第三章流体动力学基础
第03章流体动力学
Chapter 3 Hydrodynamics
流体动力学是研究流体在外力作用下的运动规律,即研究作用 在流体上的力与流体流动行为之间关系。 在流体静力学中,主要研究作用在静止或相对静止流体体系上 的质量力(体积力)与表面力的平衡关系。这种力是外界或通过外力场 作用在流体体系上的,所以称之为外力。 当流体体系处于任意的流动状态时,流体除了仍然受到以上提 到的力的作用外,根据牛顿粘性定律,处于不均匀流速流动状态的 流体内部会产生抵抗流动不均匀性的粘性力。当流动不稳定时,还 会产生惯性力。于是,外界作用力、粘性力和惯性力等力的平衡关 系共同决定了特定流体体系的流动行为。 流体动力学就是基于有关的物理定律,通过建立相应的平衡数 学方程,来定量描述流体的流动行为,如:流动方式,速度的方 向、大小和分布等。
四、流管、流束与流量
流管:在流场中作一本身不是流线又与流线相交 的封闭曲线,通过这一封闭曲线上各点的 流线所构成的管状表面; 流束:流管内部的流体; 有效截面:处处与流线相垂直的流束的截面积; 流量:单位时间内流过某一有效截面的流体量称 为流过该表面的流量 Q [m3/s]
数学上流量的表达式为: Qv
Vz max Vz ( r 0) R2 P 1 P 2 g 4 L (3 31)
如图所示有一垂直半径为R, 长度为L的直圆管,假定: ①圆管内为层流流动; ②流体的密度和粘度分别为 和 ③ 圆管上、下两端流体所受压力分 别为P1和P2 。 求:圆管内的速度分布?
[分析]:在稳定层流流动状态下,粘性流体中的速度 只沿径向r变化;取图示方向的柱面坐标系统,即: Vz=Vz(r);为能描述圆管内沿r向变化的速度分布Vz(r),应 取图示的微元体,厚r,长L,半径为r的薄筒,并建立该 微元题的动量平衡关系式。
流体力学基础-第三章-一维流体动力学基础
1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。
第三章 流体动力学基础
1、在水位恒定的情况下: (1)A®A¢不存在时变加速 度和位变加速度。 (2)B®B¢ 不存在时变加速 度,但存在位变加速度。 2、在水位变化的情况下: (1)A®A¢ 存在时变加速度, 但不存在位变加速度。 (2)B®B¢ 既存在时变加速 度,又存在位变加速度。
图3-19
第二节 流体质点运动特点和有旋流
图3-13
非均匀流——流线不是平行直线的流 动, 。 非均匀流中流场中相应点的流速大 小或方向或同时二者沿程改变,即沿流 程方向速度分布不均。例:流体在收缩 管、扩散管或弯管中的流动。(非均匀 流又可分为急变流和渐变流)
4.渐变流与急变流
非均匀流中如流动变化缓 慢,流线的曲率很小接近平行, 过流断面上的压力基本上是静 压分布者为渐变流(gradually varied flow),否则为急变流。
图3-17
(3)三元流
三元流(threedimensional flow):流动 流体的运动要素是三 个空间坐标函数。例 如水在断面形状与大 小沿程变化的天然河 道中流动,水对船的 绕流等等,这种流动 属于三元流动。(图 3-18)
图3-18
三.描述流体运动的方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以 流场中每一流体质点作为描述流体运动 的方法,它以流体个别质点随时间的运 动为基础,通过综合足够多的质点(即 质点系)运动求得整个流动。——质点 系法
一、流体质点的运动 特点 刚体的运动是由 平移和绕某瞬时轴 的 转动两部分组成,如 图3-20(a)。
图3-20(a)
流体质点的运动, 一般除了平移、转 动外,还要发生变 形(角变形和线变 形),如图3-20(b)。
图3-20(b)
二、角速度的数学表达式 流体质点的旋转用角速度表征,习 惯上是把原来互相垂直的两邻边的角速 度平均值定义为该转轴的角速度。
