数学建模论文设计--物流与选址问题
物流配送中心选址数学模型的研究和优化
物流配送中心选址数学模型的研究和优化物流配送中心的选址对于整个物流体系的运行至关重要。
选址的合理与否将直接影响物流配送的成本、效率和服务质量。
对物流配送中心选址进行数学模型的研究和优化,对于提高物流配送效率和降低成本具有重要的意义。
一般来说,物流配送中心的选址受到诸多因素的影响,如市场需求、运输网络、人力资源、政策法规等。
在具体的数学模型研究中,可以考虑以下几个方面进行优化。
市场需求的影响。
市场需求是决定物流配送中心选址的重要因素之一。
在数学模型中,可以通过建立市场需求的数学模型,分析不同地区的市场需求量和分布特点,从而确定物流配送中心的选址范围。
运输网络的考虑。
运输网络的完善与否直接影响着物流配送中心的选址。
在数学模型中,可以通过建立运输网络的数学模型,分析不同地区的运输网络状况,考虑最优的路线和运输方式,从而确定物流配送中心的选址。
政策法规的影响。
政策法规是物流配送中心运营的重要约束条件。
在数学模型中,可以考虑政策法规的影响,如对不同地区的物流政策、税收政策等,从而确定物流配送中心的选址。
在进行数学模型研究和优化时,可以采用数学优化方法,利用线性规划、整数规划、动态规划等方法,对物流配送中心选址进行模拟分析和优化计算,从而得到最优的选址方案。
除了数学模型的研究和优化外,还可以结合地理信息系统(GIS)技术,对选址进行地理空间分析,综合考虑地形地貌、交通道路、环境条件等因素,对物流配送中心的选址进行科学评估和优化。
物流配送中心选址的数学模型研究和优化需要综合考虑诸多因素,需要包括政府部门、物流企业、科研机构等多方合作。
只有通过科学的数学分析和优化计算,才能找到最合理的物流配送中心选址方案,提高物流配送效率,降低成本,促进物流配送行业的发展。
数学建模--物流配送中心选址模型
物流配送中心选址模型姓名:学号:班级:摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。
因此,发展现代化配送中心是现代物流业的发展方向。
文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。
关键词:物流选址;选址;重心法;优化模型;1.背景介绍1.1 研究主题如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。
1.2 前人研究进展1.2.1国内外的研究现状:国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。
归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;(2)应用离散型模型选择地点;(3)应用德尔菲(Delphi)专家咨询法选择地点。
第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。
这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。
解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。
解析方法的优点在于计算简单,数据容易搜集,易于理解。
由于通常不需要对物流系统进行整体评估,所以在单一设施定位时应用解析方法简便易行。
第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。
第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。
国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。
数学建模论文-物流配送中心的合理选择
故此处有两种情况,应分选 4、7、 12、13、 20、23、 26、28 、 45 这九个个城市和选取 4、7、11、20、23、26、28、45 这八个城市 作为配送中心的情行进行讨论: 一、在选取 4、7、12、13、20、23、26、28、45 九个城市的情 况下,根据各个城市间的距离可确定各个供应点城市所供应的城市。 具体如下: 4——1、2、3、5、15、16、27、46、47、 7——6、8、39、40、41、42 12——9、10、14、38、43 13——11、32、36、37 20——19、21、25、24、33、35、34、48、49 23——22 26——无 28——29、30、31 45——17、18、44
利用 matlab 软件,使用公式 1 对选取的供应点和供应城市进行 计算得: (matlab 计算程序附于论文后程序 1 中) Y = 9618177(元)
二、选取 4、7、11、20、23、26、28、45 这八个城市作为配送 中心的情况下, 根据各个城市间的距离可确定各个供应点城市所供应 的城市。具体如下:
Y40 2341203.0 Y43 1343567.0 Y44 1223214.0 Y45 21204380 表1 对以上表格中的 Y 值排序,取其前五个值 Y4、Y30、Y5、Y28、 Y7 结合 49 各城市的坐标图进行分析: 从图中和看出,4 城市作为配送中心非常合适,由于 4 和 5、 30 相邻,故不选 5 和 30 作为配送中心,城市 28 和 7 也非常符合作 为配送中心。又因为城市 26 的基本建设费用非常小,而且距离其周 边城市非常远,以 28 号城市也可作为配送中心。现在确定下了 4、7、 26、28 这四个城市作为配送中心。 将上述配送中心相邻的城市都排除掉,只剩下 1、2、9、10、
物流配送中心选址数学模型的研究和优化
物流配送中心选址数学模型的研究和优化物流配送中心是现代物流系统中的重要组成部分,其选址的合理性对物流配送效率和成本具有重要影响。
物流配送中心选址问题是一个复杂的多目标、多约束的优化问题,需要运用数学模型进行研究和优化。
一般来说,在选择物流配送中心的位置时,需要考虑到以下因素:市场需求、运输网络、地理位置、人口密度、交通状况、土地成本、劳动力成本等。
在具体建立数学模型时,可以考虑以下几个方面:第一,市场需求因素。
市场需求是物流配送中心选址的重要考量因素之一,也是影响配送中心选址的决策因素之一。
