3.14 高斯光束的聚焦与准直资料

合集下载

激光原理-(9)-高斯光束

激光原理-(9)-高斯光束

ω ( z ) ω 0,z ⇒ R( z ) θ 0 2. 任一 坐标 z 处的光斑半径 ω ( z )及等相面曲率半径 R( z )
ω 0(或共焦参量 f )与腰位置 z
ω ( z )
ω 0 ⇒ R( z ) z
NJUPT
高斯光束的 q 参数(复曲率半径)
x2 + y2 ω0 x2 + y2 exp − 2 ) − ϕ ( z ) u00 ( x , = y, z ) c exp − i k ( z + 2 R( z ) ω(z) ω (z)
第4章 高斯光束
NJUPT
高斯光束
高斯光束:所有可能存在的激光波型的概称。 理论和实践已证明,在可能存在的激光束形式中, 最重要且最具典型意义的就是基模高斯光束。 无论是方形镜腔还是圆形镜腔,基模在横截面上的光 强分布为一圆斑,中心处光强最强,向边缘方向光强 逐渐减弱,呈高斯型分布。因此,将基模激光束称为 “高斯光束”。
1 A B TF = = 1 C D − F 0 1
F
AR1 + B R2 = CR1 + D
(遵循ABCD变换法则) NJUPT
高斯光束q参数的变换规律——ABCD公式
在自由空间的传播 束腰处:
1 自由空间变换矩阵: TL = 0
πω 0 2 = = if = i z 0,q(0) λ
πω λ
2
1
B A+ R 1 R2 = B A+ C + R1
πω1 2 B + λ 2 2 D πω1 + BD R1 λ

第8章高斯光束

第8章高斯光束

l2 f 2
f
2
1
l f
(3) F 1 R(l) 1 (l f 2 )时,
2
2l
(4)F
时,
w0 w0
1
lim w0 lim
F
w F 0
F (l F )2 f 2
lim F
1
1
(l
- F)2 F
f F
2 2
w0 1 w0
w0 w0
1
l f
2
1
RR
2
F
25
结论
只有 F 1 R(l) ,才有聚焦作用
F15 q
五、透镜对高斯光束的变换规律
q=l+if q=-l+if
q Fq Fq
q、q:透镜处物、像高斯光束q参数
l、l :物、像高斯光束腰到透镜距离
f、f :物像高斯光束焦参数
q q
f(w0)
O
f(w0) Z
O
l F l
16
例1 某高斯光束焦参数为f=1m,将焦距F=1m 的凸透镜置於其腰右方l=2m处,求经透镜变换 后的像光束的焦参数f及其腰距透镜的距离l
解 (1)
0
f
f
02
3.14 106 3.14 106
1m
z=0.5m
q(z) பைடு நூலகம் if 0.5 i(m)
(2)
w(z) w0
1
z2 f2
w0
1
0.52 12
1.12mm
f2
12
R(z) z 0.5 2.5m
z
0.5
8
例8-2 高斯光束在某处的光斑半径为w=1mm, 等相

优选高斯光束和准直器简介

优选高斯光束和准直器简介

典型光学系统的变换矩阵
q参数的变换规律—ABCD公式
• 基模高斯光束经过任意光学系统服从所谓的ABCD公 式:
q2
(z)
Aq1 (z) Cq1 (z)
B D
其中 CADB 为光学系统对伴轴光线的变换矩阵。
高斯光束的准直
高斯光束的准直—准直器简介
• 直接从普通单模光纤出射的高斯光束,由于其束腰太 小,因此瑞利距离太短,发散角太大,在应用中,我 们通常需要将其准直。
• 可通过调节准直器的后截距调节准直器的工作距离和束腰大小。
– 目前准直器的调节方法可分为master法和反射法; – 反射法对准直器的束腰控制方法有两种:单点反射和两点反射;
高斯光束耦合
两种光无源器件的制作工艺
公司目前存在两种无源器件的制作工艺,一种是焊接工 艺,另一种是全胶工艺。这两种工艺最直观的区别是所 用的调节架是不一样的,注意观察一下,主要有两个区 别:
1、全胶用的调节架是三维的,焊接用的调节架是五维的 ; 2、全胶用的调节架调节精度是0.5um的,焊接用的是 10um
为什么会有这些区别? 需要从基模高斯光束的耦合来解释。
高斯光束的四种耦合失配及其效率
q2
q3
w02
z2
参数说明: q0 – 光纤端面q值;q1 – c-lens平面前表面q值; q2 – c-lens球面后表面q值;q3 –出射光束腰处q值; W01 /w02 – 入/出射光束腰; L – c-lens 的长度; R – c-lens 的曲率半径;n – c-lens的折射率; 取原点在光纤端面,光传输方向为正方向; 准直器的工作距离为2z2。
无源器件上。
基模高斯光束的一般表达式
Z轴方向传播的基模高斯光束均可表示为如下的一般形式:

高斯光束的聚焦和准直课件

高斯光束的聚焦和准直课件

高斯光束的参数如束腰半径、波长等 也会影响准直效果。
光学元件质量
透镜、反射镜等光学元件的质量对准 直效果有重要影响,如光学元件的加 工精度、表面质量等。
04
高斯光束聚焦和准直的应用
光学通信
总结词
高斯光束的聚焦和准直技术在光学通信领域具有广泛应用,能够实现高速、高效 、远距离的光信号传输。
详细描述
实时处理能力
对于动态变化的光束,需要具备实 时处理能力,以便快速响应和调整 。
研究方向
新型光学元件研究
研究新型的光学元件,以提高光 束的聚焦和准直精度。
光束质量提升技术
研究提高光束质量的方法和技术 ,以满足各种应用需求。
实时控制系统
研究实时的光学控制系统,以快 速响应和调整光束。
发展前景
应用领域拓展
比较不同聚焦透镜和不同输入光束参 数对聚焦效果的影响,得出结论和建 议。
06
高斯光束聚焦和准直的未来 发展
技术挑战
高精度控制
高斯光束的聚焦和准直需要高精 度的光学元件和控制系统,以实
现光束的稳定和精确控制。
光束质量提高
目前的高斯光束聚焦和准直技术受 到光束质量的限制,如何提高光束 质量是未来的一个重要挑战。
减小。
高斯光束的应用
1 2
3
激光加工
高斯光束可被用于激光切割、打标和焊接等加工领域。
光学测量
高斯光束可被用于光学测量领域,如干涉仪、光谱仪和全息 术等。
光学通信
高斯光束在光纤通信中用作信号传输的光源,具有传输损耗 低、信号稳定等优点。
02
高斯光束的聚焦
聚焦原理
高斯光束的聚焦是指将发散的高 斯光束通过透镜或反射镜系统, 使其在空间上形成一个能量集中

激光原理与技术 第7讲 高斯光束的聚焦和准直

激光原理与技术 第7讲 高斯光束的聚焦和准直
激光原理与技术
第七讲 高斯光束的聚焦、准直
7.1 高斯光束通过薄透镜的变换
已知入射高斯光束束腰半径为0,束腰位置与透镜的距离为l,
透镜的焦距为F,各参数相互关系如下图,则有:
z
0处:q 0
q0
i
02
在B面处: q
1
B
q
1
A
1 F
在A面处:q A q0 l 在C面处:q C q B lC
研究其规律:
1
02
1
02
1
l F
2
f2
F
2
d dl
2 0
02
2 F2
l
F
d0
dl
03 02 F
2
F
l
7
7.2 高斯光束的聚焦
A、l F:
d0
dl
03 02 F
2
F
l
0
0 将随着l的减小而减小,
因此当l 0时有最小值:
此时像方高斯光束束腰位置:l
lC
F
F2 0 F 0 F 2 f 2
4
7.1 高斯光束通过薄透镜的变换
当不满足以上条件时,则不能套用几何光学的结论。
当l F时,可以求出l F,此时物方、像方高斯光束的束腰都位于 焦点处,这与几何光学中平行光成像于无穷远处的结论不相符。
当l F时,l仍可解出大于零的解。 例如当时l 0,即入射的物方高斯光束的束腰位于透镜上,可以得到:
2
0 F l k 0 l F l
几何光学薄透 镜成像垂轴
放大率公式
束腰半径是高斯光束所有光斑半径的最小值,可以将其类比为几何光学中
光束的焦点,在满足假设条件的情况下,物方、像方高斯光束经过薄透镜

