述算法可以用框图直观地描述出来:教师边讲解边画出第7页图1-2-1,这样的框图我们称之为流程图.三、建构数学2.构成流程图的图形符号及其作用(课本第7页),结合图形讲解.3.规范流程图的表示: ①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范; ③除判断框外,大多数框图符号只有一个进入点和一个退出点. ④在图形符号内描述的语言要非常简练、清楚.4.从流程图121--可以看出,该算法步骤中,有些是按顺序执行,有些需要选择执行,而另外一些需要循环执行.事实上,算法都可以由顺序结构、选择结构、循环结构这三块“积木”通过组合和嵌套表达出来.5.顺序结构的概念:依次进行多个处理的结构称为顺序结构. 四、数学运用 1.顺序结构举例例1 写出作ABC ∆的外接圆的一个算法. 解 1S 作AB 的垂直平分线1l ;2S 作BC 的垂直平分线2l ;3S 以1l 与2l 的交点M 为圆心,MA 为半径作圆,圆M 即为ABC ∆的外接圆.说明 1.以上过程通过依次执行1S 到3S 这三个步骤,完成了作外接圆这一 问题,这种依次进行多个处理的结构就是顺序结构.2.上述算法的流程图如下图1所示,它是一个顺序结构.作BC 的垂直平分线2l 作AB 的垂直平分线1l以1l 与2l 的交点M 为圆心,MA 为半径作圆p x ← x y ← y p ← ↓↓ ↓↓图1 图2例2 已知两个单元分别存放了变量x 和y 的值,试交换这两个变量值. 说明 1.在计算机中,每个变量都分配了一个存储单元,它们都有各自的地址.2.为了表达方便,我们用符号“p x ←”表示“把x 赋给p ”. 解 为了达到交换的目的,需要一个单元存放中间变量p . 算法是:1S p x ←; {先将x 的值赋给变量p ,这时存放变量x 的单元可作它用} 2S x y ←; {再将y 的值赋给x ,这时存放变量y 的单元可作它用} 3S y p ←. {最后将p 的值赋给y ,两个变量x 和y 的值便完成了交换} 说明:上述算法的流程图如上图2所示,它是一个顺序结构.例3 半径为r 的圆的面积计算公式为2πS r =,当10r =时,写出计算圆面 积的算法,画出流程图. 解 算法如下:1S 10r ←; 2S 2πS r ←;3S 输出S .说明:上述算法的流程图如右图所示,它是一个顺序结构. 2.练习:课本第9页练习第1,2题. 五、要点归纳与方法小结 本节课学习了以下内容: 1.流程图的概念:流程图是用一些图框和流程线来表示算法程序结构的一种图形程序.它直观、清晰,便于检查和修改.2.画流程图的步骤:首先用自然语言描述解决问题的一个算法,再把自然语言转化为流程图;3.顺序结构的概念:依次进行多个处理的结构称为顺序结构.1.2.2选择结构教学目标:1.理解流程图的选择结构这种基本逻辑结构.2.能识别和理解简单的框图的功能.3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.教学方法:1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.教学过程:一、问题情境1.情境:某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为0.53,50,500.53(50)0.85,50,c ωωωω⨯≤⎧=⎨⨯+-⨯>⎩其中ω(单位:kg )为行李的重量.试给出计算费用c (单位:元)的一个算法,并画出流程图. 二、学生活动学生讨论,教师引导学生进行表达. 解 算法为:1S 输入行李的重量ω;2S 如果50ω≤,那么0.53c ω←⨯,否则500.53(50)0.85c ω←⨯+-⨯;3S 输出行李的重量ω和运费c .上述算法可以用流程图表示为: 教师边讲解边画出第10页图1-2-6. 在上述计费过程中,第二步进行了判断. 三、建构数学 1.选择结构的概念:先根据条件作出判断,再决定执行哪一种 操作的结构称为选择结构.如图:虚线框内是一个选择结构,它包含一个判断框,当条件p 成立(或称条件p 为“真”)时执行A ,否则执行B .2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判 断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;(3)在上图的选择结构中,只能执行A 和B 之一,不可能既执行A ,又执 行B ,但A 或B 两个框中可以有一个是空的,即不执行任何操作;(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和 两个退出点.3.思考:教材第7页图121--所示的算法中,哪一步进行了判断?四、数学运用分析 由于一元二次方程未必总有实数根,因此,求解时,要先计算判别式△24b ac =-,然后比较△与0的大小,再决定能否用求根公式求解.