市场需求的变化对于配送中心的运作以及位置布局都有着很大的影响。
在数学模型中可以使用市场需求的分布情况、变化趋势等作为决策变量,以此来考虑市场需求因素对配送中心选址的影响。
在建立物流配送中心选址的数学模型时,需要综合考虑以上因素,建立相应的数学关系和约束条件,通过数学建模的方法来优化求解配送中心的最优选址问题。
可以采用线性规划、整数规划、动态规划等方法,通过求解数学模型,得到最佳的物流配送中心选址方案。
随着物流行业的发展和技术的进步,也可以借助于人工智能、大数据分析等技术手段来优化物流配送中心选址问题,通过大数据的分析和挖掘,优化物流配送中心的选址方案,提高配送效率,降低物流成本,提升竞争力。
物流配送中心选址数学模型的研究和优化是一个复杂而又重要的课题,只有综合考虑市场需求、运输网络、地理位置、人口密度、交通状况、土地成本、劳动力成本等因素,建立合适的数学模型,并结合现代技术手段进行求解优化,才能够找到最佳的物流配送中心选址方案,从而推动物流行业健康发展,提高配送效率,降低成本,推动物流供应链协同发展,实现物流系统的智能化、高效化、可持续发展。
物流配送中心选址数学模型的研究和优化
物流配送中心选址数学模型的研究和优化【摘要】本文研究物流配送中心选址数学模型的研究和优化问题。
在介绍了研究背景、研究意义和研究内容。
在包括模型建立、数据采集与分析、参数优化、模型评价和优化策略的讨论。
通过建立数学模型,利用实际数据进行分析,对配送中心选址进行参数优化,并评价模型效果。
在结论中总结了研究成果,展望未来研究方向,并对本文进行了总结。
本文旨在为物流行业提供选址决策的方法和策略,提高配送效率,优化物流网络布局,降低成本和提高服务质量。
通过本文的研究,为物流行业的发展和进步提供了一定的参考和指导。
【关键词】物流配送中心、选址、数学模型、研究、优化、背景、意义、内容、模型建立、数据采集、分析、参数优化、评价、策略、成果、展望未来、总结。
1. 引言1.1 研究背景物流配送中心选址是物流配送系统中的重要环节,选址的合理与否直接影响到物流效率和成本控制。
随着电子商务的快速发展,物流需求不断增加,物流配送中心也面临着更多的挑战。
对物流配送中心选址进行数学模型研究和优化具有重要的意义和价值。
在过去的研究中,物流配送中心选址主要依靠经验和专家判断,缺乏科学的分析和决策支持。
随着数学建模和优化算法的发展,可以通过建立数学模型来辅助决策者进行选址决策。
通过对物流需求、市场结构、交通网络等多方面因素进行综合分析,可以预测不同选址方案的效果,并进行优化选择。
本研究旨在通过建立数学模型,采集和分析相关数据,优化模型参数,评价优化效果,并提出相应的优化策略,以提高物流配送中心选址的效率和准确性。
通过本研究的开展,将为物流配送中心选址提供更科学的决策支持,促进物流行业的发展和进步。
1.2 研究意义物流配送中心选址数学模型的研究和优化具有重要的意义。
物流配送中心的选址决定着整个物流系统的效率和成本。
一个合理的选址能够减少货物的运输距离和时间,降低运输成本,提高配送效率。
选址还关系着配送中心对周边地区的服务覆盖范围,直接影响着客户的满意度和品牌形象。
数学建模:配送中心选址10页
数学建模:配送中心选址10页一、问题描述在某个区域内,有多个顾客需要配送。
假设区域内每个顾客的需求量是一样的,也就是每个顾客需要一定数量的货物,并且在配送过程中需要考虑物流成本。
现在需要选取一个最优的配送中心位置,这个位置不仅要满足区域内所有顾客的需求,还要尽量降低物流成本。
请问应该如何选择配送中心的位置?二、模型建立1.建立数学模型假设有n个顾客,每个顾客的需求量为q,配送中心的位置为(x,y)。
我们的目标是找到最合适的(x,y),同时最小化总的物流成本。
设(xi,yi)为第i个顾客的位置,bi为从配送中心到第i个顾客的物流成本。
我们可以通过以下公式计算bi:bi = α*|xi-x| + β*|yi-y|α和β是权重系数,用来控制x轴和y轴的影响。
通常,重量系数水平一样,即α=β=1时。
最小化总物流成本的目标可以表示为:min{Σbi}+c其中,c是设施成本。
2.求解最优解我们可以使用最小二乘法来求解最优解。
最小二乘法的本质是寻找一个函数,使得在指定的点上函数的值和给定的值最接近。
我们可以通过求导来得到函数的最小值。
根据上述公式,我们可以得到如下最小二乘法的方程:Σ[(α(xi-x)+β(yi-y))^2] = min通过求偏导,我们可以得到x和y的最优解:三、实现为了实现方便,我们将上述模型用Python语言实现。
具体代码如下:import numpy as npdef optimize(x, y, xi, yi, q, alpha=1, beta=1, c=0): # 求解xnx = len(xi)nx_alpha = np.sum(alpha * xi)nx_beta = np.sum(beta * yi)nb = np.sum([alpha * (xi[i] - x) + beta * (yi[i] - y)for i in range(nx)])x_new = (nx_alpha + nb) / (nx_alpha + nx_beta + c) # 求解yny_alpha = np.sum(alpha * yi)ny_beta = np.sum(beta * xi)nb = np.sum([alpha * (yi[i] - y) + beta * (xi[i] - x)for i in range(nx)])y_new = (ny_alpha + nb) / (ny_alpha + ny_beta + c) return x_new, y_new# 初始化配送中心的位置x = np.mean(xi)y = np.mean(yi)# 计算总物流成本total_cost = np.sum([alpha * np.abs(xi[i] - x) + beta * np.abs(yi[i] - y)for i in range(n)]) + cprint('配送中心的位置为:({:.2f}, {:.2f})'.format(x, y))print('总物流成本为:{:.2f}'.format(total_cost))四、结论通过上述模型,在考虑物流成本和所有顾客需求的情况下,我们可以得到最优的配送中心位置。
物流配送中心选址数学模型的研究和优化