工程流体力学 第3章 流体运动基本概念和基本方程
流管——在流场中作一不是流线的封闭周线C,过该周线 上的所有流线组成的管状表面。 流束——充满流管的一束流体。 微元流束——截面积无穷小的流束。 总流——无限多微元流束组成总的流束。
3. 缓变流和急变流 缓变流— 流线近似平行;
急变流— 流线不平行;
缓变流
急变流
缓变流
急变流
4. 有效截面 流量 平均流速
v v( x, y, z, t ) , p p( x, y, z, t ) , ( x, y, z, t )
欧拉法
Euler法(欧拉法) 描述流体运动
第一节
一
流体运动的描述方法
Z
Euler法(欧拉法 )
流体质点运动的速度:
v x v x ( x, y , z , t ) v y v y ( x, y , z , t ) vz v z ( x , y , z , t )
n CV CS
方程含义:单位时间内控制体内流体质量的增量,等于通过 控制体表面的质量的净通量。 定常流动的积分形式的连续性方程:
dA 0
n CS
二. 定常管流
定常流动连续性方程: 应用于定常管流时:
dA 0
n CS
A1
1 1n
dA 2 2 n dA
t 0
lim
Ⅲ
t
cosdA v dA dA
CS 2 CS 2 CS 2
(dV) t Ⅰ lim cosdA v dA -n dA t 0 t CS1 CS1 CS1
CS2为控制体表面上的出流面积;
A2
截面A1上的质量流量
截面A2上的质量流量
流体力学 第三章 流体动力学
vx vx vx dv x vx vx vy vz 解: (1)a x t x y z dt
(4 y 6 x) (4 y 6 x)t (6t ) (6 y 9 x)t (4t )
将t=2,x=2,y=4代入得
ax 4m / s 2
同理 ay 6m / s 2 m / s2 a 4i 6 j
满足连续性方程,此流动可能出现
例:已知不可压缩流场ux=2x2+y,uy=2y2+z,且在z=0处
uz=0,求uz。 解:由
得 积分
u x u y u z 0 x y z u z 4 x 4 y z
uz 4( x y) z c
得 c=0
由z=0,uz=0
a.流体质点的加速度
dv a dt
dv x vx vx dx vx dy vx dz ax dt t x dt y dt z dt
同理
vx vx vx vx vx vy vz t x y z
ay
v y t
vx
是均匀流
3.流线与迹线 (1)流线——某瞬时在流场中所作的一条空间曲线,曲
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转 流线微分方程:
流线上任一点的切线方向 (dr ) 与该点速度矢量 (v ) 一致
dr v dx dy dz 0 vx vy vz
dy (a, b, c, t ) vy dt
dvy (a, b, c, t ) dt
dz (a, b, c, t ) vz dt
dv z (a, b, c, t ) az dt
工程流体力学课件3流体动力学基础
恒质
量
三
守
大
守
恒能
恒 定
量 守
律
恒动
量
守
程连
续 方
程恒 定
总
程能 量 方
流 三
大
程动
方
量
方
• v1 A1 = v2 A2
说明流量不变时,过流断面越小, 流速越大 —— 水射器原理
Φ
D
小头
大头
消防水枪喷嘴
收缩段 亚音速
喉部 音速
扩散段 超音速
拉瓦尔喷管
由拉瓦尔喷管可获得超音速气流,其原理广泛应用 于超音速燃气轮机中的叶栅,冲压式喷气发动机,火箭 喷管及超音速风洞等处。
3)在恒定流情况下,当判别第II段管中是缓变 流还是急变流时,与该段管长有无关系?
区分均匀流及非均匀流与过流断面上流速 分布是否均匀有无关系?是否存在“非恒定 均匀流”与“恒定急变流”?