高斯光束-聚焦与准直

高斯光束-聚焦与准直
2 2
高斯光束的聚焦
F f
ω0 ' ω0
(2)F< f
ω0 ' ω0
1 F f
1
f 1+ ( F ) 2
2
1
有:
ω0' =1 ω0
ω0
0
F− F − f2
F
F+ F2 −f 2
l
结论: ①若F< f,总有聚焦作用 ②若F > f,只有
l < F − F2 − f 2
1
f 1+( F) 2
证:令 ω
'
(2)
① ②
+ z2 =1 f
1 1 1 1− i 1 1 1 λ (= )= = = − i (= − ) q z + if 1+ i 2 2 2 R πω 2 2λ 1 λ 1 1 ω= = = π πω 2 2 R 2
R = 2m
=
2 × 3 .14 × 10 − 6 = 1 .414 mm 3 .14
ω0' 有极大值 ω0
ω0' = ω0
1 1 + ( )2 f
F =l+
f2 l
高斯光束的聚焦 将 F =l+
代入
ω0' = ω0
ω0' = ω0
f 2 l2 + f 2 = l l F (l − F ) 2 + f 2
2 2
(3) F = R(l ) = (l + (4)F →∞时,
l + f l f4 + f l2
λ z2 (f + ) π f
2 2
R( z ) = z +

高斯光束与准直器简介

高斯光束与准直器简介

Z A = 2πp −3 8.14 ×10 −3 N 0 = 1.5868 + λ2 5.364 ×10 −3 2.626 ×10 − 4 A = 0.3238 + + 2 λ λ4
• 其中 为透镜周期,透射端与反射端的G-lens周期 分别为 其中p为透镜周期,透射端与反射端的 周期p分别为 为透镜周期 周期 0.23与0.25 与
角度失配 径向失配 轴向失配 模场失配
光无源器件中高斯光束耦合损耗分析
LOSS = −10 logη
按照光无源器件的各项公差的影响来看: • 束腰大小在10um左右的高斯光束(光纤出光) – 轴向失配>径向失配>角度失配 • 束腰大小在300um左右的高斯光束(准直器出 光) – 角度失配>径向失配>轴向失配
称矩阵M为介质的传输矩阵。
傍轴子午光学系统的传输矩阵
• 若光线连续通过传输矩阵为M1,M2…Mn的光学 系统 rn r0 = Mn …… M 2 ⋅ M 1⋅ θ θ n 0
即整个光学系统的传输矩阵M=Mn×…M2×M1 已知入射光线的离轴距离和入射角,通过传输矩 阵追踪光线传输性质的模拟方法,称为光路追迹。
• C-lens
– 聚焦方式:球面 – 长度和后截距互相制约 – 一致性差,价格低,替代0.23 p G-lens
Grin lens 光学特性
Ar 2 N (r ) = N 0 (1 − ) 2
C-lens准直器 lens准直器
• C-Lens的参数(SF11) Lens的参数(SF11) 的参数
AB 其中 为前面提到的光学系统对伴轴光线的传输矩阵。 C D
准直器的q 准直器的q传输图示

高斯光束

高斯光束

2)当场振幅为轴上( x2 y 2 0 )的值的e-1倍,即强度为轴上的值的e-2倍时, 所对应的横向距离 z 即z 处截面内基模的有效截面半径为;
z f w0 , w z w0 1 f 3)共焦场中等相位面的分布如图所示。
2
x2 y 2 1 z 00 ( x, y , z ) k z tg 2 R (z ) f 2 w2 2 f 0 R z z 1 z z z
2
f R (z) z z
2
3、q参数
(1)定义 (2)计算
1 1 i 2 q(z) R (z) w ( z )
w02 if 束腰位置处 z 0 ,有 q0 i
q (z) z if
禳 镲1 1 = Re 镲 睚 镲 R( z ) q( z ) 镲 铪 禳 镲 1 1 镲 = p / l Im 睚 镲 w2 ( z ) q( z ) 镲 铪
1 1 1 3.14 10 i 2 i 2i 3 2 q R w 0.5 3.14 (10 ) 1 2i 2i q 0.4 0.2i (m) 2 i 4 1 5
6
(2)
w( z ) w0 1
2
z z ( f ) 2 f f
2r 2 I (r ) I 0 exp 2
r2 A(r ) A0 exp 2
P T P
I (r )2 rdrd 1 exp 2 I (r )2 rdrd 孔径半径 a
1. 高斯光束在其轴线附近可看作是一种非均匀高斯
球面波,
2.在其传播过程中曲率中心不断改变