物流配送中心选址数学模型的研究和优化1. 引言1.1 研究背景物流配送中心选址一直是物流行业面临的重要问题。
随着电子商务的兴起和物流需求的持续增长,如何合理选择物流配送中心的位置成为了物流管理者需要思考的重要课题。
在这样的背景下,研究物流配送中心选址数学模型的建立变得至关重要。
随着信息技术的进步和数学方法的应用,通过建立数学模型可以更加科学地确定最佳的配送中心位置,从而提高物流配送效率,降低成本,提升竞争力。
对物流配送中心选址数学模型的研究具有重要的理论和实际意义。
通过深入研究和优化物流配送中心选址模型,可以为物流企业提供更有力的决策支持,推动物流行业的发展与进步。
【研究背景】的明确分析和探讨,将为接下来对【物流配送中心选址数学模型的研究和优化】提供扎实的理论基础和科学指导。
1.2 研究目的研究的目的是通过建立物流配送中心选址数学模型,探索影响物流配送中心选址的因素并进行分析,进一步优化选址方案,从而提高物流配送效率,降低物流配送成本。
通过实例分析和模型效果评估,验证模型的有效性和可靠性。
通过对物流配送中心选址问题的研究和优化,为物流行业的健康发展提供理论支持和实践指导,为企业在选择物流配送中心位置时提供决策依据。
最终的目标是实现物流配送中心选址的科学化、智能化,为物流行业的可持续发展提供有力支持。
1.3 研究意义物流配送中心的选址对于物流行业的发展至关重要。
通过科学地建立数学模型进行选址分析,可以有效提高物流配送效率,降低物流成本,优化物流配送网络布局,提升物流服务质量,增强物流企业的竞争力。
这对于提升整个产业的运作效率和推动经济发展具有重要意义。
在如今快节奏的社会中,物流配送中心的选址决策需要更加科学、精准,以适应日益激烈的市场竞争和不断升级的消费需求。
研究物流配送中心选址数学模型,可以促进物流系统的可持续发展,提升资源利用效率,减少能源消耗和环境污染,推动绿色物流的发展。
这对于建设资源节约型、环境友好型社会具有重要意义。
物流配送中心选址数学模型的研究和优化
物流配送中心选址数学模型的研究和优化物流配送中心的选址是一个关键的决策问题,它不仅直接关系到物流效率,也对企业的经济效益产生直接影响。
在新的城市建设或农村地区开发中,物流配送中心的选址更是必不可少的环节。
如何确定物流配送中心的最佳选址,是一个需要深入研究和不断优化的问题。
物流配送中心选址数学模型的研究和优化是解决此问题的有效手段。
数学模型能够通过建立数学方程和条件,将问题转化为可解的数学问题。
在建立数学模型时,需要考虑多个因素,例如周围的交通状况、人流量、商圈、租金、物流成本等。
经过分析和计算,得出最佳方案,能够节省时间和成本,提高效率,并为企业增加更多的经济价值。
常见的物流配送中心选址数学模型包括最小总成本模型、最小覆盖模型、最小距离模型、中心化模型等。
其中,最小总成本模型是最为普遍的,通过分析各种成本因素并评估其影响,寻求最低成本的选址方案。
该模型的关键是确定成本因素的权重和各地区物流成本的数值。
最小覆盖模型则是为了最大化服务范围而设计的,通过要求服务范围包含最多的消费者,找到最佳的配送中心位置。
相比之下,最小距离模型更注重行政层面的管辖,具备较强的政策倾向性。
而中心化模型则是综合考虑多个区域的供货质量和销售需求,寻找最合适的中心点进行服务。
除了考虑表面因素的贡献以外,如今科技的快速发展还提供了新的工具来支持物流配送中心的选址,例如大数据分析和人工智能。
数据分析的方法可以对货物的来源和目的地进行更细致和准确的刻画和描述,用于确定配送的最优路径和方案,优化物流中心的运作。
而人工智能则可以逐步整合并优化各水平上的各种因素,使得物流配送中心的选址更加高效、经济和智能化。
总之,物流配送中心选址数学模型的研究和优化将成为未来物流领域的重要发展方向,帮助企业更好地规划和组织物流仓储,在今后的速递、同城配送、农村配送等领域发挥更加重要的作用。
数学建模在物流配送优化中的应用研究
数学建模在物流配送优化中的应用研究导言:物流配送是现代社会经济活动中不可或缺的一环,随着经济的发展,物流配送的需求也日益增加。
如何提高物流配送效率成为了重要的研究课题。
数学建模作为一种重要的优化方法,被广泛应用于物流配送优化中。
本文将介绍数学建模在物流配送中的应用研究,并分成以下几个方面进行详细讨论。
1. 车辆路径规划物流配送过程中,合理规划车辆的路径是提高物流配送效率的重要环节。
数学建模可以通过构建最优化模型,优化车辆路径规划问题。
其中,旅行商问题(TSP)是一个典型的车辆路径规划问题。
通过建立TSP数学模型,运用蚁群算法等优化算法,可以找到最优的车辆路径规划方案,从而降低物流配送成本,提高配送效率。
2. 仓库选址问题物流配送中的仓库选址问题是指如何合理选择仓库的位置,以满足物流配送的需求。
数学建模可以通过考虑仓库选址的多种因素,如客户需求、成本等,建立仓库选址模型。
例如,可以将仓库选址问题转化为优化问题,通过线性规划等方法,求解使得总成本最小的仓库选址方案。
通过数学建模,可以快速找到最佳仓库选址方案,提高物流配送效率。
3. 货物装载问题物流配送中的货物装载问题是指如何合理安排货物的装载顺序和位置,以最大限度地利用货物空间,提高装载效率。
数学建模可以通过构建装载模型,将货物装载问题转化为优化问题。
例如,可以考虑货物的体积、重量等因素,建立装载模型,并使用启发式算法等方法,求解最优的货物装载方案。
通过数学建模,在尽量提高装载效率的同时,还可以确保货物的安全运输。
4. 路线优化问题物流配送中的路线优化问题是指如何合理选择货车的行驶路线,以最短的时间和距离完成配送任务。
数学建模可以通过建立路线优化模型,考虑货车的行驶时间、交通拥堵情况等因素,寻找最优的行驶路线。
例如,可以使用图论算法,如Dijkstra算法、A*算法等,求解最短路径问题,从而实现路线的优化。
通过数学建模,可以减少货车的行驶时间和距离,提高物流配送效率。
建模论文示例 供应与选址问题
供应与选址问题的数学模型摘要本论文主要讨论并解决了某公司每天给工地的供应计划与临时料场选址的相关问题。
为使总吨千米数达到最小,在考虑有直线道路连通的情况下建立相应的数学模型,给出了相关算法。
并运用Lingo、matlab等软件编程和处理相关数据,得到最优决策方案。
问题一是一个线性规划问题,我们首先建立单目标的优化模型,也即模型一。