所以,在算法中应含有选择结构.思考:如果要输出根的详细信息(区分是两个相等的实数根还是不等的实数根),如何修改上述算法和流程图?例2 解 1S 输入任意实数x ;2S 若0≥x ,则y x ←;否则y x ←-; 3S 输出y . 算法流程图如右.2.练习:课本第11页练习第1,2,3题. 五、要点归纳与方法小结 本节课学习了以下内容:1.选择结构的概念:先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构.2.理解选择结构的逻辑以及框图的规范画法,选择结构主要用在判断、分类或分情况的问题解决中.1.2.3循环结构教学目标:1. 理解流程图的循环结构这种基本逻辑结构.2. 能识别和理解简单的框图的功能.3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.N0x ≥y x ←输入x输出yY y x ←-教学方法:1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.教学过程:一、问题情境1.情境:北京获得了2008年第29届奥运会的主办权.你知道在申奥的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对遴选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市就获得举办权;如果所有申办城市得票数都不超过总票数的一半,则将得票数最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.2.问题:怎样用算法结构表述上面的操作过程?二、学生活动学生讨论,教师引导学生进行算法表达,然后画出流程图.解:算法为:1S投票;S统计票数,如果有一个城市得票超过总票数的一半,那么该城市就获得举办权,2转3S;S,否则淘汰得票数最少的城市,转1S宣布主办城市.3上述算法可以用流程图表示为:教师边讲解边画出第12页图129--.三、建构数学1.循环结构的概念:需要重复执行同一操作的结构称为循环结构.如图:虚线框内是一个循环结构,先执行A框,再判断给定的条件p是否为假;若p为假,则再执行A,再判断给定的条件p是否为假……,如此反复,直到p为真,该循环过程结束.四、数学运用1.循环结构举例.例1 (教材第13页例4)写出求12345⨯⨯⨯⨯值的一个算法,并画出流程图.解:算法1:逐一相加(见教材第13页);算法2:1S1T←; {使1T=}S22I←; {使2I=}3S T T I←⨯; {求T I⨯,乘积结果仍放在变量T中}4S 1I I ←+; {使I 的值增加1} 5S 如果5I ≤,转3S ,否则输出T .说明:1.算法2中各种符号的意义; 2.算法2不仅形式简练, 而且具有通用性、灵活性.其中3S ,4S ,5S 组成一个循环,在实现算法时要反复多次执行3S ,4S ,5S 步骤,直到执行5S 时,经过判断,乘数I 已超过规定的数为止.算法流程图如右.练习1:写出求1357911⨯⨯⨯⨯⨯值的一个算法,并画出流程图. 例2 设计一个计算10个数平均数的算法,并画出流程图.分析:由于需要依次输入10个数,并计算它们的和,因此,需要用一个循环结 构,并用一个变量存放数的累加和.在求出10个数的总和后,再除以10,就得 到10个数的平均数.解:1S 0S ←; {使0S =}2S 1I ←; {使1I =} 3S 输入G ; {输入一个数}4S S S G ←+; {求S G +,其和仍放在变量S 中} 5S 1I I ←+; {使I 的值增加1} 6S 如果10I ≤,转3S , {如果10I >,退出循环} 7S 10S A ←; {将平均数10S存放到A 中} 8S 输出A . {输出平均数}说明:1.本题中的第一步将0赋值于S ,是为这些数的和 建立存放空间;2.在循环结构中都有一个计数变量(本题中的I )和累加变量(本题中的S ),计数变量用于记录循环次数(本题实质是为了记录输入的数的个数),累加变量用于输出结果.计数变量与累加变量一般是同步进行的,累加一次,计数一次. 算法流程图如右.2.练习:课本第15页练习第1,2 题. 练习1 答案:1S 2S ←;2S 4I ←;N100I >2S ←4I ←S S I ←+ 2I I ←+3S S S I ←+;4S 2I I ←+; 5S 如果100I ≤,转3S , 否则输出S .练习2答案:将50个学生中成绩不低于80分的学生的学号和成绩打印出来.五、要点归纳与方法小结 本节课学习了以下内容:1.循环结构的概念:需要重复执行同一操作的结构称为循环结构.它主要 用在反复做某项工作的问题中.2.用循环结构画流程图:确定算法中反复执行的部分,确定循环的转向位 置和终止条件.3.选择结构与循环结构的区别与联系:区别:选择结构通过判断执行分支,只是执行一次;循环结构通过条件判断可以反复执行;联系:循环结构是通过选择结构来实现的,循环结构中一定包含选择结构. 