高斯光束的聚焦和准直

高斯光束的聚焦和准直
0 F1 f
八、高斯光束的自再现变换与稳定球面腔
• 利用透镜实现自再现变换
当透镜的焦距等于高斯光束入射在透镜表面上的波 面曲率半径的一半时,透镜对该高斯光束作自再现 变换。
• 球面反射镜对高斯光束的自再现变换
当球面镜的曲率半径与高斯光束入射在球面镜表面 上的波前曲率半径相等时,球面镜对该高斯光束作 自再现变换。
基模高斯光束的特征参数 用参数0(或f)及束腰位置表征高斯光束 用参数(z)和R(z)表征高斯光束 高斯光束的q参数 • 高阶高斯光束(厄米特-高斯光束和拉盖尔高 斯光束,存在于什么腔型中?)

六、高斯光束q参数变换规律
• 高斯光束的q参数与点光源发出光波的等 相位面半径R在光学系统中的变换规律相 A B 同。当高斯光束经过一个变换矩阵为 C D 的光学系统时,若入射及出射的q参数分 别为q1和q2,则遵循以下变换规律
主要内容: • 概述-光腔理论的一般问题 • 共轴球面腔的稳定性条件 • 开腔模式和衍射理论分析方法 • 稳定球面腔中的模结构 • 高斯光束的基本性质及特征参数 • 高斯光束q参数变换规律 • 高斯光束的聚焦和准直 • 高斯光束的自再现变换与稳定球面腔 • 光束衍射倍率因子M2 • 非稳腔
本章总结
2
2 0 (F l) ( )2 2
2 F 2 0
(1)若F一定, 当l<F时, 0随l的减小而减小; 当l=0时, 0达到最小值;当l>F时, 0随l的 增大而减小; 当l时, 00, l F ;当 l= F时, 0达到极大值, 0=(F/0)。
d1 d2
R1=∞
F
R2=∞
第二章作业(二) • 基本题:书本98-100页10、15、17、23、 27 • 附加题: 26、24(主镜口径改为10cm)

第7讲 高斯光束的聚焦和准直(PPT文档)

第7讲 高斯光束的聚焦和准直(PPT文档)

f F2


0 F

2
C

0
F
7.2 高斯光束的聚焦
– 高斯光束的聚焦,指的是通过适当的光学系统 减小像方高斯光束的束腰半径,从而达到对其 进行聚焦的目的。
– 1、F一定时,ω’0随着l变化的情况 我们将通过前面得到的高斯光束通过薄透镜变 换时束腰半径变换规律研究其规律:
激光原理与技术·原理部分
第7讲 高斯光束的聚焦、准直
7.1 高斯光束通过薄透镜的变换
– 已知入射高斯光束束腰半径为ω0,束腰位置
与透镜的距离为l,透镜的焦距为F,各参数相
互关系如下图,则有:
L

z=0处,q(0)

q0

i
2 0
/

0
0 ' C
– 在A面处:q(A) q0 l

在B面处:q(1B)
0

2

1 F2

0

2
1

l

2 0

2

2 F 2
2

2(l
)
'0

(l)
F
此时
l'
F

(l

(l F)2

F )F 2

2 0
/ 2
lF F
0
F
7.2 高斯光束的聚焦
若同时满足
l
f
2

a ib
其中:
f


2 0

F 2(F l)
a

(F

第7讲 高斯光束的聚焦和准直

第7讲 高斯光束的聚焦和准直
ω '0 = ω0 ω0 = 2 2 1 + (πω 0 / λ ) 1+ ( f / F )
F2 F 此时像方高斯光束束腰位置: 此时像方高斯光束束腰位置:l ' = F 1 − = F 2 + (πω 20 / λ ) 2 1 + ( F / f ) 2 < F
而垂轴放大率: 而垂轴放大率: k =
(l − F ) F λ 此时 l ' = F + → ω '0 ≈ F 2 F + 0 ≈ F 2 l >> F 2 (l − F ) + (πω 0 / λ ) πω (l )
2
7.2 ;> = f λ