借助Lingo软件得到了该公司每天向六个建筑工地运输水泥的供应计划如下表,从而可使得总的吨千米数最小为157.473.问题二是一个非线性规划模型,要求改变临时料场的位置以使吨千米数进一步减少,在改变临时料场的同时,料场向各个工地的水泥运输量的计划也会随之而改变。
用matlab中的fmincon函数求解,得到料场的新位置及料场向各工地的水泥运输量计划如下表,总的吨千米数最小为118.9878。
与第一问的线比较,节省的吨千米数最小为38.4852。
料场的新位置及料场向各工地的水泥运输量计划表关键词选址与供应非线性规划fmincon函数最优化1 问题背景随着经济的发展,工地的建设选址与供应问题也越来越重要,供应与选址问题是运筹学中经典的问题之一。
我国是一个人口众多的国家,供应与选址问题在生产生活、物流、甚至军事中都有着非常广泛的应用,如工厂、仓库、急救中心、消防站、垃圾处理中心、物流中心、导弹仓库的选址等。
供应和选址是最重要的长期决策之一,供应的位置和选址的好坏直接影响到工地建设服务方式、服务质量、服务效率、服务成本等,从而影响到工地的建设效益,甚至决定了建设工地所在单位的命运。
好的选址和供应会给工地的建设和服务带来便利,降低成本,扩大利润和市场份额,提高服务效率和竞争力,对进一步加快公司的工地建设和创新创业发展步伐,突出产业创新,在本行业中打造现代产业体系中做先锋,激活创新主体,在加快提升公司与企业创新能力上实现重大突破有重大意义。
差的选址与供应往往会带来很大的不便和损失,甚至是灾难。
数学建模配送中心选址
配送中心选址摘要本文针对配送中心的选址问题进行了研究。
在设计配送中心选址问题方案时,所追求的目标应该是总费用最小,因此应该建立优化模型来解决。
遵循从简单到复杂、从特殊到一般,循序渐进,逐步贴近实际情况的策略进行建模。
针对问题(1),先对92个城市的位置进行绘图分析,进而在92个城市之间建立最短路模型,将最短路和该省标号前20位的城市的产品销售量结合,求解出配送中心建立在各个城市中对前20位城市的运输成本,得到成本由高到低的排序,最终可得建立在35号城市,运输成本最低。
针对问题(2),本问题针对配送中心的选址问题进行了线性规划,对第j个直销中心归不归第i个配送中心配送进行了0-1规划,结合问题一的最短路模型,确定问题的目标函数和约束条件,运用Lingo软件对该模型进行求解,得到了成本最小的5年产品配送计划,即应在该省建立3个配送中心,分别建在第8个城市、第11个城市和第69个城市,得到的成本最小为254.033万元。
针对问题(3),在第二问的模型上进行了改变,引入是否在该城市建立直销中心的0-1变量,得到目标函数为求得最大利润,运用Lingo软件对该目标函数进行了求解,得到最终结果为:只有在第9个城市、第70个城市和第88个城市建立3个配送中心,在第6、7、8、9、16、37、45;2、3、17、66、68、70、74;20、83、86、88、90、91城市建立直销中心,取得的利润最大为608.6152万元。
针对问题(4),依据图1划分为两个区域,以62-4-39-38的公路为边界,左边的为一个地区,右边的为一个地区。
对不同的地区分别求解最低成本,最终得到最佳的5年产品销售、配送计划。
结果为:第一个地区在21、25城市建设2个配送中心,在12、13、21、22、23、23、25城市设立直销中心;第二个地区在16、53、57城市建设配送中心,在5、6、16、49、50、51、52、53、56、57、58、59、61城市设立直销中心。
连锁店货物配送及选址优化-数学建模论文【范本模板】
连锁店货物配送及选址优化摘要梦想连锁是一家肉类食品加工与销售公司,降低运输成本、增大销售量对公司经营具有重要意义。
在充分理解题意的基础上,通过对问题的深入分析,我们建立多个模型,对连锁店货物配送及选址进行了优化。
在问题一中,要求设计运输成本最低的生产与配送方案,由于运输成本与路程有关,因而建立Floyd模型,运用MATLAB求解出两个生产基地分别到各个销售店的最短路径,再建立邻接矩阵,得到配送方案与生产方案,求解得到最低运输成本为10540。
89元/天。
方案见表1和表2。
在问题二中,为分析各城镇需求特征并预测全省猪肉需求量峰值时间,首先对各城镇猪肉需求量求平均值及方差,由于各城镇需求量之间相差甚大,进一步求得变异系数,以变异系数为数据进行分析,有32个城镇猪肉需求量波动较大,其余城镇变化平稳。
建立拟合模型,对全省总猪肉需求量进行拟合,运用MATLAB求得在2014年1月猪肉需求量达到峰值,进而对各城镇猪肉需求量进行拟合,求得各城镇在2014年1月猪肉需求量,排名前五的城镇为120、31、63、106、150,排名后五的城镇为102、84、74、30、143。
在问题三中,要求设计使全省销售量达到最大的增设销售连锁店方案,将问题中的要求视为约束条件,建立非线性规划模型,以总销售量为目标函数,运用Lingo求解出全省新增设24家销售连锁店,全省销售量的最大值919424kg/日。
增设销售连锁店和原有销售连锁店销售量见表7和表8。
在问题四中,要建立新的生产基地使运输成本最低,由于仍要求解最低运输成本,因而建立非线性规划模型,将具有销售店的城镇作为新增生产基地的选址地点,求解出每一个城镇若作为生产基地的运输成本,由于要求新增的每日产品生产达到250吨以上,因而对求解后的结果进行筛选,得到日产品生产在250吨以上的运输成本最低的新生产基地。
新的生产基地选址在31号城镇,最低运输成本为1.5万元/天。
本文建立多个模型,对梦想连锁公司的货物配送进行了优化,并且对模型的优缺点进行了合理的评价。
数学建模--物流配送中心选址模型
物流配送中心选址模型姓名:学号:班级:摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。
因此,发展现代化配送中心是现代物流业的发展方向。
文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。
关键词:物流选址;选址;重心法;优化模型;1.背景介绍1.1 研究主题如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。
1.2 前人研究进展1.2.1国内外的研究现状:国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。