4.在循环结构中都有一个计数变量(本题中的I )和累加变量(本题中的S 计数变量用于记录循环次数(本题实质是为了记录输入的数的个数),累加变量用于输出结果.计数变量与累加变量一般是同步进行的,累加一次,计数一次.1.3.1-1.3.2赋值语句的输入、输出语句教学目标:1.通过实例,使学生理解三种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法.2.能初步应用这种基本的算法语句表示算法,编写类BASIC 程序. 3.进一步体会算法的基本思想,学会有条理地、清晰地表达解决问题的步骤,提高逻辑思维能力.教学方法:例4 通过实例,发展对解决具体问题的过程与步骤进行分析的能力. 例5 通过模仿、操作、探索,经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力.例6 在解决具体问题的过程中学习三种基本语句,感受算法的重要意义.教学过程:一、问题情境问题1 已知我班某学生上学期期末考试语文、数学和英语学科成绩分别为80,100,89,试设计适当的算法求出这名学生三科的平均分.二、学生活动1.学生讨论,教师引导学生写出算法并画出流程图. 流程图:2.怎样将以上算法转换成计算机能理解的语言呢? 下面我们将通过伪代码学习基本的算法语句. 三、建构教学 1.伪代码:伪代码是介于自然语言和计算机语言之间的文字和符号,是表达算法的简单而实用的好方法.为了今后能学好计算机语言,我们在伪代码中将使用一种计算算法:S1 a ←80 S2 b ←100 S3 c ←89S4 A ←(a +b +c )/3 S5 输出Aa ←80b ←100c ←89 A ←(a +b +c )/3 输出A 结束开始机语言“BASIC 语言”的关键词.2.赋值语句:赋值语句是将表达式所代表的值赋给变量的语句.例如:“x y ←”表示将y 的值赋给x ,其中x 是一个变量,y 是一个与x 同类型的变量或表达式.说明:①赋值语句中的赋值号“←”的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;②赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或表达式;③对于一个变量可以多次赋值. 3.输入、输出语句:输入、输出语句分别用“Input ”(或者“Read ”)和“Print ”来描述数据的输入和输出.(1)输入语句与赋值语句的区别在于:赋值语句可以将一个代数表达式的值赋于一个变量,而输入语句由于要求输入的值只能是具体的常数,不能是函数、变量或表达式,因此输入语句只能将读入的具体数据赋给变量.(2)输出语句的主要作用是:①输出常量、变量的值和系统信息;②输出数值计算的结果.例如:可以将问题1中的算法改进为求任意三门功课的平均值的算法. 流程图:说明:输入语句“Read a ,b ”表示输入的数据依次送给a ,b ;“Print A ”表示输出运算结果A .四、数学运用伪代码:Read a ,b ,c A ←(a +b +c )/3 Print AA ←(a +b +c )/3 结束开始 输出A 输入a ,b ,c1.例题.例1 写出求23x =时多项式3273511x x x +-+的值的算法. 算法1322373511x p x x ←←+-+算法223((73)5)11x p x x x ←←+-+说明 ①以上两种算法,算法1要做6次乘法,算法2只要做3次乘法,由 此可见,算法的好坏会影响运算速度;②算法2称为“秦九韶算法”,其算法特点是:通过一次式的反复计算,逐 步得出高次多项式的值;对于一个n 次多项式,只要做n 次乘法和n 次加法.例2 “鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”请你先列出解决这个问题的方程组,并设计一个解二元一次方程组的通用算法,并画出流程图,写出伪代码.解 设有x 只鸡,y 只兔子,则352494x y x y +=⎧⎨+=⎩.设二元一次方程组为1111221222,(0),a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩用消元法解得2112122112211221b c b c x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可输出,x y 的值.开始2.练习:课本第18页练习1题.五、要点归纳与方法小结本节课学习了以下内容:赋值语句、输入语句、输出语句的结构和作用.1.3.3条件语句教学目标:1. 通过实例正确理解条件语句的概念、表示方法、结构和用法.了解条件语句在程序中起判断转折作用,在解决实际问题中起决定作用.通过具体的实例,理解掌握条件语句的格式及功能.2. 能初步用条件语句设计算法、表达解决具体问题的过程(即编写程序).3. 