上拉、下拉电阻的作用分析
下拉电阻和上拉电阻的作用
下拉电阻和上拉电阻的作用1.下拉电阻的作用:下拉电阻是将电路接地的电阻,其主要作用有以下几点:(1)保持逻辑低电平:在数字电路中,逻辑低电平常用0V表示。
当系统处于空闲状态时,下拉电阻将电路拉低到0V,确保所有未接入时电路处于逻辑低电平状态。
这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。
(2)电路的信号接地:下拉电阻将电路接地,起到信号处理的接地作用,避免由于信号耦合引起的干扰和噪声。
(3)承担输出电阻:在一些电路中,下拉电阻也会作为输出电阻存在,通过控制下拉电阻的阻值来调节电路的输出电阻。
(4)限制电流:下拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。
(5)消除漂移:在一些传感器电路中,由于工作环境和元器件特性的影响,电路可能会产生输出漂移,通过使用下拉电阻可以消除这种漂移效应。
2.上拉电阻的作用:上拉电阻是将电路接向电源的电阻,其主要作用有以下几点:(1)保持逻辑高电平:在数字电路中,逻辑高电平常用VDD电压表示。
当系统处于空闲状态时,上拉电阻将电路拉高到VDD电压,确保所有未接入时电路处于逻辑高电平状态。
这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。
(2)电路的信号接电源:上拉电阻将电路接向电源,起到信号处理的接入电源的作用,提供稳定的电源电压,避免由于电源波动引起的干扰和噪声。
(3)承担输入电阻:在一些电路中,上拉电阻也会作为输入电阻存在,通过控制上拉电阻的阻值来调节电路的输入电阻。
(4)限制电流:上拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。
(5)提供信号源:在一些传感器电路中,通过使用上拉电阻作为信号源,可以提供稳定的电压信号输出。
综上所述,下拉电阻和上拉电阻在电子电路中有着不同的作用。
它们通过控制电路的电平状态、接地或接电源、控制电流大小等方式,对信号进行稳定和控制。
在数字电路中,下拉电阻和上拉电阻常用于控制逻辑门的输入和输出电平状态,确保电路的稳定工作;在模拟电路中,它们常用于限流、输入输出电阻调节、电路信号源等方面。
431上拉下拉电阻作用-定义说明解析
431上拉下拉电阻作用-概述说明以及解释1.引言1.1 概述上拉电阻和下拉电阻是电路中常见的元件,它们在数字电路和模拟电路中起着重要的作用。
上拉电阻和下拉电阻通常用于控制电路中的开关状态,以确保正确的信号传输和电路逻辑运算。
本文将详细探讨上拉电阻和下拉电阻的作用,并介绍它们在不同应用场景下的具体应用。
上拉电阻和下拉电阻是一种电阻器,用于将电路中的信号电压拉高或拉低到特定的电平。
上拉电阻将信号电压拉高,下拉电阻则将信号电压拉低。
在数字电路中,上拉电阻通常用于将逻辑门的输入端连接到高电平,以确保输入信号在断开状态下保持稳定。
下拉电阻则用于将逻辑门的输入端连接到低电平,同样也是为了保持输入信号在断开状态时的稳定性。
在模拟电路中,上拉电阻和下拉电阻用于调整信号的电平。
通过改变电阻的阻值,可以控制信号的幅值和频率响应。
上拉电阻和下拉电阻的作用在模拟电路中更加广泛,涵盖了信号放大、滤波和匹配等多个方面。
在这些应用中,上拉电阻和下拉电阻的精确选择和设计对电路性能至关重要。
总的来说,上拉电阻和下拉电阻在电路中扮演着至关重要的角色。
它们可以确保信号的稳定性和正确传输,以及调整信号的电平和频率响应。
对于电路设计者和工程师来说,了解上拉电阻和下拉电阻的作用和应用是非常重要的,这将有助于优化电路的性能和可靠性。
在接下来的正文部分,我们将更详细地探讨上拉电阻和下拉电阻的作用,并介绍它们在具体应用中的技术要点和实际应用案例。
1.2文章结构文章结构:本文共分为引言、正文和结论三个部分。
引言部分主要概述了上拉下拉电阻的作用和本文结构,引出了文章的目的。
正文部分主要包含了上拉电阻的作用、下拉电阻的作用以及上拉下拉电阻的应用。
结论部分对上拉下拉电阻的作用进行了总结,比较了二者的优劣,并展望了上拉下拉电阻的未来发展。
通过这样的结构安排,本文旨在全面介绍上拉下拉电阻的作用,并探讨其在实际应用中的潜力和发展前景。
1.3 目的本文的目的是探讨431上拉下拉电阻在电路中的作用。
上拉电阻和下拉电阻的用处和区别
上拉电阻和下拉电阻的用处和区别上拉电阻的用处:1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须使用上拉电阻,以提高输出的高电平值。
3、为增强输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻以降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力,管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上、下拉电阻是电阻匹配,有效的抑制反射波干扰。
下拉电阻的用处:1、提高电压准位:a、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b、OC门电路必须加上拉电阻,以提高输出的高电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/Apin防静电、防干扰:在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同时管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、预设空间状态/缺省电位:在一些CMOS输入端接上或下拉电阻是为了预设缺省电位。
当你不用这些引脚的时候,这些输入端下拉接0或上拉接1。
在I2C总线等总线上,空闲时的状态是由上下拉电阻获得6、提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
【硬件设计】上拉电阻和下拉电阻用法
【硬件设计】上拉电阻和下拉电阻的用法一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
在I2C 总线等总线上,空闲时的状态是由上下拉电阻获得。
6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
上拉电阻和下拉电阻的作用是什么?