当水箱水面恒定时: a)为恒定均匀流;b)为恒定非均匀流。 当水箱水面不恒定时: a)为非恒定均匀流;b)为非恒定非均匀流。
uz F3(x, y, z,t)
x,y,z,t —欧拉变量
由
dux
ux t
dt
ux x
dx
ux y
dy
ux z
dz
a
x
a y
az
dux
dt du y
dt duz
dt
dF1
dt dF2
dt dF3
dt
ux t
ux
ux x
uy
ux y
uz
ux z
u y t
ux
u y x
uy
u y y
重、难点
一元流体动力学基础
拉格朗日法表示流体质点的 速度
二、欧拉法
特点
以固定空间点为研究 对象,描述各瞬时物理量 在空间的分布来研究流体 运动的方法。
欧拉变量
变量 (x 、 y 、 z 、 t )称为欧拉变量。
本书以下的流动描 述均采用欧拉法!
第二节 恒定流动和 非恒定流动
非恒定流动
运动不平衡的流动,在流场中各 点流速随时间变化,各点压强,粘性力 和惯性力也随着速度的变化而变化。
质点标志
把流体质点在某一时间 t0时 的坐标( a 、 b 、c)作为该质点 的标志,则不同的( a 、 b 、c) 就表示流动空间的不同质点。这 样,流场中的全部质点,都包含 在 ( a 、 b 、c) 变数中。
拉格朗日变量
表达式中的自变量( a 、 b 、c、 t ) , 称为拉格朗日变量。
外力(压力)作功等于流段机械能量增加
压力作功为: (a) 动能增量为: (b)
位能增量为:
(c)
理想不可压缩流体恒定流元流能量方程(伯努利方程):
二、恒定元流能量方程本身及 其各项含义
Z: 断面对于选定基准面的高度, 水力 学中称为位置水头,表示单位重量 的位置势能,称为单位位能。
p γ
是断面压强作用使流体沿测压管所 能上升的高度,水力学中称为压强水头, 表示压力 y 作功所能提供给单位重量流 体的能量,称为单位压能。 以断面流速 u为初速的铅直上升射流所 能达到的理论高度,水力学中称为流速 水头,表示单位重量的动能,称为单位 动能。
一、总流能量方程的应用要点:
(1)基准面是写方程中 Z 值的依据。一般通过两 断面中较低一断面的形心,使一Z 为零,而另一Z 值 为正值。 (2)两计算断面必须是均匀流或渐变流断面并包含 已知和要求参数; (3)过水断面上计算点的选取,可任取,一般: 管流-断面中心点, 明渠流-自由液面上; (4)两计算断面压强必须采用相同计算基准〕 (绝对、常用:相对压强); (5)方程中各项单位必须统一。
三章一元流体动力学基础
第三节、流线与迹线
1、迹线(path line):运动中旳某一流体质点,在连续时间
内所占据空间点旳连线,即质点运动旳轨迹 例如:在流动旳水面上洒上某些木屑,木屑随水流漂流旳途径
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 旳流动情况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
▪在流场中,因为辨认空间比辨认某一种质点轻易。所
以,欧拉法在流体力学中被广泛采用。
▪在流动旳流体中有无数个流体质点,要用拉格朗日法描述
每个质点旳运动是很困难甚至不可能,极难实现,在流体力 学中不常采用。一般在稀薄气体动力学和数值计算中用得 较多。
三元流动旳连续性方程
利用质量守恒定律还能够导出空间流动旳连续性方 程,其体现式为
ux uy uz 0 x y z
该方程合用于不可压缩流体,对于恒定流和非恒定流均合用。
例题:P56
第六节 理想流体旳运动微分方程
(Euler’s Equation of Motion)
一、推导过程
在某一给定旳瞬间,从流动旳不可压缩性理想流体中任取一微
图3--6 连续性方程推导
u dA (u (u) ds) (dA (dA) ds) 0
s
s
(质量守恒)
u dA (u (u) ds) (dA (dA) ds) 0
s
s
u dA (udA (u) ds dA u (dA) ds (u) ds (dA) ds) 0
而合速度u与三个座标轴上旳分速度之间旳关系是:
《流体力学》第三章一元流体动力学基础
02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。
第三章流体动力学基础(1)