F ω '0 = ω 0 l
1 1 πω 0 2 l 2 f 2 1 l 2 l 2 = 2 1 + ≈ 2 2 2 = 2 Fω 0 ω'0 F λ f F ω 0 f

7.1 高斯光束通过薄透镜的变换
• 如果令 lC = F ,即像方高斯光束束腰位于透镜前焦面,可以利用前面的公式求出束腰 即像方高斯光束束腰位于透镜前焦面, 的半径: 的半径: πω 20 f = λ 2 2 F (F − l) F f F 2( F − l ) qC = +i = a + ib 其中: a = 其中: 2 2 2 2 ( F − l )2 + f 2 (F − l) + f (F − l) + f F2 f b = ( F − l )2 + f 2 1 a b 1 λ
更进一步的,如果满足 l 更进一步的,

高斯光束和准直器简介

高斯光束和准直器简介
远场发散角束腰theta当z远大于z0时wzwz近似线性的增加我们可以得到近似线性的增加我们可以得到q参数主要用来研究高斯光束传输任一伴轴子午光线可由两个坐标参数表征为矢量一个是光线离轴线的距离r另一个是光线与轴线的夹角theta我们规定光线出射方向在轴线上方时theta为正反之为负
基模高斯光束和准直器简介
摘要
• 基模高斯光束 • 高斯光束传输(准直器)
• 高斯光束的准直
• 高斯光束耦合
基模高斯光束
为什么是基模高斯光束?
• 从单模光纤中出来的光场我们可以近似认为是基模高 斯光束,束腰的位位置在光纤端面。
光传输方向 w01 w02 z1 z2
• 经过准直器后出来的光场也是基模高斯光束。 • 基模高斯光束分析方法可以应用到几乎所有的单模光 无源器件上。
如何控制准直器的出射光束腰大小,位置?
• 准直器的设计决定了出射光束腰大小,位置的可调节范围。
– 增大/减小入射光束腰w01, 出射光束腰减小/增大,工作距离可调范 围减小/增大;增大/减小c-lens的曲率半径R,出射光束腰增大/减小, 工作距离可调范围增大/减小;可通过设计透镜长度控制后截距的大 小,适应不同器件的需要;改变透镜的折射率特性可改变出射光的 特性,目前c-lens的材料业界已基本统一为SF11。
lim
( z)
z
z w
0
• 目前主要采用的准直方法为加透镜,主要有C-lens, G-lens。 • 高斯光束的准直可用q传输理论进行简单的分析,理 论与实验测量的结果吻合的很好。 • 将以c-lens为例,简单介绍准直器的原理。
准直器的q传输图示(c-lens)
光传输方向 q0 q1 w01 z1 参数说明: q0 – 光纤端面q值;q1 – c-lens平面前表面q值; q2 – c-lens球面后表面q值;q3 –出射光束腰处q值; W01 /w02 – 入/出射光束腰; L – c-lens 的长度; R – c-lens 的曲率半径;n – c-lens的折射率; 取原点在光纤端面,光传输方向为正方向; z2 q2 q3 w02

高斯光束

高斯光束
物理与光电信息科技学院

《激光原理与技术》
Lasers Principles and Technologies
主讲教师:陈 建 新 、朱莉莉、陈荣
福建师范大学物理与光电信息科技学院
(第三章)
物理与光电信息科技学院

《激光原理与技术》
第三章 高斯光束
赫姆霍兹方程在缓慢振幅近似下的一个特解,对应着具有 圆对称光学谐振腔的振荡模式。
(第三章)
物理与光电信息科技学院

《激光原理与技术》
在垂直于光束的任意一个横截面上,振幅的分布为:
2 r l l 2r 2 r 2 cosl Apl r , , z [ ] L p [ 2 ] exp 2 sin l w( z ) w z w z
(第三章)
物理与光电信息科技学院