什么是上拉电阻?上拉电阻和下拉电阻都是电阻元器件,所谓上拉电阻就是接电源正极,下拉的就是接负极或地。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
下拉同理,也是将不确定的信号通过一个电阻钳位在低电平。
那么,上拉电阻和下拉电阻的用处和区别分别又是什么呢?一、上拉电阻和下拉电阻是什么上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
而下拉电阻是直接接到地上,接二极管的时候电阻末端是低电平,将不确定的信号通过一个电阻钳位在低电平。
上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提供电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻和下拉电阻的用处和区别上拉电阻和下拉电阻二者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
上拉电阻:1、概念:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平;2、上拉是对器件注入电流,灌电流;3、当一个接有上拉电阻的IO端口设置为输入状态时,它的常态为高电平。
下拉电阻:1、概念:将一个不确定的信号,通过一个电阻与地GND相连,固定在低电平;2、下拉是从器件输出电流,拉电流;3、当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。
上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
由此可见,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地(GND)到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。
上拉电阻和下拉电阻的应用
上拉电阻和下拉电阻的应用嘿,咱来唠唠上拉电阻和下拉电阻的应用。
这上拉电阻和下拉电阻啊,就像是电子世界里的小帮手,能帮咱解决不少问题嘞。
先说上拉电阻吧。
它就像个小弹簧,把电压往上拉。
比如说在一个数字电路里,有个输入端口,如果这个端口没有连接任何信号的时候,上拉电阻就会把这个端口的电压拉到高电平。
这样就能避免这个端口处于不确定的状态,就像一个人站在十字路口,不知道往哪走,上拉电阻就给他指了个方向。
在一些传感器的接口电路里,上拉电阻就很常用。
传感器没有信号输出的时候,上拉电阻能让接口的电压保持稳定,等传感器有信号了,就能准确地检测到变化。
再说说下拉电阻。
它呢,就像个小秤砣,把电压往下拽。
在一些电路里,如果有个输出端口,但是没有信号输出的时候,下拉电阻就会把这个端口的电压拉到低电平。
这样可以防止这个端口出现意外的高电平,就像给一个调皮的小孩拴上一根绳子,不让他乱跑。
在一些开关电路里,下拉电阻可以保证开关断开的时候,电路的状态是确定的。
上拉电阻和下拉电阻还可以用来提高电路的抗干扰能力。
就像给电路穿上一层防护衣,不让外界的干扰信号轻易地影响电路的正常工作。
比如说在一个微控制器的输入端口,加上一个合适的上拉电阻或者下拉电阻,可以减少因为电磁干扰或者静电干扰而产生的错误信号。
在一些通信接口电路里,上拉电阻和下拉电阻也有重要的作用。
比如说在I2C 总线里,上拉电阻可以保证总线在空闲状态时的高电平,下拉电阻可以在某些情况下帮助确定总线的状态。
我给你讲个事儿哈。
我有个朋友,他自己做了个小电路板,一开始总是不稳定,有时候莫名其妙地就出问题了。
后来他发现是有几个输入端口没有加上拉电阻或者下拉电阻,导致端口的状态不确定。
他加上了合适的电阻之后,电路板就变得稳定多了。
从那以后,他就知道了上拉电阻和下拉电阻的重要性,做电路的时候都会认真考虑它们的应用。
这上拉电阻和下拉电阻啊,虽然看起来小小的,但是作用可不小嘞。
上拉电阻和下拉电阻
上拉电阻是将电阻的1脚接VCC另一脚接需要上拉的芯片管脚;下拉电阻是将电阻的1脚接GND另一脚接需要下拉的芯片管脚。
大小一般为1~10K,主要用在中段、复位、片选、控制以及开漏输出的管脚。
作用是防止系统复位时引起的不稳定。
上拉电阻下拉电阻的总结上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
上拉电阻下拉电阻的总结
上拉电阻下拉电阻的总结一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
上拉电阻是指:将某电位点采用电阻与电源VDD相连的电阻。
比如,LM339比较器的输出端在输出高电平时,输出端是悬空的(集电极输出),采用上拉电阻可以将电源电压通过该电阻向负载输出电流,而输出端低电平时,输出端对地短接。
下拉电阻就是在某电位点用电阻与地相连的电阻。
如果某电位点有下拉和上拉电阻就组成了分压电路,此时,电阻又叫分压电阻。
二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:A)在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
B)管脚悬空就比较容易接受外界的电磁干扰。
4. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、预设开关状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