A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17
流体动力学基础
(x,y,z,t)——欧拉变量
控制体:将孤立点上旳观察站扩大为一种有合适规模旳连续区域。控制体相对于坐 标系固定位置,有任意拟定旳形状,不随时间变化。控制体旳表面为控制面,控制 面上有流体进出。
质点旳加速度
流体质点运动速度在欧拉法中,因为位置又是时间t旳函数,所以流速是t旳复合函 数,对流速求导可得加速度:
性质:不能相交 ,流体质点不能穿过流管表面。 在定常时,形状和位置不随时间变化而变化。 非定常时,形状和位置可能随时间变化而变化。
2、流束 流管内旳全部流体为流束。流束旳极限是一条流线。极限近于一条流线旳流束为微元流束。
3、总流 把流管取在运动液体旳边界上,则边界内整股液流旳流束称为总流。
4、过流断面 流束中到处与速度方向相垂直旳横截面称为该流束旳过流断面。
动量修正系数—K — 是d实mv际动A量ρv与2dA按断面平均流速计算旳动量旳比值。
β
ρv 2 dA
A
ρv 2 A
1
1 v2A
v2dA 1
A
动量修正系数是无量纲数,它旳大小取决于总流过水断面旳流速分布,分布越均匀,β 值越小,越接近于1.0。
层流流速分布 湍流流速分布
圆管层流 圆管紊流
断面流速分布 旋转抛物面
流线旳作法: 在流场中任取一点,绘出某时刻经过该点旳流体质点旳流速矢量u1,再画出距1点很近
旳2点在同一时刻经过该处旳流体质点旳流速矢量u2…,如此继续下去,得一折线1234 …, 若各点无限接近,其极限就是某时刻旳流线。
流线旳方程
根据流线旳定义,能够求得流线旳微分方程:
设ds为流线上A处旳一微元弧长:
z
想一想:恒定、不可压情况下,连续性方程旳微分形式。
流体动力学理论基础第三章解析
az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导
数
d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数
中南大学《流体力学》课件第三章动力学
——迹线微分方程
第二节 基本概念
二、迹线和流线
流线
z u2 u1 o y
dl
是流场中的瞬时光滑曲线,曲线上各点的切线方向 与经过该点的流体质点的瞬时速度方向一致。 两矢量方向一致,则其叉积为零。
i
j
k
x
d l u dx dy dz 0 ux uy uz
——流线微分方程
dx dy dz ux u y uz
第一节 描述流体运动的方法
流场 —— 充满运动流体的空间称为流场
一、拉格朗日法 跟踪
是以流场中每一个流体质点作为对象描述流体运动的方法,它 以流体个别质点随时间的运动为基础,通过综合足够多的质点 (即质点系)运动求得整个流动。 ——质点系法
z
(x,y,z,t)
初始时刻t0
新的时刻t
某质点(a,b,c,to)
x f1 (a, b, c, t ) y f 2 (a, b, c, t ) z f (a, b, c, t ) 3
x f1 u x t t y f 2 u y t t u z f 3 z t t
流场运动要素是时空(x,y,z,t)的连续函数
u x F1 ( x, y, z, t ) u y F2 ( x, y, z , t ) u F ( x, y , z , t ) 3 z
x,y,z,t —欧拉变量
du x dF1 u x u x u x u x a u u u x x y z dt dt t x y z du y dF2 u y u y u y u y a u u u y x y z t x y z dt dt a du z dF3 u z u u z u u z u u z x y z z t x y z dt dt
流体力学讲义 第三章 流体动力学基础
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
西南交大流体力学流体动力学理论基础
第三章 流体动力学理论基础8 学时通过讲课使学生熟练掌握恒定总流的连续性方程、伯努利方程和动量方程及其综合应用;理解研究流体运动的若干基本概念、流体的连续性微分方程与理想流体的欧拉运动微分方程及其沿流线的积分;了解描述流体运动的两种方法。
恒定总流的连续性方程、伯努利方程和动量方程及其综合应用。
