求离心率范围的六种方法

合集下载

求离心率的范围问题整理分类

求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

离心率的五种求法

离心率的五种求法

离心率的五种求法离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现. 椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出,a c ,求解e 已知标准方程或,a c 易求时,可利用离心率公式c e a=来求解。

例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( )A. 10B. 5C.310D. 25分析:这里的1,a c ==2b ,即可利用定义求解。

解:易知A (-1,0),则直线l 的方程为1x y +=。

直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ace ==,从而选A 。

二、变用公式)c e a =双曲线,)c e a ==椭圆,整体求出e例2. 已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为( ) A.35 B. 34C.45D.23 分析:本题已知b a=34,不能直接求出a 、c ,可用整体代入套用公式。

解:因为双曲线的一条渐近线方程为43y x =,所以 43b a =,则53c e a ===,从而选A 。

1.设双曲线(a >0,b >0)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( C )A. C. D.解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即224b a =e ∴===2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若12AB BC =uur uu u r,则双曲线的离心率是 ( )A .B .C .D . 答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B ,C ,,,222,4AB BC a b =∴=uur uu u r 因此 ,即224b a =,e ∴===3.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A . B . C . D .【解析】因为,再由有即2223b a =从而可得e ∴===B三、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

离心率的五种求法

离心率的五种求法

离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。

例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26 D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

离心率1

离心率1

求离心率取值范围的八种方法安徽省太和县第八中学离心率是圆锥曲线的一个重要性质,在近几年高考中频繁出现,而求离心率的取值范围又是较为复杂的一种,下面介绍八种求离心率的方法,供大家参考。

一:利用圆锥曲线的几何性质求解例1:在给定椭圆中,焦点到相应准线的距离不小于1.则该椭圆的离心率的取值范围是( )A1) B (0C (0,2) D(2,1)22b a∴2b=2a 又∵2a c c -≥1 ∴2a -2c ≥c ∴2b ≥ca ≥c ∴c a≤即e ∈(0) 故选C二:利用题中变量的范围求解例3:过椭圆C:22221(0)x y a b a b +=>>的左顶点A 的斜率K 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点1F ,若1132K <<,则椭圆离心率的取值范围是( ) A (19,44) B (2,13) C (12,23) D (10,2)解析:由题意:点B (2,b c a ),∴2b a Kc a=+=1a c e a -=- ∴11132e <-< ∴1223e << 故选C.例4:设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )2)) C.(2,5)解析:22222222111()1(1)c b a a e a a a a++===+=++ ∵1a> ∴101a << ∴1112a<+< ∴225e <<e << 故选B.三:利用图形的几何特点求解例5:如果双曲线22221(0,0)x y a b a b-=>>右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是( )A.(1,2)B.(2,+∞)C.(]1,2D.[2,+∞)解析:依题意:到双曲线的中心O 与右焦点F 的距离相等的点是线段OF 的中垂线l ,则l 应与双曲线的右支交于不同两点,故2ca >, ∴2ce a=>。

离心率的求法总结[精]

离心率的求法总结[精]

圆锥曲线中的离心率问题离心率两大考点:求值、求范围求值: 1. 利用a与c的关系式(或齐次式)2. 几何法3. 与其它知识点结合、不等关系求解.求范围: 1. 利用圆锥曲线相关性质建立a c、不等关系求解2. 运用数形结合建立a c3. 利用曲线的范围,建立不等关系4. 运用函数思想求解离心率5. 运用判别式建立不等关系求解离心率一、求离心率的值1. 利用a与c的关系式(或齐次式)题1:(成都市2010第二次诊断性检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF 的中点,则该椭圆的离心率为.题2:已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60°,则双曲线C 的离心率为62题3:设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )(A )3 (B )2 (C )5 (D )6解:由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =,代入抛物线方程整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即5522=⇔=e a c ,故选择C 。