归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;(2)应用离散型模型选择地点;(3)应用德尔菲(Delphi)专家咨询法选择地点。
第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。
这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。
解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。
解析方法的优点在于计算简单,数据容易搜集,易于理解。
由于通常不需要对物流系统进行整体评估,所以在单一设施定位时应用解析方法简便易行。
第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。
第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。
国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。
物流配送中心选址数学模型的研究和优化
物流配送中心选址数学模型的研究和优化一、引言随着电子商务、物流行业的迅速发展,物流配送中心的选址成为了一个重要的议题。
合理的配送中心选址可以提高配送效率,降低成本,提升客户满意度,是物流公司和电商企业在市场竞争中的重要策略之一。
如何科学地选择物流配送中心的位置成为了一个研究热点。
本文将从数学模型的角度出发,对物流配送中心选址进行研究和优化。
二、问题描述1. 传统选址方法存在的问题传统的物流配送中心选址方法通常是基于经验和个人主观判断,忽略了实际的数据和客观规律,容易导致选址结果不够科学和合理。
传统方法往往只关注特定区域的情况,忽视了整体的效益和综合成本。
需要研究一种科学的模型来解决这一问题。
2. 研究目标本文旨在建立一个数学模型,通过对各种因素的考量和分析,提出一种科学的物流配送中心选址方法,以优化物流配送中心的选址决策,提高物流配送效率,降低成本,提升客户满意度。
三、相关理论1. 选址模型在物流配送中心选址问题中,通常会涉及到多个因素,如需求分布、交通便利性、区域发展状况、土地成本、人才资源等。
需要建立一个多因素综合考量的选址模型,以科学的手段进行选址决策。
2. 数学优化数学优化是一种通过数学方法求解最优解的技术。
在物流配送中心选址问题中,可以利用数学优化的方法,通过建立适当的数学模型,求解最优的选址方案,以达到最大的效益。
3. GIS技术地理信息系统(GIS)可以对地理空间数据进行分析和处理,为物流配送中心选址提供支持。
利用GIS技术,可以对地理信息进行可视化的呈现,帮助分析和决策。
四、数学模型构建在物流配送中心选址问题中,我们首先需要确定一些决策变量,如配送中心位置、规模、投资等。
然后,需要确定一些约束条件,如对土地成本、交通便利性、客户需求等的要求。
需要确定一个优化目标,如最小化成本、最大化效益等。
假设有n个潜在的选址点,每个选址点都有一定的投资成本、运营成本、客户覆盖范围等。
我们用x_i表示第i个选址点是否被选中,如果选中则x_i=1,未选中则x_i=0。
数学建模论文--物流与选址问题
物流预选址问题 (2)摘要.......................................................................................................... 错误!未定义书签。
一、问题重述 (2)二、问题的分析 (3)2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (3)2.2 问题二:建立合理的仓库选址和建造规模模型 (3)2.3 问题三:工厂向中心仓库供货的最佳方案问题 (3)2.4 问题四:根据一组数据对自己的模型进行评价 (4)三、模型假设与符号说明 (4)3.1条件假设 (4)3.2模型的符号说明 (4)四、模型的建立与求解 (5)4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (5)4.1.1模型的建立 (5)4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (7)4.2.1 基于重心法选址模型 (8)4.2.2 基于多元线性回归法确定中心仓库的建造规模 (10)4.3 问题三:工厂向中心仓库供货方案 (10)4.4 问题四:选用一组数据进行计算 (11)五、模型评价 (16)5.1模型的优缺点 (16)5.1.1 模型的优点 (16)5.1.2 模型的缺点 (16)六参考文献 (16)物流预选址问题摘要在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。
本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。
对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。
数学建模作业5数学规划模型----供应与选址的问题
三、模型假设
1、假设料场和建筑工地之间都可以由直线到达;
2、运输费用由“吨千米数”来衡量;
3、两料场的日存储量够向各建筑工地供应;
f1=0;
fori=1:6
s(i)=sqrt((x(13)-a(i))^2+(x(14)-b(i))^2);
f1=s(i)*x(i)+f1;
end
f2=0;
fori=7:12
s(i)=sqrt((x(15)-a(i-6))^2+(x(16)-b(i-6))^2);
f2=s(i)*x(i)+f2;
end
一、问题提出
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系(a,b)表示,距离单位:km)及水泥日用量d(吨)由下表给出。目前有两个料场位于A(5,1),B(2,7),日储量各有20吨。
(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少水泥,可使运输费用(总的吨千米数)最小,并求出吨千米数。
d=[3 5 4 7 6 11];