用欧拉法描述流体运动的概念、从不同角度对流体流动的划分以及伯努利方程和动量方程在应用时,如何正确的选择过流断面和控制体。
以传统教学方式为主要手段,以多媒体教学为辅助教学手段,即将教学中所需图表及与课程相关的工程实例等内容,采用多媒体形式展示。
讲课为主,提问、课堂讨论为辅。
回顾上次课堂教学所讲的重点内容;导引本次课堂教学的主要内容及进行讲解,在讲解过程中,针对具体问题对学生进行提问或作为问题让学生课后思考;对本次课堂教学内容进行小结。
转讲稿页。
zy x xu x x u u x x x x u u x x m x xx xx x d d d )(d 21)(d 21(d 21)(d 21(∂∂−=∂∂+∂∂+−∂∂−∂∂−=Δρρρρρ方向: 方向: 据质量守恒定律得0)()(=∂∂+∂∂+∂∂+∂∂zu y u x u t zy x ρρρ 上式即为流体运动的连续性微分方程的一般形式。
zy x yu m y y d d d )(∂∂−=Δρz y x zu m z zd d d )(∂∂−=Δρ因控制体不随时间变化,故式中第一项∫∫∂∂=∂∂V V dV dV ρρt t 据数学分析中的高斯定理,式中第二项∫∫=⋅∇Vd dV )(An A u ρρu故连续性积分方程的一般形式:0d dV V =+∂∂∫∫A n A u t ρρ三.恒定不可压缩总流的连续性方程对于恒定不可压缩(ρ=常数)总流,连续性积分方程可简化为:∫=AnA u 0d总流控制体,在其侧面上u n =0,故有∫∫=+−120d d 2211A AA u A u 应用积分中值定理,可得Q A v A v ==2211[解] 据1→2建立总流的伯努利方程,有W h gv H +++=++200002α得 ()W h H gv −=α2()W h H gd Av Q −==απ242讨论:在理想流体情况下,h W =0,则gH d Q 242π=、d 不变情况下,若欲使Q 增加,可采取什么措施?时刻系统的动量[]tV∫dV u ρ时刻系统的动量]∫Δ+Δ−Δ+t A u t n A tt d dV1u u ρρ]∫Δ+Δ+A u t n A tt d dVVu u ρρ(讲稿页)第 13 页[解] 取图示控制体,并进行受力分析建立xoy 坐标系在x 方向建立动量方程(取0.121==ββ)()1221v v Q F P P −=′−−ρ式中: kN bh h P 5.292111=⋅⋅=γ。
流体动力学基础
u2 2 g gdQ
h d Q
f A2
(1)势能积分
p p p z gdQ z gQ z g gdQ g g
(2)动能积分
u2 u2 1 v 3 v 2 3 2 g gdQ 2 g gudA 2 g g u dA 2 g gA 2 g gQ
dp p p p dx dy dz x y z
ux dux uyduy uzduz
四式联合
2 2 ux uy uz2 u2 d( ) d( ) ux dux uy duy uz duz 2 2
u2 dW dp d( ) 2 1
u2 dW dp d( ) 2 1
Rh
A X
7.过流断面——在流束上作出与流线正交的横断面
注意:只有均匀流的过流断面才是平面
1
8. 总流——截面积有限大的流束。 如河流、水渠、水管中的水流及风管中的气流都是总流。 总流分类: (1)有压流动 总流的全部边界受固体边界的约束,即流体充满流道,如压 力水管中的流动。 (2)无压流动 总流边界的一部分受固体边界约束,另一部分与气体接触, 形成自由液面,如明渠中的流动。 (3)射流 总流的全部边界均无固体边界约束,如喷嘴出口的流动。
质量力只有重力 X
积分
u2 W c 2 p
W gdz gz c1
Y o, Z g
p
u2 z c0 2g
对于同流线上的任意两点1和2,则上式写成
2 u12 p2 u 2 z1 z2 2g 2g
p1
理想流体 流线上的 伯努利方 程
工程流体力学 第3章 流体运动基本概念和基本方程
第四节 流管 流束 流量 水力半径
1. 流管和流束
流管——在流场中作一不是流线的封闭周线C,过该周线 上的所有流线组成的管状表面。
流束——充满流管的一束流体。 微元流束——截面积无穷小的流束。 总流——无限多微元流束组成总的流束。
3. 缓变流和急变流 缓变流— 流线近似平行; 急变流— 流线不平行;