《激光原理与技术》
高斯光束的基本性质
波动方程的基模解 在标量近似下稳态传播的电磁场满足的赫姆霍茨方程:
u0 k u0 0
2
在z的缓变振幅近似下(忽略 解出上式微分方程的一个特解:
2 z 2
),利用“试探法”
此特解叫做基模高斯光束
光斑半径随z的变化规律为:wz w 0 当
z z 1 w 1 0 z w 2 0 0
2 2
z z0 时 wz0 2w0
从最小光斑面 积增大到它的 二倍的范围是 瑞利范围, 从最小光斑处 算起的这个长 度叫瑞利长度
(第三章)
物理与光电信息科技学院

《激光原理与技术》
w0 r2 z r2 u0 x , y , z { exp i kz arctan( 2 ) exp[i ] w 2 z exp w z 2 R ( z ) w 0

第7讲 高斯光束的聚焦和准直

第7讲 高斯光束的聚焦和准直

0 ' 0
高斯光束经过均匀介质块后,光束发散角 不发生变化。
例题
入射高斯光束在介质块左侧界面处q参 数为q1:
0 2 q1 i l1
经过平面介质界面折射的传输矩阵为:
1 0 则进入介质块左侧界面的q 参数q2为: 2 1 0 q2 q1 i 0 l1
例题
入射高斯光束束腰位置处 q参数为q0,经过自由空间 l1后的q参数为q1,经过介 质块后出射的q参数为q2。
q1 q0 l1
故:
l 1 折射率为n的介质块的光纤传输矩阵为: 0 1
q2 q1
L

q0 l1
l2 l1

0 2 l2 l1 i l1
0 '2 02 i i z 1 l 1
高斯光束入射到均匀介质中,其束腰半径不发生变化,束腰位置向右移动。
7.1 高斯光束通过薄透镜的变换
– 已知入射高斯光束束腰半径为ω0,束腰位置与透 镜的距离为l,透镜的焦距为F,各参数相互关系如 下图。
高斯光束束腰的变换关系式
7.1 高斯光束通过薄透镜的变换
束腰位置
(l F ) F 2 l' F 2 (l F )2 20 /
束腰半径
1 1 l 2 1 0 2 2 1 2 2 ' 0 0 F F
0
L
0 '
C
l
q(0)
A
B
lC
C q(C)
q(A) q(B)
7.1 高斯光束通过薄透镜的变换
方法一:分步计算

高斯光束-聚焦与准直

高斯光束-聚焦与准直
2 2 2 2 2 2 2 2 2
透镜对高斯光束的变换公式
l2 + f 2 )ω0 F 2l ∴ω0'= ω0 = 2 2 2 2 (l − F) + f l +f 2 2 [l − ( )] + f 2l l2 + f 2 l2 + f 2 2 2 ( )ω 0 ( )ω0 ( l + f )ω 2l 0 2l = 2l = = = ω0 (l 2 − f 2 )2 2 l2 + f 2 ( l 2 + f 2 )2 + f 4l 2 2l 4l 2 (
l
l′
0.1( 2 + i ) 0.1(2 + i )(-1.9 + i ) = −0.104 + 0.00217 i = 0.1 − 2 − i (-1.9 − i )(-1.9 + i )
l ′ = 0 .099 m
l ′ = 0.104m
ω0 ' =
3.14 × 10 −6 × 0.00217 λf ' = = 0.0466mm 3.14 π
ω0' 有极大值 ω0
ω0' = ω0
1 1 + ( )2 f
F =l+
f2 l
高斯光束的聚焦 将 F =l+
代入
ω0' = ω0
ω0' = ω0
f 2 l2 + f 2 = l l F (l − F ) 2 + f 2
2 2
(3) F = R(l ) = (l + (4)F →∞时,
l + f l f4 + f l2
透镜对高斯光束的变换规律I—q参数变换 q =l+if q′=-l′+if ′