进一步体会算法的基本思想,学会有条理地、清晰地表达解决问题的步骤,提高逻辑思维能力.教学方法:例7通过实例,发展对解决具体问题的过程与步骤进行分析的能力.例8通过模仿、操作、探索,经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力.例9 在解决具体问题的过程中学习条件语句,感受算法的重要意义.教学过程:一、问题情境问题1 某居民区的物业管理部门每月按以下方法收取卫生费:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.试设计算法,根据输入的人数计算应收取的卫生费?二、学生活动 1. 学生思考后得出:若用c (单位:元)表示应收取的费用,n 表示住户的人口数,则5, 035 1.2(3), 3n c n n <≤⎧=⎨+->⎩. 具体算法步骤如下: S1 输入n ;S2 若3n ≤,则5c ←,否则5 1.2(3)c n ←+-; S3 输出c .流程图如右图所示.从流程图可以看出这是一个选择结构, 我们可以用条件语句来实现该过程.三、建构教学 1.条件语句:条件语句的一般形式为:If -then -Else (如图1所示),对应的程序框图为图2.If 条件A then语句1 Else语句2 End If(图1)否是 满足条件?语句1语句2 (图2)“条件A ”表示判断的条件,“语句1”表示满足条件A 时执行的操作内容;“语句2”表示不满足条件A 时执行的操作内容;End If 表示条件语句的结束.计算机在执行时,首先对If 后的条件进行判断,如果符合条件A ,则执行Then 后面的语句1;若不符合条件A ,则执行Else 后面的语句2.问题1中的选择过程用条件语句可以表示为: Read nPrint c我们把步骤“5c ←” 称为“Then ”分支,步骤 “5 1.2(3)cn ←+-”称为“Else ”分支.为了醒目和便于阅读这些分支一般缩进书写.四、数学运用 1.例题:例1 写出输入两个数a 和b ,将较大的数打印出来的算法,写出伪代码,并画出流程图. 解算法: S1 输入a ,b ;S2 若a >b ,则输出a ,否则输出b例2 儿童乘坐火车时,若身高不超过1.2m ,则无需购票;若身高超过1.2 m 但不超过1.5m ,可买半票;若超过1.5m ,应买全票.试设计一个购票的算法,写出伪代码,并画出流程图. 解 算法步骤为: S1 测量儿童身高h ;S2 如果h≤1.2,那么免费乘车;否则,如果h≤1.5,那么购买半票乘车;否则,购买全票乘车.伪代码:流程图:Read hIf h≤1.2 ThenPrint 免费乘车ElseIf h≤1.5 ThenPrint 半票乘车ElsePrint 全票乘车End IfEnd If说明:从本例可以看出,条件语句“If-then-Else”可以嵌套.说明:本题中的条件语句是“行If语句”,前面的是“块If语句”.例3已知函数1,00,01,0xy xx>⎧⎪==⎨⎪-<⎩,试写出计算y值的一个算法.解可以用条件语句表示这类分段函数的算法:Read x 流程图:If x>0 Theny←1Else If x=0 Theny←0Elsey←1End IfPrint y2.练习.补充:用算法语句表示:输入一个数x,如果x不为0,则输出1x,否则,重新输入.解:10 Read x20 If x=0 Then Goto 1030 Else40 Print 1/x50 End If60 End五、要点归纳与方法小结本节课学习了以下内容:条件语句的步骤、结构及功能.1.3.4循环语句(1)教学目标:1. 掌握循环语句的简单应用,初步掌握循环语句的嵌套.2. 初步掌握用循环语句处理一些求和、求乘积问题的技能.3. 了解用条件语句实现循环的方法,初步能在程序语句中识别出表现为条件语句的循环.教学方法:例10 通过编写程序,上机调试的过程,学习掌握循环语句,发展编写能力.例11 通过具体实例,发展设计算法,编写程序来解决问题的能力.教学过程:一、问题情境问题 设计计算135799⨯⨯⨯⨯⨯的一个算法,并画出流程图.二、学生活动 解决问题的算法是:对于以上算法过程,我们可以用循环语句来实现. 三、建构教学循环语句:循环语句一般有种:“For 循环”、“While 循环”和“Do 循环”(由于该种循环变化较多,教材中暂不介绍).(1)“For 循环”是在循环次数已知时使用的循环, 其一般形式为:例如:问题1中算法可用“For 循环”语句表示为:S1 S ←1S2 I ←3 S3 S ←S ×I S4 I ←I+2S5 若I ≤99,则返回S3 S6 输出S流程图:结束 开始For I from “初值”to “终值”step “步长”… End forPrint S End说明:①上面“For ”和“End For ”之间缩进的步骤称为循环体;②如果省略“Step 2”,默认的“步长”为1,即循环时,I 的值每次增加1(步长也可以为负,例如,以上“For 循环”第1行可写成:For I From 99 To 1 Step -2);③“For 循环”是直到型循环结构,即先执行后判断. (2)“While 循环”的一般形式为:其中A 为判断执行循环的条件.例如:问题1中的算法可“While 循环”语句表示为: 1S ← 3I ← Print S End 说明:四、数学运用1.例题:While A …End while For I From 1 To 99 Step 2 S S I ←⨯ End ForWhile I ≤99 S S I ←⨯ 2I I =+ End While。
