第十二章 全等三角形

合集下载

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳单选题1、如图,OD平分∠AOB,DE⊥AO于点E,DE=5,点F是射线OB上的任意一点,则DF的长度不可能是()A.4B.5C.6D.7答案:A分析:根据角平分线的性质,可知点D到OB和OA的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.∵OD平分∠AOB,DE⊥AO于点E,DE=5,∴D到OB的距离等于5,∴DF≥5故DF的长度不可能为4,故选A.小提示:本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键.2、下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形答案:B分析:根据全等图形的定义进行判断即可.解:A:两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B:两个全等图形形状一定相同,故B正确,符合题意;C:两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D:两个正三角形不一定是全等图形,故D错误,不符合题意;故选:B.小提示:本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.3、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有()A.①②③B.①②④C.①③④D.①②③④答案:D分析:证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.小提示:本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.4、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A .35°B .40°C .45°D .50°答案:C分析:根据角平分线的定义和垂直的定义得到∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,推出AB =BE ,根据等腰三角形的性质得到AF =EF ,求得AD =ED ,得到∠DAF =∠DEF ,根据三角形的外角的性质即可得到结论. 解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF ,∴AB =BE ,AE ⊥BD ,∴BD 是AE 的垂直平分线,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C .小提示:本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5、如图,△ABC ≌△DEF ,若∠A =80°,∠F =30°,则∠B 的度数是( )A.80°B.70°C.65°D.60°答案:B分析:由△ABC≌△DEF根据全等三角形的性质可得∠C=∠F=30°,再利用三角形内角和进行求解即可.∵△ABC≌△DEF,∴∠C=∠F,∵∠F=30°,∴∠C=30°,∵∠A=80°,∠A+∠B+∠C=180°,∴∠B=180°−∠A−∠C=70°,故选:B.小提示:本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.6、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.7、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.8、已知图中的两个三角形全等,则∠α等于()A.72∘B.60∘C.58∘D.50∘答案:D分析:根据全等三角形的性质:全等三角形对应角相等,即可得到结论.∵图中的两个三角形全等,∠α为a和c的夹角又∵第一个三角形中a和c的夹角为50°∴∠α=50°故选:D.小提示:本题考查了全等三角形的性质,准确找到对应角是解题的关键.9、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④答案:B分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解:①和③可以完全重合,因此全等的图形是①和③.故选:B.小提示:此题主要考查了全等图形,关键是掌握全等图形的概念.AD,BD平分∠ABC,则点D到AB的距离等于( ) 10、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,∵AC=8,DC=1AD,3∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.填空题11、如图,四边形ABCD中,∠B+∠D=180°,AC平分∠DAB,CM⊥AB于点M,若AM=4cm,BC=2.5cm,则四边形ABCD的周长为_____cm.答案:13分析:过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC+∠B=180°,∠ADC+∠EDC=180°,∴∠EDC=∠MBC,在△EDC和△MBC中,{∠DEC=∠CMB∠EDC=∠MBCCE=CM,∴△EDC≌△MBC(AAS),∴ED=BM,BC=CD=2.5cm,∴四边形ABCD的周长为AB+AD+BC+CD=AM+BM+AE﹣DE+2BC=2AM+2BC=8+5=13(cm),所以答案是:13.小提示:本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.12、把两个全等的三角形重合到一起,重合的顶点叫做_________,重合的边叫做_________,重合的角叫做_________.记两个三角形全等时,通常把表示_________的字母写在对应位置上.答案:对应顶点对应边对应角对应顶点分析:根据能够完全重合的两个图形叫做全等形,以及对应顶点、对应边、对应角的概念填空.解:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.所以答案是:对应顶点;对应边;对应角;对应顶点.小提示:此题主要考查了全等形及相关概念,属于基本概念题,是需要识记的内容.13、如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=_____.答案:12cm或6cm##6cm或12cm分析:当AP=12cm或6cm时,△ABC和△PQA全等,根据HL定理推出即可.解:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=6cm=BC时,在Rt△ACB和Rt△QAP中∵{AB=PQ,BC=AP∴Rt△ACB≌Rt△QAP(HL),②当AP=12cm=AC时,在Rt△ACB和Rt△PAQ中{AB=PQ,AC=AP∴Rt△ACB≌Rt△PAQ(HL),所以答案是:12cm或6cm.小提示:本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.14、如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点B的坐标为(1,5),则A点的坐标是_____.