iic上拉电阻、下拉电阻
iic上拉电阻、下拉电阻IIC(Inter-Integrated Circuit)是一种常用的串行通信协议,广泛应用于各种电子设备中。
在使用IIC协议进行通信时,为了保证信号的稳定和可靠传输,常常需要使用上拉电阻和下拉电阻。
本文将从IIC协议的基本原理和应用场景入手,详细介绍上拉电阻和下拉电阻的作用和使用方法。
IIC协议是一种双线制的串行通信协议,由时钟线(SCL)和数据线(SDA)组成。
在IIC通信中,上拉电阻和下拉电阻的作用是为了确保SCL和SDA线上的信号电平能够正确地被接收和解析。
我们来了解一下上拉电阻的作用。
上拉电阻是连接在SCL和SDA 线上的电阻,它的作用是将这两根线拉高到一个默认的高电平。
当总线上没有任何设备产生低电平信号时,上拉电阻能够确保SCL和SDA线保持在高电平状态,从而防止信号的漂移和误读。
当总线上某个设备需要传输数据时,它会将相应的线拉低,与上拉电阻形成一个电平切换,以表示数据的传输。
接下来,我们来了解一下下拉电阻的作用。
下拉电阻同样是连接在SCL和SDA线上的电阻,它的作用是将这两根线拉低到一个默认的低电平。
当总线上没有任何设备产生高电平信号时,下拉电阻能够确保SCL和SDA线保持在低电平状态,从而防止信号的漂移和误读。
当总线上某个设备需要传输数据时,它会将相应的线拉高,与下拉电阻形成一个电平切换,以表示数据的传输。
在实际的电路设计中,选择上拉电阻和下拉电阻的数值需要考虑多个因素,如总线上的设备数量、总线长度、工作频率等。
一般来说,上拉电阻和下拉电阻的数值应该相对较大,以确保信号的稳定性。
常见的数值范围是1kΩ至10kΩ,具体数值需要根据实际情况进行调整。
上拉电阻和下拉电阻的连接方式也需要注意。
一种常见的方式是将上拉电阻和下拉电阻连接到VCC和GND,以保证信号电平的正确切换。
另一种方式是将上拉电阻和下拉电阻连接到IO引脚上,以避免在电源启动时产生过大的电流。
具体的连接方式也需要根据实际情况进行选择。
上拉、下拉及0欧姆电阻的作用
上拉、下拉电阻的作用在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1、电阻作用:接电阻就是为了防止输入端悬空减弱外部电流对芯片产生的干扰保护cmos内的保护二极管,一般电流不大于10mA上拉和下拉、限流1. 改变电平的电位,常用在TTL-CMOS匹配2. 在引脚悬空时有确定的状态3. 增加高电平输出时的驱动能力4. 为OC门提供电流那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
反之,尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通!2、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
3、为什么要使用拉电阻:一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入。
上下拉电阻的作用
上下拉电阻的作用
上下拉电阻:
1、定义:上拉电阻就是一种将电气信号,一般是电压的上升的过程中,增加电阻后从而减小上升速度;而下拉就是将电气信号,一般是电压,下降的过程中,增加电阻,从而减小下降速度。
2、功能:上拉电阻可以阻挡较大的电流能力,可以完成降低电压上升
速度的作用;下拉电阻可以把电压拉到高位,降低电压下降速度,以
防止电压骤降。
3、分类:
(1)按照最大峰值电流能力可分为标准型、高峰值型以及个别特殊型;(2)按照用途可分为低频的、高速的以及包括CMOS电路的;
(3)按照结构可分为薄膜类、碳类、热焊类和金属、安装类等。
4、应用:
(1)上拉电阻在信号接口电路、电源稳压等方面得到了广泛的应用;(2)在通信接口的驱动电路中也得到了大量的应用;
(3)在现代的数字仪器、消费电子产品以及多媒体等领域也得到了广
泛的应用;
(4)在工业的自动化控制系统里,上下拉电阻也被广泛的应用。
5、特性:上下拉电阻外形规整且尺寸小巧,相比传统的电阻元器件能
够较小的占用空间,而且可以处理对信号电平和驱动能力比较高的信号,处理能力较强。
什么时候使用上、下拉电阻呢
上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。
同理,下拉电阻是把不确定的信号钳位在低电平。
上拉电阻是指器件的输入电流,而下拉指的是输出电流。
那么在什么时候使用上、下拉电阻呢?
1、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的
最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的搞电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
另外,上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
上拉电阻和下拉电阻
上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。
同理,下拉电阻是把不确定的信号钳位在低电平。
上拉电阻是指器件的输入电流,而下拉指的是输出电流。
那么在什么时候使用上、下拉电阻呢?1、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的搞电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