苏教版·高中数学必修Ⅲ教案 1.1 算法的含义
怎样解题表“怎样解题表”就是《怎样解题》一书的精华,该表被波利亚排在该书的正文之前,并且在书中再三提到该表。
实际上,该书就是“怎样解题表”的详细解释。
波利亚的“怎样解题表”将解题过程分成了四个步骤,只要解题时按这四个步骤去做,必能成功。
同学们如果能在平时的做题中不断实践和体会该表,必能很快就会发出和波利亚一样的感叹:“学数学是一种乐趣!”怎样解题表 (抄在课堂笔记第一页) 第一步:你必须弄清问题。
1.已知是什么?未知是什么?要确定未知数,条件是否充分?2.画张图,将已知标上。
3.引入适当的符号。
4.把条件的各个部分分开。
第二步:找出已知与未知的联系。
1.你能否转化成一个相似的、熟悉的问题?2.你能否用自己的语言重新叙述这个问题?3.回到定义去。
4.你能否解决问题的一部分?5.你是否利用了所有的条件?第三步:写出你的想法。
1.勇敢地写出你的方法。
2.你能否说出你所写的每一步的理由?第四步:回顾。
1.你能否一眼就看出结论?2.你能否用别的方法导出这个结论?3.你能否把这个题目或这种方法用于解决其他的问题?§1.1 第1课时算法的含义教学目标:1.通过实例体会算法思想,了解算法的含义与主要特点;2.能按步骤用自然语言写出简单问题的算法过程学;3.培养学生逻辑思维能力与表达能力.教学重点:将问题的解决过程用自然语言表示为算法过程.教学难点:用自然语言描述算法.教学过程一.序言算法不仅是数学及其应用的重要组成部分,也是计算机理论和技术的核心.在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域.那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.阅读教材第4页.二.问题情境1.情境:介绍猜数游戏(见教材第5页).2.问题:解决这一问题有哪些策略,哪一种较好?三.学生活动“二分法策略”,进行算法化(按步骤)的表达.说明:以上过程实际上是按一种机械的程序进行的一系列操作.四.建构数学在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.1.广义的算法——某一工作的方法和步骤,例如:歌谱是一首歌曲的算法,空调说明书是空调使用的算法.在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序.2.本章主要讨论的算法(计算机能够实现的算法)——对一类问题的机械的、统一的求解方法.例如:解方程(组)的算法,函数求值的算法,作图问题的算法等.3.本节采用自然语言来描述算法.练习:1.下面对算法的描述有: ①对一类问题都有效;②对个别问题有效;③计算可以一步步地进行,每一步都有惟一的结果;④是一种通法,只要按部就班地做,总能得到结果.正确描述算法的有A.1个B.2个C.3个D.4个2.下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭B.野外做饭叫野炊C.在做米饭需要刷锅、淘米、添水、加热这些步骤D.做饭必须要有米五.数学运用1.算法描述举例例1.给出求1+2+3+4+5的一个算法.解:算法1 按照逐一相加的程序进行.第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;第四步:将第三步中的运算结果10与5相加,得到15.算法2 运用公式123n++++=2)1(+nn直接计算.第一步:取n=5;第二步:计算2)1(+nn;第三步:输出运算结果.算法3 用循环方法求和.第一步:使1S=,;第二步:使2I=;第三步:使S S I=+;第四步:使1I I=+;第五步:如果5I≤,则返回第三步,否则输出S.说明:①一个问题的算法可能不唯一.②若将本例改为“给出求123100++++的一个算法”,则上述算法2和算法3表达较为方便.例2.给出求解方程组274511x y x y +=⎧⎨+=⎩的一个算法.分析:解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,在通过回代过程求出方程组的解)解线性方程组.