答案:(-7,3)分析:先作辅助线AD ⊥OC 、BE ⊥OC ,通过导角证明∠CAD =∠BCE ,再证明△ADC ≌△CEB , 得到AD 的长度(A 的纵坐标长度)、DC 长度(加上OC 得到A 横坐标长度),根据A 点所在象限的符号,确定A 点坐标. 如图,过点A 作AD ⊥OC 于点D ,过点B 作BE ⊥OC 于点E∵ 点C 的坐标为(-2,0),点B 的坐标为(1,5)∴ OC =2,OE =1,BE =5∵∠ACB =90°∴∠ACD +∠CAD =90°,∠ACD +∠BCE =90°∴∠CAD =∠BCE在△ADC 和△CEB 中,{∠ADC =∠BEC =90°∠CAD =∠BCE AC =BC∴△ADC ≌△CEB(AAS)∴DC =BE =5,AD =CE =1+2=3∴OD =2+5=7∴ A 点的坐标是(-7,3) .小提示:本题考查了全等三角形的证明(在两个三角形中,如果有两组对应角,和其中一组对应角的对边分别相等,那么这两个三角形全等) .15、如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.答案:225°分析:首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.解:如图所示:在△ABC和△AEF中,{AB=AE∠B=∠E=90°BC=EF∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,{AB=AEAD=AH∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.所以答案是:225°.小提示:此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等即可求解.解答题16、(1)如图,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;(2)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并∠EAF=12证明.答案:(1)EF=BE+DF,理由见详解;(2)见详解;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由见详解.分析:(1)在CD的延长线上截取DM=BE,连接AM,证出△ABE≌△ADM,根据全等三角形的性质得出BE=DM,再证明△AEF≌△AMF,得EF=FM,进而即可得出答案;(2)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;(3)按照(2)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(2)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE−BG=BE−DF.所以(1)的结论在(3)的条件下是不成立的.(1)解:EF=BE+DF,理由如下:延长CD,使DM=BE,连接AM,∵在正方形ABCD中,AB=AD,∠B=∠ADM=90°,∴△ABE≌△ADM,∴∠BAE=∠DAM,AE=AM,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAM+∠DAF =90°-45°=45°,∴∠EAF=∠MAF=45°,又∵AF=AF,AE=AM,∴△AEF≌△AMF,∴EF=MF=MD+DF=BE+DF;(2)在CD的延长线上截取DG=BE,连接AG,如图,∵∠ADF=90°,∠ADF+∠ADG=180°,∴∠ADG=90°,∵∠B=90°,∴∠B=∠ADG=90°,∵BE=DG,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AG=AE,∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,∵∠EAF=1∠BAD,2∴∠EAF=1∠EAG,2∴∠EAF=∠FAG,又∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG=DF+DG=EB+DF;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由如下:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,{AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD =12∠GAF . ∴∠GAE =12∠BAD =∠EAF .∵AE =AE ,AG =AF .∴△AEG ≌△AEF .∴EG =EF ,∵EG =BE −BG∴EF =BE −FD .小提示:本题考查了三角形综合题,三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.17、(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC,D,A,E 三点都在直线m 上,并且有∠BDA =∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.答案:(1)证明见解析;(2)DE=BD+CE,证明见解析分析:(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;(1)DE=BD+CE.理由如下:∵BD⊥m,CE⊥m,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,{∠ABD=∠CAE∠ADB=∠CEA=90°AB=AC,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)DE=BD+CE,理由如下:∵∠BDA=∠AEC=∠BAC,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,{∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;小提示:本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.18、如图,在五边形ABCDE 中,AB =CD ,∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线.(1)求证:△ABE ≌△DCE ;(2)当∠A =80°,∠ABC =140°,时,∠AED =_________度(直接填空).答案:(1)见解析;(2)100分析:(1)根据∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,可得∠ABE =∠DCE ,∠CBE =∠BCE ,推出BE =CE ,由此利用SAS 证明△ABE ≌△DCE ;(2)根据三角形全等的性质求出∠D 的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,∴∠ABE =∠CBE =12∠ABC ,∠BCE =∠DCE =12∠BCD ,∴∠ABE =∠DCE ,∠CBE =∠BCE ,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为(5−2)×180°=540°,∴∠AED=540°−80°×2−140°×2=100°,所以答案是:100.小提示:此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.。