x=[5 2];
y=[1 7];
e=[20 20];
fori=1:6
forj=1:2
aa(i,j)=sqrt((x(j)-a(i))^2+(y(j)-b(i))^2);
end
end
CC=[aa(:,1); aa(:,2)]'
A=[1 1 1 1 1 1 0 0 0 0 0 0
(注:先画图,在坐标上标出各工地位置(用蓝色*标示)和料场位置(用红色o标示))
数学建模仓库选址问题
数学建模仓库选址问题(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除仓库选址问题摘要随着全球经济的一体化,物资流通的范围已经不仅仅局限在国家内部,而是也走向来了世界各地。
面对多种多样的物资运输方案,就需要我们从中选择一种最节约费用的方案来实施。
基于此,本文针对美国超级医疗设备公司选址问题给出了两种数学模型。
全文首先对给出的题目进行数学分析,分析数据之间的直观联系和潜在联系,把数据从现实问题中抽离出来转化为纯粹的数学符号,然后借助于数学分析中求解重心坐标的公式(Dix--第i个地点的x坐标;Diy--第i个地点的y坐标;Vi--运到第i个地点或从第i个地点运出的货物量)两点间距离公式和数理统计中求解加权平均值的方法对数据进一步整合。
在此基础上,将之转化为MATLAB计算语言进行数据操作,一方面,借助于MAYLAB绘图工具将题中给出的数据再现于图中,直观明了,便于从图中发现些隐含信息;另一方面,利用MATLAB程序设计中的循环结构进行必要的编程和计算。
由于每种方案的均相等,所以只需比较一下每种方案的总成本(外向运输成本和内向运输成本)即可,总成本最低的城市即为最佳选址点,利用方案比较法最终得出结论。
关键词:重心法、加权平均值法一、问题重述美国超级医疗设备公司在亚利桑那州的菲尼克斯和墨西哥的蒙特雷生产零部件,然后由位于堪萨斯州堪萨斯城的一家仓库接受生产出来的零件,随后在分拨给位于美国和加拿大的客户。
但由于某些原因,公司要考虑仓库选址的最优化。
现已知若继续租赁原仓库,租金为每年每平方英尺美元,仓库面积为20万平方英尺,若在其他城市租同等规模的仓库,租金为每平方英尺美元,并且新租约或续租的期限均为5年。
假如转移仓库,则需一次性支付30万美元的搬迁费及其他选址费。
从工厂到堪萨斯仓库的运输费为2162535美元,从仓库到客户的运输费为4519569美元,仓库租赁费为每年100万美元。
物流公司选址重心法毕业设计范文
英文回答:The selection of a site for a logisticspany is a criticalponent in determining its overall success. The geographical location of a logisticspany can significantly impact its operational efficiency, cost-effectiveness, and customer satisfaction. This research project will utilize the gravity model to identify the optimal location for a logisticspany. The gravity model, a widely accepted method in site selection, considers factors such as distance, customer demand, and transportation infrastructure to assess the appeal of potential locations. Through the application of the gravity model, this project aims to offer a data-driven approach to site selection for logisticspanies, ultimately enhancing theirpetitiveness and long-term viability in the market.选择一个后勤小组的地点是决定其总体成功与否的批评因素。
物流站的地理位置可对其业务效率、成本效益和客户满意度产生重大影响。
数学建模题目解答 物流中心位置选择
物流中心位置选择摘要本题为物流运输问题,属于有约束的线性规划模型。
本文通过对运输费用、需求量、供应量、运输方式、建设费用等因素之间关系的综合分析,建立了待建仓储选址的一般数学模型。
然后我们通过对模型进行编程求解,得出物流公司的新仓储位置选择和向销售中心供货的具体方案。
接着我们进行了灵敏度分析,并求解出了在需求量增大5%和仓储容量增大5%的情况下,新的仓储选址方案。
通过对供需有小幅改变的前后数据及图表的分析,我们得出了供需小幅改变不改变选址方案,配送方案也只有小幅改变的结论,作为对物流公司的一点建设性的意见。
然后我们分析了模型与实际的联系,并对模型的实际意义进行了建设性的分析,提出了有益的改进方案。
最后我们对基于“供求平衡”、“供求失衡”时方案关系及模型进行了几点分析、总结,得出了一切“供需”模型均可以转化为“供求平衡”模型,我们还进行了进一步探究,提出了“供需平衡”问题的求解思路,作为对“运输问题”的一种有益的探索和有价值的总结。
关键词数学模型 物流 供需 线性规划 选址1. 模型的分析本题属于物流公司运输的模型,通常该模型中包含了不同运输路径的单价,运输量,需求量,存储量以及运输成本。
由它们之间的关系可知,设第一个销售中心至第n 个销售中心的需求量分别为-,第一个仓库到第m 个仓库的存储量分别为-,而从第i 个仓库向第j 个销售中心运输的货物量为ij x ,运输成本为ij c ,总费用为f ,则有;i=1,2,3,…,nj=1,2,3,…,ms.t.j=1,2,3,…,m (*)i=1,2,3,…,ni=1,2,3,…,12 j=1,2,3,…,12 而对于当仓库存储的货物总量正好等于销售中心需求量时,*式则变为了:j=1,2,3,…,m通过求解如上的数学模型,我们就可以得出具体问题的最优化方案,我们就能在生活、工作中做出正确的选择!2. 本次大赛问题的分析分析本次题目中给出的物流公司建设新仓储的过程可知,需要考虑的因素包括:(1)销售中心货物的需求量。