解:用消元法解这个方程组,步骤是:第一步:方程①不动,将方程②中x 的系数除以方程①中x 的系数,得到乘数422m ==;第二步:方程②减去m 乘以方程①,消去方程②中的x 项,得到 2733x y y +=⎧⎨=-⎩; 第三步:将上面的方程组自下而上回代求解,得到1y =-,4x =.所以原方程组的解为41x y =⎧⎨=-⎩.说明:(1).从例1、例2可以看出,算法具有两个主要特点:①有限性:一个算法在执行有限个步骤后必须结束.“有限性”往往指在合理的范围之内,如果让计算机执行一个历时1000年才结束的算法,这虽然是有限的,但超过了合理的限度,人们也不把它视作有效算法.“合理限度”一般由人们的常识和需要以及计算机的性能而定.②确定性:算法的每一个步骤和次序应当是确定的.例如,一个健身操中一个动作“手举过头顶”,这个步骤就是不确定的、含糊的.是双手都举过头,还是左手或右手?举过头顶多少厘米不同的人可以有不同的理解.算法中的每一个步骤不应产生歧义,而应当是明确无误的.(2).一般来说,算法应有一个或多个输出,算法的目的是为了求解,没有输出的算法是没有意义的.思考:算法与数学问题的解决的联系与区别是?(1)联系:算法与解法是一般与特殊的关系,也是抽象与具体的关系. 譬如,分析一个具体的二元一次方程组的求解过程(解法),得出二元一次方程组的求解步骤,这样的求解步骤也适合有限制条件的二元一次方程组,这些步骤就构成了解二元一次方程组的算法;(2)区别:算法是解决某一类问题所需要的程序和步骤的统称,也可理解为数学中的“通法通解”;而解法是解决某一个具体问题的过程和步骤,是具体的解题过程. 数学中的算法可以理解为由基本的运算及规定的运算顺序构成的完整的解题步骤,或者可看成是按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.2.练习:①课本第6页练习第1、2、3题.练习1答案:第一步 移项得23x =-;第二步 两边同除以2得32x =-.练习2答案:第一步:使1S =,;第二步:使3I =;第三步:使S S I =⨯;第四步:使2I I =+;第五步:如果7I ≤,则返回第三步,否则输出S .练习3答案:第一步 计算斜率203(1)AB k -=--; 第二步 用点斜式写出直线方程0(1)AB y k x -=+.②.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤.从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶③.著名数学家华罗庚“烧水泡茶”的两个算法.算法一:算法二:1.烧水; 1. 烧水;2.水烧开后,洗刷茶具; 2. 烧水过程中,洗刷茶具;3.沏茶 3. 水烧开后沏茶.这两个算法中算法更高效, 因为④.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.解:算法或步骤如下:S1 人带两只狼过河;S2 人自己返回;S3 人带1只羚羊1只狼过河;S4 人带1只羚羊返回;S5 人带两只羚羊过河;S6 人带两只狼返回;S7 人带1只羚羊1只狼过河S8 人自己返回;S9 人带2只狼过河.2.写出求111123100++++ 的一个算法.解:第一步:使1S =,;第二步:使2I =;第三步:使1n I=; 第四步:使S S n =+;第五步:使1I I =+;第六步:如果100I ≤,则返回第三步,否则输出S .六.回顾小结1.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.2.算法的重要特征:(1)有限性:一个算法在执行有限步后必须结束;(2)确切性:算法的每一个步骤和次序必须是确定的;(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.七、课外作业:课本第6页第4题,补充:1. 有A 、B 、C 三个相同规格的玻璃瓶,A 装着酒精,B 装着醋,C 为空瓶,请设计一个算法,把A 、B 瓶中的酒精与醋互换.2.写出解方程0322=--x x 的一个算法.3.已知),(11y x A ,),(22y x B ,写出求直线AB 斜率的一个算法.4.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?” 请你先列出解决这个问题的方程组,并设计一个解该方程组的算法.。
【2018年秋季课程苏教版高一数学】《必修三:算法初步》教案