完整版-全等三角形总复习PPT教学课件

完整版-全等三角形总复习PPT教学课件

AC=BC
∠BCE=∠DCA
DC=EC
∴ △ACD≌△BCE (SAS)
∴ BE=AD
2024/3/9
29
6. 如图A、B、C在一直线上,△ABD,△BCE都是等边 三角形,AE交BD于F,DC交BE于G,求证:BF=BG。
AB

DB
∠ABE = ∠ DBC
BE=BC ∴△ABE≌△DBC(SAS)
D
C
2
1
A
B
思路3: 已知一边一角(边与角相邻):
找夹这个角的另一边
AD=CB (SAS)
找夹这条边的另一角
∠ACD=∠CAB(ASA)
找边的对角
∠D=∠(B AAS)
15
如图,已知∠B= ∠E,要识别△ABC≌ △AED,需 要添加的一个条件是--------------
A
D
C
E
思路4:
找夹边
AB=AE (ASA)
∴ △ADC ≌ △EDB
D
C
∴ AC = EB
在△ABE中,AE < AB+BE=AB+AC
E
即 2AD < AB+AC
∴ AD 1 (AB AC) 2
2024/3/9
35
12.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA, CD过点E,则AB与AC+BD相等吗?请说明理由。
C A
∵ QD⊥OA,QE⊥OB,QD=QE(已知). ∴点Q在∠AOB的平分线上.(到角的两边的距
离相等的点在角的平分线上)
2024/3/9
10
2.如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等

第12章 全等三角形 小结与复习

第12章 全等三角形 小结与复习
两个全等三角形的长边与长边,短边与短边分别是对应边,大角与大角,小角与小角分别是对应角.有对顶角的,两个对顶角一定为一对对应角.有公共边的,公共边一定是对应边.有公共角的,公共角一定是对应角.
1、如图所示,△ABD≌△ACD,∠BAC=90°.(1)求∠B; (2)判断AD与BC的位置关系,并说明理由.
C
D
E
如图,∠1=∠2,点P为BN上的一点,∠PCB+ ∠BAP=180 °,求证:PA=PC.
分析:由角平分线的性质易想到过点P向∠ABC的两边作垂线段PE、PF,构造角平分线的基本图形.
考点5 角平分线的性质与判定
证明:过点P作PE⊥BA,PF⊥BC,垂足分别为E,F.
∠C=∠D
或∠AOC=∠BOD
AAS
或ASA
如图,在△ABC中,AD平分∠BAC,CE⊥AD于点G,交AB于点E,EF∥BC交AC于点F,求证:∠DEC=∠FEC.
分析:
欲证∠DEC=∠FEC
由平行线的性质转化为证明∠DEC=∠DCE
只需要证明△DEG ≌△DCG.
考点3 全等三角形的性质与判定的综合应用
证明:过点P作PE⊥BA,PF⊥BC,垂足分别为E,F.
∵∠1=∠2,PE⊥BA,PF⊥BC,垂足分别为E,F.
∴PE=PF, ∠PEA=∠PFC=90 °.
在Rt△APE和Rt△CPF中,
∴ Rt△PAE ≌ Rt△PCF(HL).
∴ ∠ EAP= ∠ FCP.
∵ ∠BAP+∠EAP=180 °,
2、有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
用符号语言表达为:
F
E
D
C