题4:(2009浙江理) 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12AB BC =,则双曲线的离心率是( ) (A )2 (B )3(C )5(D )102. 几何法题1: 以椭圆的右焦点F ,为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线MF l (F l 为左焦点)是圆F2的切线,M 是切点,则椭圆的离心率是11211,2,3,31MF F F MF e题2: Fl ,F 2为椭圆的左、右两个焦点,过F 2的直线交椭圆于P 、Q 两点,PF 1PQ ,且1PF PQ ,求椭圆的离心率.题3:12212(05,,221A.B. C. 2 2 D. 21F F F P F PF 全国)设椭圆的两个焦点分别为、过作椭圆长轴的垂线交椭圆于点若为等腰直角三角形,则椭圆的离心率是( )---∆(采用离心率的定义以及椭圆的定义求解)解:如右图所示,有12222||||2122221c c cea a PF PF c c ===+===-++离心率的定义椭圆的定义故选D3. 与其它知识点结合题1:已知M 为椭圆上一点,F l ,F 2是其两个焦点,且∠MF l F 2= 2,∠MF 2F l =(≠ 0),则椭圆的离心率为( )(A)1—2sin (B)l —sin 2 (C)1-cos2 (D)2cos -1题2:已知P 为双曲线右支上一点,F l 、F 2是其左、右两焦点,且∠PF l F 2= 15°,∠PF 2F l =75°,则双曲线的离心率为 .2练习:.22221(0),34x y a b ab c 1.设双曲线半焦距为c,直线l 过点(a,0),(0,b)两点,已知原点到直线l 的距离为,则双曲线的离心率为( )A232.已知双曲线的渐近线为34yx ,则双曲线的离心率为 55,343.过双曲线的一个焦点F 作垂直于实轴的弦MN ,A 为双曲线的距F 较远的顶点,∠MAN=90°,双曲线的离心率等于 22b a ca221212224.(071(0,0)||5A. 3B. 5C.D. 13x y F F a b A B O OF a bF AB 安徽卷)和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( D )+-=>>∆22121222125.(07190,||3||,51015A. B. C. D. 5x y F F A F AF a bAF AF 全国Ⅱ)设、分别是双曲线的左、右焦点,若双曲线上存在点,使且则双曲线的离心率为( B )-=∠==二、求离心率的取值范围1. 利用圆锥曲线相关性质建立a c 、不等关系求解.题1:(2008福建)双曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?解析:∵|PF 1|=2|PF 2|,∴|PF 1||PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥ 所以双曲线离心率的取值范围为13e <≤,故选B.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.题2:(04重庆)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 73∵|PF 1|=4PF 2|,∴|PF 1||PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥ 所以双曲线离心率的取值范围为513e <≤,故选B.练习:1. 已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )A (1,2]B (1,3]C [2,3]D [3,)+∞解析2221222222(2)442448PF a PF a PF a a a a PF PF PF +==++≥=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤.2. 利用曲线的范围,建立不等关系题1. 设椭圆22221(0)x y a b ab 的左右焦点分别为F 1、F 2,如果椭圆上存在点P ,使1290F PF ,求离心率e 的取值范围。

求离心率方法归纳总结

求离心率方法归纳总结

求离心率方法归纳总结离心率是描述一个椭圆轨道与圆轨道之间的偏离程度的参数,它在天文学、航天科学等领域中具有重要的应用价值。

本文将对多种求离心率的方法进行归纳总结。

一、通过轨道要素计算离心率离心率可以通过轨道的半长轴(a)和半短轴(b)来计算。

公式为:e = √(1 - (b^2/a^2))二、通过观测数据计算离心率1. 天文观测法通过观测行星或天体在不同时刻的位置,可以推导出轨道要素,进而计算离心率。

2. 航天器轨道测量法使用航天器的测距、测速和测向数据进行轨道计算,从而得到离心率。

三、通过物理定律计算离心率1. 能量守恒法利用能量守恒定律,通过测量天体的速度和位置信息,推导出离心率。

2. 角动量守恒法利用角动量守恒定律,通过测量天体的质量、速度和距离信息,计算出离心率。

四、通过数值模拟计算离心率1. 数值积分法利用数值积分方法,对天体在重力场中的运动进行模拟计算,从而得到离心率。

2. 万有引力定律法根据万有引力定律,利用数值解的方法,计算天体在引力作用下的运动轨迹,并通过轨迹数据推导出离心率。

五、通过实验测定离心率1. 实验观测法通过精密实验测量天体的运动参数,然后根据测量数据计算离心率。

2. 探测器测量法利用探测器对天体进行观测和测量,通过测量数据计算离心率。

综上所述,求离心率的方法主要包括通过轨道要素计算、观测数据计算、物理定律计算、数值模拟计算和实验测定。

不同的方法适用于不同的情况和领域,选择合适的方法可以提高准确性和可靠性,为相关研究提供有力支持。

求离心率的范围问题

求离心率的范围问题

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b+=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12 B .13 C 232π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .3⎛ ⎝⎭B .()0,1C .2⎫⎪⎪⎝⎭D .2⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

离心率问题的7种题型15种方法(教师版)

离心率问题的7种题型15种方法(教师版)

目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解离心率范围六法
山西阳城一中 茹阳龙
在圆锥曲线的诸多性质中,离心率经常渗透在各类题型中。

离心率是描述圆锥曲线“扁平程度”或“张口大小”的一个重要数据,在每年的高考中它常与“定义”、“焦点三角形”等联系在一起。

因此求离心率的取值范围,综合性强,是解析几何复习的一个难点。

笔者从事高中数学教学二十余载,积累了六种求解这类问题的通法,供同仁研讨。

一、利用椭圆上一点P(x,y)坐标的取值范围,构造关于a,b,c 的不等式
例1 若椭圆()0122
22 b a b
y a x =+上存在一点P ,使︒=∠900PA ,其中0为原点,A 为椭圆的右顶点,求椭圆离心率e 的取值范围。