另外,上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
上拉电阻和下拉电阻的作用以及使用原则
上拉电阻,下拉电阻的含义,作用及选用原则在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
2、为什么要使用拉电阻:一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似于一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是灌电流。
3.上拉电阻的作用:1.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2.OC门电路必须加上拉电阻,才能使用。
3.为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4.在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同时管脚悬空就比较容易接受外界的电磁干扰(MOS器件为高输入阻抗,极容易引入外界干扰)。
数字电路中上拉电阻和下拉电阻作用和选用选择
数字电路中上拉电阻和下拉电阻作用和选用选择文章内容为数字中上拉和下拉电阻作用和选用挑选,希翼对大家有协助。
上拉电阻:1、当TTL电路驱动COMS电路时,假如TTL电路输出的高电平低于COMS电路的最低高电平(普通为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必需加上拉电阻,才干用法。
3、为加大输出引脚的驱动能力,有的管脚上也常用法上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,普通接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增加抗干扰能力。
6、提高的抗电磁干扰能力。
管脚悬空就比较简单接受外界的电磁干扰。
7、长线传输中电阻不匹配简单引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的挑选原则包括:1、从节省功耗及芯片的灌能力考虑应该足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应该足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的挑选应结合开关管特性和下级电路的输入特性举行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,普通地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注重两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平常,开关管断开,上拉电阻应适当挑选以能够向下级电路提供足够的电流。
3.凹凸电平的设定。
不同电路的凹凸电平的门槛电平会有不同,电阻第1页共6页。
(完整word版)为什么要使用上拉下拉电阻他们的作用和定义
为什么要使用上拉、下拉电阻?他们的作用和定义2007-08—14 来源:作者:上拉电阻、下拉电阻的作用;上拉电阻阻值的选择原则;对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定所要考虑的因素;为什么要使用拉电阻?上拉电阻、下拉电阻的作用1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值.2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰.上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取.对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡.2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定.不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平.以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
上拉、下拉电阻
上拉、下拉电阻上下拉电阻上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
上下拉电阻:1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
上拉电阻2、OC门电路必须加上拉电阻,以提高输出的高电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻:就是从电源高电平引出的电阻接到输出1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,CMOS)输出,那么不用上拉电阻是不能工作的, 这个很容易理解,管子没有电源就不能输出高电平了。
2,如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平“拉高”。
(就是并一个电阻在IC内部的上拉电阻上, 让它的压降小一点)。