【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案适用学科高中数学适用年级适用区域 苏教版区域课时时长(分钟)知识点 算法流程图教学目标 学会流程图的有关题型教学重点 流程图的计算教学难点 流程图表达的含义高一 2 课时【知识导图】教学过程一、导入1 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案【教学建议】通过教材上的引入环节进行讲解二、知识讲解 考点 1 三种基本结构 三种基本逻辑结构顺序结构:依次进行多个处理的结构称为顺序结构,如图(1)所示.图(1) 选择结构:先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构(或称为“分支 结构”),如图(2)所示.图(2) 循环结构:需要重复执行同一操作的结构称为循环结构,其又可分为如下两种结构: ①先判断所给条件 p 是否成立,若 p 成立,则执行 A,再判断条件 p 是否成立;若 p 仍成立, 则又执行 A,如此反复,直到某一次条件 p 不成立为止.这样的循环结构称为当型循环,如 图(3)所示. ②先执行 A,再判断所给条件 p 是否成立,若 p 不成立,则再执行 A,如此反复,直到 p 成立,该循环过程结束,这样的循环结构称为直到型循环,如图(4)所示.2 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案图(3)考点 2 基本算法语句图(4)基本算法语句包括:赋值语句,输入、输出语句,条件语句,循环语句. (1)条件语句的一般形式为:其中 A 表示判断的条件,B 表示满足条件时执行的操作内容,C 表示不满足条件时执行的 操作内容,End If 表示条件语句结束. (2)循环语句 ①循环语句用来实现算法中的循环结构. ②其中当型循环可用下面的语句形式来描述:直到型循环可用下面的语句形式来描述:(3)当循环的次数已经确定,可用“For”语句表示,“For”语句的一般形式为:3 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案三 、例题精析 类型一 基本逻辑结构例题 14 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案已知函数 f(x)=x2-2x-3,求 f(3),f(-5),f(5),并计算 f(3)+f(-5)+f(5)的值.请设计出解决该问题 的一个算法,并画出流程图.【解答】算法如下: 第一步,令 x=3; 第二步,把 x=3 代入 y1=x2-2x-3; 第三步,令 x=-5; 第四步,把 x=-5 代入 y2=x2-2x-3; 第五步,令 x=5; 第六步,把 x=5 代入 y3=x2-2x-3; 第七步,把 y1,y2,y3 的值代入 y=y1+y2+y3; 第八步,输出 y1,y2,y3,y 的值.该算法对应的流程图如图所示:【教学建议】 (1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行 的. (2)解决此类问题,只需分清运算步骤、赋值量及其范围,进行逐步运算即可.5 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案类型二 流程图的算法功能例题 2(2016·苏北四市期中)执行如图所示的算法流程图,则输出的结果是.(例 2)【答案】-1【解析】第一次循环后,S= 1 ,n=2;第二次循环后,S=-1,n=3;…,第七次循环后, 2S= 1 ,n=8,此时 n>8 不成立;第八次循环,S=-1,n=9,退出循环,输出 S=-1. 2【教学建议】 循环结构中的条件主要是控制循环的变量应该满足的条件是什么.满足条件则进入循环或者 退出循环,此时要特别注意当型循环与直到型循环的区别.【总结与反思】本题考查流程图与循环结构等知识,可依据题设条件顺次验算,注意理清循环体的运算次数.类型三 基本算法语句 例题 36 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案根据如图所示的伪代码,当输入的 x 为 60 时,输出的 y 的值为.【答案】31 【解析】由题意,得0.5x,x 50, y= 25 0.6(x-50) ,x 50.当 x=60 时,y=25+0.6×(60-50)=31. 所以输出的 y 的值为 31. 【教学建议】 本题主要考查条件语句,输入与输出语句,要注意赋值语句一般格式“←”,其实质是 计算“←”右边表达式的值,并将该值赋给“←”左边的变量.【总结与反思】 解决此类问题的关键是要理解各语句的含义,以及基本算法语句与算法结构的对应关系.四 、课堂运用基础1.(2014·宿迁一调)根据如图所示的伪代码,最后输出的 a 的值为.7 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案2.(2015·常州期末)运行如图所示的算法流程图,那么输出的 a 的值是.3.(2015·南京、盐城期末)运行如图所示的伪代码后,输出的结果为.(第 3 题)4.(2014·泰州期末)已知一个算法的流程图如图所示,那么输出的结果 S 的值是.8 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案答案与解析 1.