缓变流
急变流
缓变流 急变流
4. 有效截面 流量 平均流速 有效截面—在流束或者总流中,与所有流线都垂直的截面。
流量——在单位时间内流过有效截面积的流体的量。
体积流量(m3 / s) 质量流量(kg /)s
qv v dA v cos(v, n)dA vndA
A
A
A
qm v dA v cos(v, n)dA vndA
0 t
0
t
定常流动:
(1)流动过程中所有的物理量都不随时间变化而变化。 非定常流动:
(2)流动过程中任意一个物理量随时间变化而变化。
判断的唯一依据:运动参数是否随时间变化。
定常流动 (steady and unsteady flow)
非定常流动 (unsteady flow)
2. 一维流动、二维流动和三维流动
流体质点的运动方程
质点物理量: 速度: x y
x y
(a,b,c,t (a,b,c,t
)= )
x(a,b,c,t t
y(a,b,c,t t
) )
z
z (a,b,c,t)
z (a,b,c,t ) t
流体质点的加 速度:
ax
a
x
(a,b,c,t
)=
x
(a,b,c,t t
水力学:第三章 流体动力学理论基础
若过水断面为渐变流,则在断面上 得
g
积分可
p
(z
p
Q
g
) gdQ ( z
p
g
) g dQ ( z
u x t p t 0 u y t 0 t u z
非恒定流:流场中任何点上有任何一个运动要素是随 时间而变化的。
6
二、 迹线与流线
拉格朗日法研究个别流体质点在不同时刻的运动情况 ,引出了迹线的概念。 欧拉法考察同一时刻流体质点在不同空间位置的运动 情况引出了流线的概念。
u x x
t
0
0
u y y
常数
u z z 0
22
二、 恒定不可压缩总流的连续性方程
液流的连续性方程是质量守恒定律的一种特殊方式。 取恒定流中微小流束如图所示: 因液体为不可压缩的连续介质,有
1 2
根据质量守恒定律在dt时段内
流入的质量应与流出的质量
)于1738年首先推导出来的。
28
二、实际流体恒定元流的能量方程
理想流体没有粘滞性无须克服内摩擦力而消耗能量,
其机械能保持不变。
对实际流体,令单位重量流体从断面1-1流至断面2-2
所失的能量为
hw
'
。则1-1断面和2-2断面能量方程为:
p1
z1
g
u1
2
2g
z2
p2
g
u2
2
2g
hw
相等。
u 1 dA 1 dt u 2 dA 2 dt u 1 dA 1 u 2 dA 2
第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程
第三章流体运动学与动力学基础主要内容z基本概念z欧拉运动微分方程z连续性方程——质量守恒*z伯努利方程——能量守恒** 重点z动量方程——动量守恒** 难点z方程的应用第一节研究流体运动的两种方法z流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
z空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。
5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 流体动力学基础习 题一、单选题1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是 ( ) A .加速运动 B .减速运动 C .匀速运动 D .不能确定2、血管中血液流动的流量受血管内径影响很大。
如果血管内径减少一半,其血液的流量将变为原来的( )倍。
A .21B .41C .81D .1613、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2m ,已知血液的粘度η =×10-3 Pa·S ,密度ρ=×103 kg/m 3,则此时主动脉中血液的流动形态处于( )状态。
A .层流B .湍流C .层流或湍流D .无法确定4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。
A .30B .40C .45D .605、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。