物流配送中心选址问题研究建模论文
r-l >1
Yj=l或0, V jen
Zij=l或0, viem, jen以=1或0, viem 7-1
(2-8)
% > 0, Vz em
m -_
约束条件(2-4)保证生产基地产品供应量小于生 产量;约束条件(2-5)和(2-6)为变量取值范围; 约束条件(2-7)是保证每个配送点只选择一个配 送中心;约束条件(2-8)为所选择的配送中心数 目应小于备选配送中心数目;约束条件(2-9)和(2-10)是保证需求量和供应量都大于零。
因此,各方面的专家、学者都先后就配送中心选 址问题进行研究,并建立了相对行之有效的模 型,以此来指导配送中心的选址建设,力求通过 合理的选址,降低物流运营整体成本,实现以最 小的成本满足客户最大需求的目标。
二、物流配送中心选址方法
物流配送中心位置的选择,将显著影响其实 际营运的效率与成本,以及日后仓储规模的扩充 与发展。因此在决定物流配送中心设置的位置方 案时,必须谨慎参考相关因素,按适当步骤进行。 在选择过程中,如果已经有预定地点或区域方 案,应于规划前先行提出,并成为规划过程中的 限制因素;如果没有预定的地点,则可于可行性 研究时提出几个备选方案,并对比各备选方案的 优劣,以供决策者选择⑴。
m为配送点数量;
dij.为配送点i到备选配送中心j的距离;
&为生产基地到备选配送中心j的距离;
k为运费率即单位运费
Zij=l或0(如果配送点i选择配送中心j为1,
否则为0);
y广1或0(如果选择配送中心j为1,否则为0);
hj为备选配送中心j的固定成本;
S生产基地的生产量。
数学模型:
目标函数:Minf(Z,V) =|££《4M约束条件:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物流预选址问题 (2)摘要..................................................... 错误!未定义书签。
一、问题重述 (2)二、问题的分析 (3)2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (3)2.2 问题二:建立合理的仓库选址和建造规模模型 (3)2.3 问题三:工厂向中心仓库供货的最佳方案问题 (3)2.4 问题四:根据一组数据对自己的模型进行评价 (4)三、模型假设与符号说明 (4)3.1条件假设 (4)3.2模型的符号说明 (4)四、模型的建立与求解 (5)4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (5)4.1.1模型的建立 (5)4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (7)4.2.1 基于重心法选址模型 (8)4.2.2 基于多元线性回归法确定中心仓库的建造规模 (10)4.3 问题三:工厂向中心仓库供货方案 (10)4.4 问题四:选用一组数据进行计算 (11)五、模型评价 (16)5.1模型的优缺点 (16)5.1.1 模型的优点 (16)5.1.2 模型的缺点 (16)六参考文献 (16)物流预选址问题摘要在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。
本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。
对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。
对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。
问题四我们选用了一组数据通过求解多元线性规划对问题进行了实例化分析。
为中心仓库的选址问题做了合理说明。
最后我们对模型进行了评价和分析。
关键词:物流网络重心法选址模型多元线性规划一、问题重述某公司是生产某种商品的省内知名厂家。
该公司根据需要,计划在本省建设两个生产工厂和若干个中心仓库向全省所有城市供货。
根据市场调研,全省有m个城市,每个城市单位时间需要该公司的物资量是已知的,有关运费的信息也是确定的,工厂和中心仓库的单位面积的建设费用和运营费用已知,请你建立数学模型,回答以下问题:1、如何为两个生产工厂选址?(建多大规模?)2、建多少个中心仓库?分别建在什么地方?(分别建多大规模?)3、生产工厂如何向中心仓库供货?4、请你自己选用一组数据进行计算(可以根据假设、地图和铁路、公路、水路等信息选择有关数据),并对你的模型和结果作出评价。
二、问题的分析物流配送中心,是为了在供应到消费过程中实现调节跟踪服务的主体机构,是满足订货、储存、包装、加工、配送、运输、结算和信息处理等需要的手段和设施。
而配送中心布局和选址,对其功能发挥和综合效益影响极大,应进行定性与定量因素综合分析。
在物流系统的运作中,配送中心的选址决策发挥着重要的影响。
配送中心是连接工厂与客户的中间桥梁,其选址方式往往决定着物流的配送距离和配送模式,进而影响着物流系统的运作效率,因此,研究物流配送中心的选址具有重要的理论和现实应用意义。
工厂是生产商品的源头,商品的需求量往往决定了工厂的建造规模,而运输费用则是衡量工厂选址的标准,对公司的收入有着及其密切的联系。
本文旨在通过对城市布局和对商品需求量的分析,通过模型的建立解决三个有关工厂和仓库选址及建造规模的问题,并通过数据对所建模型进行评价。
2.1 问题一:分析确定合理的模型确定工厂选址和建造规模考虑到工厂生产的商品直接运往中心仓库,所以工厂的建立由中心仓库的位置决定。
本题中公司计划在本省建设两个生产工厂和若干个中心仓库,所以允许我们先行确定中心仓库的位置,再由中心仓库的位置确定工厂的位置,而工厂的建造规模可以由城市对商品的需求量决定。
在确定效益函数中各指标值权重时,考虑到层次分析法是一种能有效解决比较、判断、评价和决策问题的实用方法,因此选用层次分析法确定各个指标在效益函数中权重。
将值带入效益函数,再参照优劣等级表,即可对模型进行评价。
2.2 问题二:建立合理的仓库选址和建造规模模型问题二要求建立合理的仓库选址和建造规模模型,考虑到考虑到工厂生产的商品直接运往中心仓库,所以工厂的建立由中心仓库的位置决定。
