3-1矩阵的初等变换及其标准型线性代数全解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
3
4
2
(1)
解
1 2 3 2
(1)
x1 x2 2 x3 x4 4, 2 x x x x 2, 1 2 3 4 2 x1 3 x2 x3 x4 2, 3 x1 6 x2 9 x3 7 x4 9, x1 x2 2 x3 x4 4, 2 x 2 x 2 x 0, 2 3 4 5 x2 5 x3 3 x4 6, 3 x2 3 x3 4 x4 3,
1 2
3
4 1 2
( B3 )
3
4
4 2 3
( B4 )
3
4
用“回代”的方法求出解:
x1 x3 4 于是解得 x2 x3 3 x 3 4
其中x3为任意取值.
或令x3 c, 方程组的解可记作
x1 c 4 x2 c 3 x , x3 c 3 x 4 1 4 1 3 即x c 1 0 0 3
2 1 1 9 2 2 5 3 2 1 0 0
1 4 r2 r3 1 2 r3 2r1 1 2 r 3r 4 1 7 9 1 4 2 0 B2 3 6 4 3 1 4 1 0 B3 2 6 1 3
1 2
3
4 1 2
( B1 )
2 3 4
3 21 31
3
4
( B2 )
1 2 2 3 52 4 32
x1 x2 2 x3 x4 4, x x x 0, 2 3 4 2 x 4 6, x 4 3, x1 x2 2 x3 x4 4, x x x 0, 2 3 4 x4 3, 0 0,
分析:用消元法解下列方程组的过程.
引例Байду номын сангаас求解线性方程组
2 x1 x2 x3 x4 2, x x 2 x x 4, 1 2 3 4 4 x1 6 x2 2 x3 2 x4 4, 3 x1 6 x2 9 x3 7 x4 9,
因为在上述变换过程中,仅仅只对方程组 的系数和常数进行运算,未知量并未参与运 算. 若记 1 2 2 1 1 1 2 1 4 1 B ( A b) 4 6 2 2 4 3 6 9 7 9
则对方程组的变换完全可以转换为对矩阵B(方 程组(1)的增广矩阵)的变换.
3.上述三种变换都是可逆的.
若( A) 若( A) 若( A)
i i i
j
k k
j
( B ), 则( B ) ( B ), 则( B ) ( B ), 则( B )
i
i i
j
( A);
k ( A); k
j
( A).
由于三种变换都是可逆的,所以变换前的 方程组与变换后的方程组是同解的.故这三种 变换是同解变换.
就称这两个线性方程组等价
用矩阵的初等行变换 解方程组(1):
1 2 2 1 1 1 2 1 4 1 B 4 6 2 2 4 3 6 9 7 9
r1 r2
r3 2
1 2 1 1 1 2 1 1 2 3 1 1 3 6 9 7
4 2 B 1 2 9
1 1 2 1 B1 2 3 3 6 1 r2 r3 1 2 r3 2r1 0 0 5 r4 3r1 0 3 r2 2 1 1 r3 5r2 0 1 r4 3r2 0 0 0 0
如果矩阵 A 经有限次初等变换变成矩阵 B, 就称矩阵 A 与 B 等价,记作 A ~ B. 等价关系的性质:
(1) 反身性 A A;
(2)对称性 若 A B , 则 B A; (3)传递性 若 A B, B C, 则 A C.
具有上述三条性质的关系称为等价. 例如,两个线性方程组同解,
第三章
矩阵的秩与线性方程组
本章先讨论矩阵的初等变换,建立矩 阵的秩的概念,并提出求秩的有效方法.再
利用矩阵的秩反过来研究齐次线性方程组
有非零解的充分必要条件和非齐次线性方
程组有解的充分必要条件,并介绍用初等
变换解线性方程组的方法.内容丰富,难
度较大.
第一节 矩阵的初等变换及其标准型
一、消元法解线性方程组
( 2)
其中c为任意常数.
小结: 1.上述解方程组的方法称为消元法. 2.始终把方程组看作一个整体变形,用到如 下三种变换 (1)交换方程次序; ( i 与 j 相互替换) (2)以不等于0的数乘某个方程; (以 i k 替换 i ) (3)一个方程加上另一个方程的k倍. (以 i k j 替换 i )
二、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调 i , j 两行, 记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
3 把某一行所有元素的 k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj) .
(第 i 行乘 k , 记作 ri k)
同理可定义矩阵的初等列变换(所用记号是 把“r”换成“c”). 定义2 矩阵的初等列变换与初等行变换统称为 初等变换. 初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj 逆变换 ri rj ; 1 ri k 逆变换 ri ( ) 或 ri k ; k ri krj 逆变换 ri ( k )rj 或 ri krj .