A .1m/sB .2m/sC .3 m/sD .4 m/s6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。
A .1×10-3 m 3/sB .2×10-3 m 3/sC .1×10-4 m 3/sD .2×10-4 m 3/s7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。
A .4B .3C .2D .18、正常情况下,人的血液密度为×103kg/m 3,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差( )Pa 。
二、判断题1、有水在同一水平管道中作稳定流动,管道横截面积越大,流速越小,压强就越小。
( )2、由直径为15cm 的水平光滑的管子,把20℃的水抽运到空气中去。
如果抽水保持水的流速为30cm/s ,已知20℃水的粘度η=×10-3 Pa/S ,则水在管子中的流动形态属于湍流。
( )3、烟囱越高,通风效能越好,即把烟从炉中排出来的本领就越大。
( )4、在深海中下落的一个铝球,整个过程始终是加速运动的。
( )5、飞机机翼的升力来自机翼上下表面压强之差,这个压强之差主要由于机翼上表面流速大于下表面流速所致。
( )6、流体的内摩擦力与固体间接触表面的摩擦力共同的特点都是阻碍相对运动,但流体的内摩擦力不存在最大的静摩擦力。
( )三、填空题1、流管的作用相当于管道,流体只能从流管一端____,从另一端______。
2、液体的粘度与液体的______、温度、_______因素有关,且随着温度的升高而_______。
3、理想流体是指 的流体,是一理想的模型,它是实际流体的近似。
4、稳定流动是实际流体流动的一种特殊情况, ,称为稳定流动。
5、为形象地描绘流速场的分布情况,可在其中描绘一些曲线,使的曲线称为流线。
6、 称为流阻。
四、简答题1、连续性方程和伯努利方程适用的条件是什么2、从水龙头流出的水流,在下落过程中逐渐变细,为什么3、如图2-1所示为下面接有不同截面漏管的容器,内装理想流体。
若下端堵住,器内为静液,显然B 内任一点压强总比C 内低。
若去掉下端的塞子,液体流动起来,C 内压强是否仍旧一定高于B 内压强4、两艘轮船不允许靠近并排航行,否则会相碰撞,试解释这一现象。
5、水从粗流管向细流管流动时,流速将变大,其加速度是怎样获得的 五、计算题1、两个桶,用号码1和2表示,每个桶顶都开有一个大口,两个桶中盛有不同的液体,在每个桶的侧面,在液面下相同深度h 处都开有一个小孔,但桶1的小孔面积为桶2的小孔面积的一半,问:(1) 如果由两个小孔流出的质量流量(即单位时间内通过截面的质量)相同,则两液体的密度比值ρ1/ρ2为多少(2) 从这两个桶流出的体积流量的比值是多少 (3) 在第二个桶的孔上要增加或排出多少高度的液体,才能使两桶的体积流量相等2、在水管的某处,水的流速为2 m/s,压强比大气压大104 Pa ,在水管另一处高度下降了1 m ,此点水管截面积比最初面积小21,求此点的压强比大气压大多少3、一圆形水管的某处横截面积为5 cm 2 ,有水在水管内流动,在该处流速为4 m/s ,压强比大气压大×104 Pa ,在另一处水管的横截面积为10 cm 2 ,压强比大气压大×104 Pa ,求此点的高度与原来的高度之差。
4、理想流体在如图2-2所示的圆锥形管中作稳定流动,当A 、B 两点压强相等时的体积流量等于多少(已知A 、B 两点的高度差为3 m ,两点处的管道半径分别为R A =10 cm ,R B =5 cm ,g=10 m/s 2) 5、水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2 m/s,求最细处的压强为多少若在此最细处开一小孔,水会不会流出来6、通过毛细血管中心的血液流速为0.066cm/s ,毛细血管长为0.1cm ,它是半径r 为2×10-4cm ,求(1)通过毛细血管的流量Q (已知毛细血管压降为2600Pa );(2)从通过主动脉的血液流量是83cm 3/s 这一事实,估计体内毛细血管的总数。
7、人的心脏每搏左心室射血为0.07kg ,在26660Pa 的压强下将血液注入主动脉,心率为75/min ,试求24小时左心室射血所作的功是多少(设主动脉血流的平均速度为0.4m/s)8、成年人主动脉的半径约为R =×10-2 m,长约为L =0.20 m,求这段主动脉的流阻及其两端的压强差。