当然管子按需要该工作在线性范围的上拉电阻不能太小。
当然也会用这个方式来实现门电路电平的匹配。
注意事项需要注意的是,上拉电阻太大会引起输出电平的延迟。
(RC延时) 一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。
下拉电阻:和上拉电阻的原理差不多, 只是拉到GND去而已。
上拉电阻与下拉电阻详解
上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在低电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
一次性说清上拉电阻和下拉电阻
一次性说清上拉电阻和下拉电阻在电子元件中,没有上拉电阻和下拉电阻等物理电阻。
之所以这样称呼它们,是因为它们是根据使用电阻的不同场景来定义的,它们的本质仍然是电阻。
常用于偏置数字门的输入,以防止它们在没有输入时随机浮动。
当你使用它们时,你会得到一个稳定的“高”或“低”状态。
相反,如果没有发生这种情况,则引脚上没有连接,程序读取高阻抗的“浮动”状态。
上拉电阻的定义:通过电阻将不确定的信号连接到VCC电源,并将其固定在高电平。
功能:向上拉动将电流注入器件;灌电流;当带有上拉电阻器的IO 端口设置为输入状态时,其正常状态为高电平,如下图。
图1同理,下拉电阻的定义:通过电阻将某个信号线连接到固定的低电平GND,以将其空闲状态保持在低电平。
功能:下拉是从器件输出电源;拉电流。
当带有下拉电阻的IO端口设置为输入状态时,其正常状态为低,如下图。
图2上拉电阻和下拉电阻2者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
如下图所示,R1为上拉电阻,R2为下拉电阻。
当R1的电阻在数百K时,它可以向信号线提供非常小的负载电流,负载电容器的充电相对较慢。
在这一点上,电阻被称为弱上拉。
同样,如果下拉电阻很大,下拉速度相对较慢,此时的电阻称为弱下拉。
如果上拉和下拉电平可以为芯片提供大电流,则此时的电阻称为强上拉或强下拉图3上拉电阻的作用1、提高输出的高电平:当TTL电路驱动COMS电路时,当TTL电路的输出电平低于COMS电路的最低高电平(通常为3.5V)时,必须在TTL的输出端连接上拉电阻,以提高输出值的输出电平。
2、OC(集电极开路,TTL)门电路必须加上拉电阻,才能使用,因为管子没有电源就不能输出高电平了。
3、为了提高输出引脚的驱动能力,一些MCU通常在引脚上使用上拉电阻。
4、在COMS芯片上,为了避免静电造成的损坏,不用的管脚不能悬空,通常,连接上拉电阻以降低输入阻抗并提供放电路径。
同时,当引脚悬空时,相对容易接受外部电磁干扰(MOS器件具有高输入阻抗,非常容易受到外部干扰)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[图]上拉电阻与下拉电阻的作用
2007-08-12
上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。
同理,下拉电阻是把不确定的信号钳位在低电平。
上拉电阻是指器件的输入电流,而下拉指的是输出电流。
那么在什么时候使用上、下拉电阻呢?
1、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),
这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的高电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻降低输入阻抗,提
供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
另外,上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理
关于上拉电阻,看图。
作为输入接VCC等于1,接GND=0。
如果按键短路(按下)电阻为零,按键按下,Out=0,当按键断开,Out=?显然当Out悬空输出VCC,这可以用仪表测量,
这个VCC就是靠R1“上拉”产生的,顾名思义,R1就是上拉电阻。
上拉电阻的大小,取决于输出接负载的需要,通常逻辑电路对高电平输出阻抗很大,要求输出电流很小,在上拉电阻上压降可以忽略,当然上拉电阻不能太大,否则就不能忽略了。
实际电路还有这种结构
这里的R1也是上拉电阻。
关于下拉电阻,用得少,道理和上面一样,只不过通过电阻“下拉”到GND。
单片机P0口输出结构一部分电路类似下图,实际可能用的是场效应管
当Q1,Q2分别导通,可以对外输出0和1,当Q1,Q2都不导通时?要想输出1,咋办?外接上拉电阻!
为什么要使用拉电阻:
一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入。
上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是灌电流。
有时在修主板键盘口的时候,测量键盘口供电在接负载的情况下正常的话,但是不好用,在排除周围的阻容元件后,大家可能就会考虑到换io芯片了,换完以后也确实好用.不过本人在维修实践中发现有时不用换io也能修好,只要把472的上拉电阻换小以后,键盘口也好用.比如换个102,272,222之类的,但是最低不能小于102.看过资料如果电阻小于102的话,好像容易烧键盘.经过实践确实如此.这
点经验给大家做个参考.如果换小以后还不行的话,也只能换io了.。