【答案】48 【解析】a=1,i=2;a=1×2=2,i=4;a=2×4=8,i=6;a=8×6=48,i=8,退出 循环,输出 a=48. 2.【答案】127 【解析】a=3;a=7;a=15;a=31;a=63;a=127,127>64,退出循环,输 出 a=127. 3.【答案】42 【解析】第一次循环后,S=8,i=4;第二次循环后,S=22,i=7;第三次循 环后,S=42,i=10,10>7,退出循环,所以输出的结果为 42. 4.【答案】7 【解析】第一次循环后,S=1,n=2;第二次循环后,S=3,n=3;第三次循 环后,S=7,n=4,此时退出循环,所以输出的 S 的值为 7.巩固9 / 21【2018 年秋季课程苏教版高一数学】《必修三:算法初步》教案1.(2015·连云港、徐州、淮安、宿迁四市期末)如图是一个算法的流程图,若输入的 x 的值为 2,则输出的 y 的值为.2.(2014·镇江期末)执行如图所示的流程图,输出的结果 S=.3.(2015·南通期末)执行如图所示的算法流程图,那么输出的 x 的值是.4.(2014·南京、盐城一模)根据如图所示的伪代码,最后输出的 S 的值为.10 / 21答案与解析1.【答案】7【解析】第一次循环后,y=3,x=2;第二次循环后,y=7,x=3,|y-x|=4,此时退出循环,所以输出的y的值为7.2.【答案】-20【解析】第一次循环后,i=2,S=-2;第二次循环后,i=4,S=-6;第三次循环后,i=6,S=-12;第四次循环后,i=8,S=-20,退出循环,输出S=-20.3.【答案】59【解析】第一次循环后,x=3,y=7;第二次循环后,x=13,y=33;第三次循环后,x=59,y=151,此时退出循环,所以输出的结果为59.4.【答案】55【解析】根据伪代码的原理知S=1+2+…+10=55.、拔高1.(2015·泰州期末)执行如图所示的流程图,那么输出的n的值为.2.(2014·南通调研)已知实数x∈[1,9],执行如图所示的流程图,那么输出的x不小于55的概率为.3.执行如图所示的流程图,输出的结果是.4.(2015·苏州、无锡、常州、镇江、宿迁一调)如图是一个算法流程图,则输出的x 的值为 .答案与解析1.【答案】4 【解析】第一次循环后,S=255,n=2;第二次循环后,S=127,n=3;第三次循环后,S=63,n=4,此时退出循环,所以输出的结果为4.2.【答案】38【解析】若x=1,进入程序,输出x=15;…;若x=6,进入程序,输出x=55;…;若x=9,进入程序,输出x=79.所以所求概率为9-69-1=38.3.【答案】.20162017【解析】由流程图知输出S=112⨯+123⨯+…+120162017⨯=112⎛⎫-⎪⎝⎭+11-23⎛⎫⎪⎝⎭+…+1120162017⎛⎫-⎪⎝⎭=1-12017=2016 2017.4.【答案】16【解析】执行程序可得x=12,n=2<5;x=13,n=3<5;x=14,n=4<5;x=15,n=5;x=16,n=6>5,故输出x=16.1.本次课需要学会流程图的有关计算2.流程图和数列求和的关系密切,也是重点3.循环语句的终结条件是易错点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1算法与程序框图 (约2课时)
1.2基本算法语句 (约3课时)
1.3算法案例 (约5课时)
复习与小结 (约2课时)
四、评价建议
1.重视对学生数学学习过程的评价
关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
第一章算法初步
一、课标要求:
1、本章的课标要求包括算法的含义、程序框、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。
2、通过模仿、操作和探索,经历设计程序流程图表达解决问题的过程。在具体问题的解决过程中理解程序流程图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
3、通过实际问题的学习,了解构造算法的基本程序。
4、经历将具体问题的程序流程图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。
5、需要注意的问题
1) 从熟知的问题出发,体会算法的程序化思想,而不是简单呈现一些算法。
2) 变量和赋值是算法学习的重点之一,因为设置恰当的变量,学习给变量赋值,是构造算法的关键,应作为学习的重点。
3) 不必刻意追求最优的算法,把握算法的基本结构和程序化思想才是我们的重点。
4) 本章所指的算法基本上是能在计算机上实现的算法。
二、编写意图与特色:
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
2.正确评价学生的数学基础知识和基本技能
关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。