设心输出量为Q =×10-4 m 3/s,血液粘度η=×10-3 Pa·s 。
9、直径为0.01mm 的水滴在速度为2cm/s 的上升气流中,是否可向地面落下(设此时空气的粘度η =×10-5Pa·s )10一根直径为6.0 mm 的动脉内出现一硬斑块,此处有效直径为4.0 mm ,平均血流速度为5.0cm/s 。
求:图2-1图2-2(1)未变窄处的平均血流速度。
(2)狭窄处会不会发生湍流已知血液体粘度η=×10-3 Pa·s,其密度ρ=×103 kg/m311、液体中有一空气泡,泡的直径为1 mm,液体的粘度为Pa·s,密度为×103 kg/m3。
求:(1)空气泡在该液体中上升时的收尾速度是多少(2)如果这个空气泡在水中上升,其尾速度又是多少(水的密度取103kg/m3,粘度为1×10-3 Pa·s)12、一个红细胞可近似地认为是一个半径为×10-6m的小球,它的密度ρ为×103kg/m3,求红细胞在重力作用下,在37℃的血液中均匀下降后沉降1.0 cm所需的时间(已知血液粘度η=×10-3 Pa·s,密度σ =×103 kg/m3)第二章 流体动力学基础参考答案一、单选题1、D分析:稳定流动是指任一个流体质点经过流体空间某一点时流速矢量恒定不变,并不是说流体质点流速在流动过程中始终不变。
2、D分析:根据泊肃叶定律412()8R Q P P L πη-=可知,血管中血液的流量与血管半径的四次方成正比,在其它条件不变的情况下,血管内径减少一半,血液流量应为原来的116倍。
3、A分析:粘滞性流体在管道中流动处于何种流动形态由雷诺数来确定,根据已知条件,可计算其雷诺数e 3402000dR ρυη==<做层流流动。
4、C分析:由连续性方程S 1v 1=S 2v 2得(把血管视为圆形管道)2212122232045cm/s2R R υυ=⨯==5、A分析:由连续性方程S A v A =S B v B 得v B =2v A ;又由伯努利方程22A B 1122A B P P ρυρυ+=+,即求出v A 的值。
6、C分析:按上题的步骤求出管中某处的流速,如A 处的流速v A ,根据体积流量的定义Q v =S A v A ,即可求出结果。
7、B 分析:由连续性方程,同时注意211π4S d =,222π4S d =(视血管为圆形管道),即可求出小动脉窄处的内径d 2=3mm 。
8、B分析:由连续性方程S 1v 1=S 2v 2,得v 2 = 45cm/s ,再由伯努利方程2211221122P P ρυρυ+=+得P 1-P 2= P a 。
二、判断题1、×分析:水在同一水平管道作稳定流动,由连续性方程和伯努利方程,得S 1v 1=S 2v 22211221122P P ρυρυ+=+若S 1>S 2,则v 1<v 2,必有P 1> P 2,所以此说法不正确。
2、√分析:水在管子流动形态由雷诺数来确定。
计算其雷诺数3431100.30.15e 4.481030001.00510d R ρυη-⨯⨯⨯===⨯>⨯可见做湍流流动。
3、√ 分析:烟囱可看作一个管道,其气体的排出量,即流量Q 跟烟囱低处与高处压强之差(P 1-P 2)成正比,烟囱越高,压强差就越大,流量就越大,通风效能就越好。
4、×分析:铝球在深海中下落过程中,受到三个力的作用:一个是向下的重力mg ,另外两个是向上的浮力343gR ρ和粘滞阻力6πR ηυ;粘滞力随着下落速度的增加而增大,当铝球自身的重力大小等浮力和粘滞力之和时,铅球将匀速下落。
5、√分析:流速越大,压强越小,所以机翼上表面压强小于下表面压强。
6、√分析:流体的内摩擦力和固体间接触面的摩擦力都是相对运动而产生,其共同的效果都是阻碍相对运动;但流体是很容易产生相对运动的,说明流体的内摩擦力不存在最大的静摩擦力。
三、填空题1、流进;流出2、种类;杂质浓度;降低3、绝对不可压缩、完全没有粘性4、流速场中各点的流速不随时间而变化的流动5、曲线上每一点的切线方向与流体质点经过该点的流速方向一致6、流管对流体的流动产生的总阻力四、简答题1、答:连续性方程成立的条件是不可压缩流体在同一流管中作稳定流动。
伯努利方程适用的条件是理想流体在同一流管中作稳定流动。