初二数学第十二章全等三角形详细知识点及题型总结

初二数学第十二章全等三角形详细知识点及题型总结

第十二章全等三角形第一讲全等三角形性质图形全等:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即...................................平移、翻折、旋转前后的图形全等。

“全等”用.....................≅表示,读作“全等于”..........全等三角形的定义:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如∆和全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作DEF ABC∆DEF∆。

ABC∆≅把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

........................例1.已知:如图,AB=AD,AC=AE,BC=DE,∠EAC=300,则∠DAB的大小为例2.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.例3.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3 C.2:3 D.1:4课堂练习:∆的是( )1.根据下列条件,能画出唯一ABCA. AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=300C. ∠C=600,∠B=450,AB=4D.∠C=900,AB=62.如图∠1=∠2=200,AD=AB,∠D=∠B,E在线段BC上,则∠AEC=()A.200B.700C.500D.8003.已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF4.如图,△BCD≌△CBE,BC=6,CE=5,BE=4,则CD的长是()A.4 B.5 C.6 D.无法确定5.已知图中的两个三角形全等,则∠ 度数是()A.72°B.60°C.58°D.50°6.如图,将Rt△ABC(其中∠B=340,∠C=900)绕A点按顺时针方向旋转到△AB1 C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于()A.560B.680C.1240D.18007.如图,△ABE≌△ACD,∠B=50°,∠AEB=60°,则∠DAC的度数等于()A.120° B.70° C.60° D.50°8.若两个三角形的面积相等 , 则这两个三角形________全等.9.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_______.10.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:______,对应角:_________.11.如图,△ABO≌△CDO,OA=2,AB=4,BO=3,则DC= ,OC= ,OD= .12.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=320,∠A=680,AB=13cm,则∠F=______度,DE=______cm.13.已知△ABC≌△DEF,∠A=52°,∠B=67°BC=15cm则∠F=_____,FE=_____cm.14.如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P/AC,则∠PAP/的度数为________.15.将一张正方形纸片按如图的方式折叠,BC,BD为折痕,则∠CBD的大小为_________16.如图所示,,BC 的延长线交DA 于F ,交DE 于G ,,,,则的度数为17.观察图中每一个大三角形中白色三角形的排列规律,则第n 个大三角形中白色三角形有 个 .18.如图,把△ABC 绕点C 顺时针旋转350,得到△A /B /C, A /B /交AC 乎点D ,已知∠A /DC=90°,求∠A 的度数.19.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.20.如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?ABC ADE △≌△105ACB AED ∠=∠=15CAD ∠=30B D ∠=∠=1∠课后练习:1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )A .①②③④B .①③④C .①②④D .②③④2.下列说法错误的有( )①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个3.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( )A.37°B.53°C.37°或63°D.37°或53°4.如果D 是中BC 边上一点,并且,则是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A.1个B.2个C.3个D.4个6.如图,△OAB 绕点O 逆时针旋转800到△OCD 的位置,已知∠AOB=450,则∠AOD ( )A.550B.450C.400D.3507.如图,△ABE ≌△ACD,AB=AC,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC 的度数等于( )A.120°B.70°C.60°D.50°8.如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°9.如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( ) A. △ADC B. △BDC ´ C. △ADC ´ D. 不存在6.如图,已知AB=AC ,AD=AE ,∠BAD=25°,则∠CAE=ABC △ADB ADC △≌△ABC△7.如图,△ABD≌△ACE,则AB的对应边是_______,∠BAD的对应角是______.8.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=______.9.如图:△ABC≌△DCB,AB和DC是对应边,∠A和∠D是对应角,则其它对应边是______________,对应角是____________________.10.已知:如图,△ABC≌△DEF,BC∥EF,∠A=∠D,BC=EF,则另外两组对应边是____,另外两组对应角是____.11.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.12.如图所示,△ABD≌△ACE,点B和点C是对应顶点,AB=8,BD=7,AD=6,则BE的长是___13.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=______度.14.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为15.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=480,则∠APD等于16.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=____17.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.能力提高:1.长为L 的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值范围为( ) A.64l l x ≤< B.84l l x ≤< C.64l l x << D.84l l x << 2.已知△ABC ≌△A ′B ′C ′,△ABC 的三边为3、m 、n ,△A ′B ′C ′的三边为5、p 、q ,若△ABC 的各边都是整数,则m+n+p+q 的最大值为__________3.如图,△ABC ≌△ADE ,∠DAC=60°,∠BAE=100°,BC 、DE 相交于点F ,则∠DFB 的度数是4.下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.AB C D E F5.如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠a 的度数为6.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN= cm, NM= cm, ∠NAB= .7.如图所示,△ABC 绕顶点A 顺时针旋转,若∠B =40°,∠C =30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A 在同一直线上?(原△ABC 是指开始位置)(2)再继续旋转多少度时,点C 、A 、C'在同一直线上?8.如图, 在ABCD中, 将△ABE沿BE翻折, 点A落在CD边上, 成为点F, 如果△DEF和△BCF的周长分别是8cm和22cm, 求FC的长度。