周炳坤激光原理与技术课件 第三章 高斯光束

周炳坤激光原理与技术课件 第三章 高斯光束

结论:具有固定曲率中心的普通傍轴球面波可以由其曲率半径R来描述,它的 传
§ 3.2.2高斯光束q参数的变换规律———ABCD公式
一、高斯光束q参数在自由空间中的传播规律 根据式(2.9.9)表示的q参数的定义
λ 1 1 = −i q(z) R(z) πw 2 ( z )
(2.10.7)
(2.9.6)
1、用束腰半径 w0(或f)及束腰位置表征高斯光束 由式(2.9.1)与式(2.9.2)及ψ(z)式可知:一旦腰斑 w0及其位置确 定了,高斯光束的结构也就确定了。由f与 w0 的关系也可用f与束腰位置来表征 高斯光束。
2、用w(z)和R(z)表征高斯光束 由(2.9.4)和(2.9.6)式得到: πw 2 ( z ) 2 − 12 w 0 = w ( z )[1 + ( ) ] λR(z)
λ w(z) = w0
(2.9.2)
π w0 2 f = , w0 = λ
λf π
f 称为高斯光束的共焦参数或瑞利长度; R(z)为与传播轴线相交与z点的高斯光束等相位面的曲率半径。 当z等于f时, (z) 2w0 w = 对于一般稳定球面腔(R 、 2、 )所产生的高斯光束w 及f与 R 、 2、 的关系为 0 1R L 1R L
§ 3.2
高斯光束q参数的变换规律
§ 3.2.1普通球面波的传播规律
一、普通球面波的传播规律
图(2.10.1)普通球面波在自由空间的传播 如图普通球面波,曲率中心为0,曲率半径R(z)的传播规律为
R1 = R ( z1 ) = z1
R2 = R ( z 2 ) = z 2 R 2 = R1 + ( z 2 − z1 ) = R 1 + L
= q0 + l = qB + lC

第7讲 高斯光束的聚焦和准直

第7讲 高斯光束的聚焦和准直

f2 F2 l F F 1 2 F 2 2 2 2 2 F f F f 0 F f
这与几何光学中当l F 时不能成实像的情况不同。
F 2 0 F
0 l F
F 2 l F l lC F 2 l F f2 2 1 1 f2 l 1 2 Im q 2 1 F F 2 0 c 0
0
F
根据高斯光 束参数定义
F 2 l F l lC F 2 l F f2 2 1 1 f2 l 1 2 Im q 2 1 F F 2 0 c 0
激光原理与技术
第七讲 高斯光束的聚焦、准直
7.1 高斯光束通过薄透镜的变换
已知入射高斯光束束腰半径为0,束腰位置与透镜的距离为l, 透镜的焦距为F,各参数相互关系如下图,则有:
1 1 1 在B面处: q B q A F
02 z 0处:q 0 q0 i
1 当C 面取在像方束腰处,此时RC , Re 0,可以得到 qc
F l
2
f
2
i
F2 f
F l
2
f2
得到的式子是高斯光束束腰的变换关系式。
02 f
3
7.1 高斯光束通过薄透镜的变换
l 2 f 当满足 l F 或 1 条件时,由束腰位置关系公式: F F
l f 1 1 F F

2 2
随F的变化规律如图所示:从结果 当 0 和l一定时, 0 Rl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0' 2
1
02
0
R(l ) / 2
R (l )
F
一、高斯光束的聚焦
2. l一定时,ω0’随F 的变化情况 表明,当l一定时,透镜的焦距只有小于光束 在透镜处波阵面曲率半径的一半时,透镜对高斯 光束才有聚焦作用。
一、高斯光束的聚焦
例题1:波长为3.14微米的高斯光束,束腰半径1 毫米,使用焦距F=0.1m的透镜对它进行聚焦, 分别将透镜置于束腰处、距离束腰2m处,求:聚 焦后的束腰半径及位置。
1 03 F2 f1 2 F2 f1 2 M ' 1 ( ) 1 ( ) 2 3 01 01 F1 f1 F1
F2 F1 2 F2 1 ( ) M F1 f1 F1 F2 M (几何压缩比) F1
二、高斯光束的准直
3. l1>>F1时,利用望l一定时,ω0’随F 的变化情况
1 2 0'
1
02
0
R(l ) / 2
R (l )
F
一、高斯光束的聚焦
2. l一定时,ω0’随F 的变化情况
令式中0 0' F 2 (l F ) 2 f 2 l 2 F 2 2lF f 2 1 f2 1 F (l ) R(l ) 2 l 2 R(l )为透镜处波阵面的曲率半径, 1 1 1 当F R (l )时, 2 2 , 即0 ' 0 2 0 ' 0
一、高斯光束的聚焦
② 当 l >>F 时,有:
02 F 02 F F 0 ' 2 2 2 f (l ) 0 (l ) l 2 l f (l ) f 0 1 ( ) f
lF 2 l' F 2 F 2 l f
0 F
02 F
式中ω(l)为入射光束在透镜处的光斑尺寸, 在l>>F 情况下,焦斑半径与波长与透镜焦距成正 比,而与透镜处的光斑尺寸成反比。
F1 02 , l1 ' F1 F1 2 f1 2 1 ( ) 1 ( ) f1 F1
01
(短焦距)
l2=F2时,
F2 F2 F2 03 02 1 f2 02 01