本题中公司计划在本省建设两个生产工厂和若干个中心仓库,所以允许我们先行确定中心仓库的位置,再由问题2确定的中心仓库位置确定工厂的位置,而工厂的建造规模可以由城市对商品的需求量决定。
2.3 问题三:工厂向中心仓库供货的最佳方案问题我们将问题实例化,假设两个工厂向四个中心仓库供货,工厂的生产量和中心仓库的容纳量均已知,利用优化指派模型对问题进行分析得到供货的最佳方案。
2.4 问题四:根据一组数据对自己的模型进行评价我们通过对某公司的一组数据进行分析利用自己建立的模型计算解决以三个问题,并以此初步评价本模型的优劣。
三、模型假设与符号说明3.1条件假设(1)工厂和仓库的选址是任意的,不受政治、地理、环境等因素的影响;(2)各地交通条件相同,运输过程中不受交通条件的影响;(3)工厂运输费率是一定的;3.2模型的符号说明符号意义ai从第i个工厂到第j个中心仓库的单位运输量wi从第i个工厂到第j个中心仓库的运输总量(第j个仓库的容纳量)di从i个工厂到第j个中心仓库的路程μi由重心法得到的各个中心仓库的备选地址(取值1表示选中该仓库,取值0表示不被选中)Wj所有中心仓库需求量之和Ei表示商品从工厂到城市总的运输费用Vj各备选中心仓库到城市的可变费用(由仓库的选取确定)Ci 工厂到备选中心仓库固定费用β1、β2、β3表示权重系数(根据决策者的需求量决定)四、模型的建立与求解4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模问题一要求确定合理的模型确定工厂选址和建造规模。
考虑到工厂生产的商品直接运往中心仓库,所以工厂的建立由中心仓库的位置决定。
本题中公司计划在本省建设两个生产工厂和若干个中心仓库,所以允许我们先行确定中心仓库的位置,再由问题2确定的中心仓库位置确定工厂的位置,而工厂的建造规模可以由城市对商品的需求量决定。
4.1.1模型的建立重心法是将物流系统中的需求点和资源点看成是分布在某一平面范围内的物流系统,各点的需求量和资源量分别看成是物体的重量,物体系统的重心作为物流网点的最佳设置点,利用求物体系统重心的方法来确定物流网点的位置。
假设中心仓库的个数和位置已确定,将K 个中心仓库按照地理位置及物质需求量合理均匀的划分为两个区域。
每个区域建一个工厂位置由重心法确定。
假设某个区域内有b 个城市,其坐标分别为(X i,Y i ),(i=1,2,……b );在该区域建一个工厂,坐标是(X 0 ,Y 0),设运输费用为E g ;总费用为C g (x),则有E g =∑=n1i g g gi d a i i ω (4.1.1)其中a gi 表示单位物资从工厂到中心仓库i 运输单位距离的费用;ωgi 表示工厂到中心仓库i 的运输量(即第i 个中心仓库的需求量);dg i 表示从工厂到中心仓库i 的距离;g 3g gi 2g g 1g g )x (P V E C βββ++= (4.1.2)其中βg 1、βg 2、βg 3表示权重系数,可以根据决策者的需求来定,且βg 1+βg 2+βg 3=1;i g V 表示工厂总的运营费用;g P 表示工厂的建设费用。
式1.1中d gi =2i 02i 0y -y x x )()(+- (4.1.3) 将式1.3代入式1.1中并对等号两边同时求偏导即∑=-=∂∂b i ii i i d x x a E x 1g 0g g 0)(ω (4.1.4)∑=-=∂∂b10g g 0g )(i ii i i d x x a y E ω (4.1.5) 由2.4解得∑∑===bi gi gigi bi gi igi gi d a d x a x 110ωω ,∑∑===bi gi gigi bi gi gigi gi d a d y a y 110ωω (4.1.6)考虑到两个方程右边均含有x 0,y 0而消去x 0,y 0较为麻烦,因此我们采用迭代法进行计算,其计算的方法如下:(1)以所有城市的重心坐标作为中心仓库的初始位置坐标(x 00,y 00);(2)利用方程式(5.1.1)和(5.1.3)计算与(x 00,y 0)相应的总的运输费用E 0;(3)把(x 00,y 0)分别代入方程式(5.1.3)和(5.1.6)中,计算中心仓库的改善地点(x 10,y 1);这样反复计算下去,直到计算出所有重心点。
(4)利用方程式(5.1.1)和(5.1.3)计算各个地点相对应的总的运输费用E ; 由此可确定该区域工厂的坐标(x 0,y 0),同理运用此法也可确定另一个工厂的坐标。
b 个中心仓库的位置布局及工厂选址如下草图:考虑到各个城市所需商品量不同,以物资量及运输费用来确定工厂规模。
我们认为工厂的建造规模与城市所需物资量及运输费用呈线性相关,则有S= V C E 321ααα++ (4.1.7)其中S 表示工厂的建造规模,E 表示总的运输费用,C 表示建设费用V 表示经营费用,α1,α2,α3分别表示对应的权系数,且α1+α2+α3=1。
设1ˆα,2ˆα,3ˆα分别作为α1,α2,α3的估计量,得到样本回归方程为: 332211ˆˆˆˆi i i x x x yααα++=(i=1,2,3…n ) (4.1.8) 用Excel 辅助计算可得到3个待估参数1ˆα,2ˆα,3ˆα的估计值。
4.2 问题二:建立合理模型确定中心仓库的位置及建造规模问题二要求建立合理的模型确定中心仓库的位置及建造规模。
查阅资料,我们决定用重心法选址模型对中心仓库进行合理选址。
考虑到重心法是一种布置单个设施的方法,而本问题中中心仓库有多个,我们先对其中一个仓库选址,再根据城市对商品的需求量确定仓库的个数及规模。
这种方法要考虑现有设施之间的距离和要运输的货物量,不考虑在不满载的情况下增加的特殊运输费用。
4.2.1 基于重心法选址模型将本省n 个城市按照地理位置及物质需求量合理的划分为K 个区域,现设某个区域有m 个城市,坐标为(X i,Y i ),(i=1,2,……m );在该区域建一个中心仓库,坐标是(X 0 ,Y 0),设运输费用为E ;总费用为C,则有E=i i i i μωd n1i a ∑= (4.2.1)其中a i 表示单位物资从中心仓库到城市i 运输单位距离的费用;ωi 表示中心仓库到城市i 的运输量(即第i 个城市的需求量);d i 表示从中心仓库到城市i 的距离;μi 表示由重心法得到的中心仓库的备选状态(μi =1表示被选中,μi =0表示不被选中)。