解:设()00,y x P 为椭圆上一点,则
122
0220=+b y a x . ① 因为︒=∠900PA ,所以以OA 为直径的圆经过点P ,所以
020020=+-y ax x . ②
联立①、②消去0y 并整理得
0)()(20222020=-+--x a a
b a x x 当a x =0时,P 与A 重合,不合题意,舍去。

所以2
22
0b a ab x -= 又a x 00,所以a b
a a
b 222
0-, 即 ()22222c a b a -=
得2122 a
c ,即223e 又10 e ,故e 的取值范围是⎪⎪⎭
⎫⎢⎣⎡1,22 二、利用圆锥曲线的焦点和曲线上一点构成的“焦三角形”三边大小关系,构造关于a,b,c 不等式
例2 已知双曲线()0,01x 22
22 b a b
y a =-左、右焦点分别为F 1、F 2,左准线为p ,ι是双曲线左支上一点,并且22
1PF PF d =,由双曲线第二定义得ed =1PF , 所以12PF PF e =. ①
由又曲线第一定义得
a PF 2PF 12=- ②
由①-②得
.1
2,12PF 21-=-=e ea PF e a 在21PF F ∆中,
,2PF 21211c F F PF =≥+
所以
c e ea e a 21212≥-+- , 即e e e ≥-+1
1. 又1 e ,从而解得e 的取值范围是(]
21,1+。

三、利用圆锥曲线的“焦三角形”+余弦定理+均值不等式
例3 设椭圆()0122
22 b a b y a x =+的两焦点为F 1、F 2,问当离心率E 在什么范围内取值时,椭圆上存在点P ,使21PF F ∆=120°.
解:设椭圆的焦距为2c ,由椭圆的定义知
a PF PF 221=+.
在21PF F ∆中,由余弦定理得
=221F F 21212221cos 2PF F PF PF PF PF ∠-+ =21222
1PF PF PF PF ++
=(21221)PF PF PF PF -+ 所以22
212122244a PF PF PF PF c a =⎪⎪⎭⎫ ⎝⎛+≤=- 所以2
3,4322≥≤a c c a 得. 又10 e ,故e 的取值范围是⎪⎪⎭
⎫⎢⎣⎡1,23 四、利用圆锥曲线的定义,结合完全平方数(式)非负的属性构造关于a,b,c 的不等式
例4 如图1,已知椭圆长轴长为4,以y 轴为准线,且左顶点在抛物线1y 2-=x 上,求椭圆离心率e 的取值范围。

解:设椭圆的中心为A 10,并延长交y 轴于N ,则
A 10=.x NA 2,a 0==
因为01y 002≥-=x ,所以1x 0≥。

所以322202c
a a e 0
12≤+===x N 。

所以椭圆离心率e 的取值范围为⎥⎦⎤ ⎝⎛320,。

五、将题中已知不等关系巧妙转化为关于a,b,c 的不等式
例5 如图2,已知椭圆()0122
22 b a b
y a x =+的两焦点为F 1、F 2,斜率为K 的直线ι过右焦点F 2,与椭圆交于A 、B ,与Y 轴交于C ,B 为CF 2的中点,若5
52≤
k ,求椭圆离心率e 的取值范围。

y
解:设F 2 (C,0),直线(),:c x k y -=ι则())2
,2(,,0ck c B ck c --,代入椭圆方程得1442
2
222=+b k c a c . 又,2
22c a b -=所以1)(44222
222=-+c a k c a c , 所以1)
1(44122
22=-+e k e e , 解得 222
454e e e k +-= 因为552≤k ,所以5
42≤k 解,5445224≤+-e e e 得15
42 e ≤, 所以15
52 e ≤ 六、利用圆锥曲线参数方程设点,结合正余弦函数的有界性,构造关于a,b,c 的不等式
例6 若椭圆12222=+b
y a x ()0 b a 上存在一点P ,使︒=∠900PA ,其中O 为原点,A 为椭圆的右顶点,求椭圆离心率e 的取值范围。

解:设P (θθsin ,cos b a ),由︒=∠900PA ,
得1cos sin cos sin -=-⋅a
a b a b θθθθ, 即(0cos cos )22222=+--b a b a θθ ①
解得2
22
cos 1cos b a b -==θθ或
当。

重合,不合题意,舍去与时,A P 1cos =θ 因此要使①有解,需112
22
b a b --, 即22,1222 a
c c
c a 解得-. 又10 e ,故e 的取值范围是⎪⎪⎭
⎫⎢⎣⎡1,22 总之,求圆锥曲线的离心率范围首先从定义出发,利用圆锥曲线上点坐标的范围和焦三角形的三边大小 关系,结合参数方程中三角函数有界性和均值不等式,有时也常常转化为一元二次方程利用判别式或者完全平方数(式),具体问题具体对待,贵在划归转化。

相关文档
最新文档