f1 2 F1
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束 望远镜对高斯光束的准直倍率为:
一、高斯光束的聚焦
例题2:波长为3.14微米的高斯光束,束腰半径1 毫米,分别将透镜置于束腰处、距离束腰2m处, 问:使用多大焦距的透镜对它有聚焦作用?
二、高斯光束的准直
1. 单透镜对高斯光束发散角的影响 θ-物高斯光束发散角,θ’-像高斯光束发散角。
2 0 ' 0 2 0 ' ' '0 若0 ' 0 (聚焦情况), ' 发散角更大了; 只有0 ' 0 (扩束情况),才有 ' 准直。
二、高斯光束的准直
当0'达到极大值时, '达到极小。 什么条件下,0'达到极大值? l F时,0'极大, F 此时,0 ' 0 F , 代入上式得: f 0
' 0 02 ,可见: 0 ' F ()在 1 l F 条件下,0 ' 极小,因而 ' 可达到极大;
(2)F越大, ' 越小; (3)0 越小, ' 越小;
二、高斯光束的准直
(4)一个启示:
如果预先用一个短焦距的透镜将高斯光束聚焦,
得到一个小的腰斑,然后再用一个长焦距透镜来改
善其方向性,就可以得到很好的准直效果。
二、高斯光束的准直
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束
所以: 2 02 2 3 F1 03 F2 F2 (l1 ) 2 F1 2 F2 (l1 )
二、高斯光束的准直
3. l1>>F1时,利用望远镜准直高斯光束 望远镜对高斯光束的准直倍率为:
1 2 (l1 ) F2 M ' 3 01 2 F1
3.14 高斯光束的聚焦与准直
高斯光束的聚焦与准直
聚焦: 经过光学系统(透镜)使高斯光束的腰斑变小, (需要研究ω0’、l、F的变化规律) 准直: 利用光学系统改善光束的方向性(压缩束散
角),这个问题通常称为高斯光束的准直问题。
一、高斯光束的聚焦
(l F ) F 2 l' F (l F ) 2 f 2 F 0 ' 0 (l F ) 2 f 2
F2 (l1 ) F2 l1 2 1 ( ) F1 01 F1 f1 l1 2 M 1 ( ) , f1 F2 M (几何压缩比) F1
二、高斯光束的准直
一般情况下,因为ω(l1)>ω01,因而望远镜对高斯 光束的准直倍率M’总是比它对普通傍轴光学的几 何压缩比要高。
02 f
一、高斯光束的聚焦
1. F一定时,ω0’随l的变化情况 (1)l<F情况 ① ω0’随l减小而减小;②当l=0时, ω0’最小。
一、高斯光束的聚焦
②当l=0时, ω0’最小,此时:
0 ' 0
f 2 1 ( ) F F l' F F 2 1 ( ) f 0
可见,当l=0时, ω0’总比ω0小,因而不论透镜焦 距F多大,它都有一定的聚焦作用,并且像方腰 斑位置处在前焦点以内。
一、高斯光束的聚焦
(2)l=F 情况,此时:
F 0 ' 0 f l' F
只有F<f(短焦距)时,透镜才有聚焦作用。 (3)l>F 情况,此时: ① ω0’随 l 增大而减小;
1
2 F1条件下)
01 2 2 ,02 F1 (在l1 02 (l1 )
F2 3 ,03 02 , 03 f2 2
2 02 ( f2 )
F2 02
(l2 F2情况)
二、高斯光束的准直
3. l1>>F1时,利用望远镜准直高斯光束
相关文档
最新文档