第十二章全等三角形知识点归纳

第十二章全等三角形知识点归纳

第十二章 全等三角形一、知识要点1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的判定和性质3、证题的思路:(A S A )(A A S )⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎨⎪⎩⎪⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(SAS)(HL)(SSS) (AAS)(SAS)(ASA)(AAS) 4、应注意的问题(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; (4)要正确区分判定三角形全等的结论的不同含义;(5)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等.5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 6、全等三角形问题中常见的辅助线的作法 (1)连接法(连接公共边构造三角形全等); (2)延长法(延长至相交、倍长中线)(3)截长补短法(适合于证明线段的和、差等问题)(4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线 二、考点解密(1)常见全等的判定和性质考察1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°;那么DE= cm ,EC= cm ,∠C= 度;∠D= 度;CBAFE DC B A第2小题 第3小题 第4小题3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度; 4、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的一个条件为 ;(2)若以“ASA ”为依据,还须添加的一个条件为 ;(3)若以“AAS ”为依据,还须添加的一个条件为 ;5.已知△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm 则AB =____________,BC =____________,AC =____________.6.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y =__________.7.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

第十二章:第二节:全等三角形的判定

第十二章:第二节:全等三角形的判定

()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧HL AAS ASA SAS SSS 斜边、直角边角角边角边角边角边边边边第十二章 全等三角形第二节 三角形全等的判定☆要点回顾1、三角形的内角和定理:三角形的内角和为180°。

2、平行线的性质及判定:内错角相等,两直线平行。

3、有一个角是90°的三角形为直角三角形。

概念图:三角形全等的条件知识点一:边边边公理(SSS )1、三边对应相等的两个三角形全等,简写成“边边边”或“SSS ”。

2、要证明两个三角形全等,应设法确定这两个三角形三条边对应相等。

3、判断两个三角形全等的推理过程,叫做证明三角形全等。

4、书写格式:在列举两个三角形全等的条件时,把三个条件按顺序排列,并且用大括号将它们括起来,如:在△ABC 和△A'B'C'中,∴△ABC ≌△C B A '''(SSS )。

典型例题:【例1】如图,已知AD=CB,AB=CD.求证:AD ∥BC 。

解析:欲证AD ∥BC ⇒∠ADB=∠CBD ⇒△ABD ≌△CDB.⎪⎩⎪⎨⎧''=''=''=C B BC C A AC B A AB知识点二:边角边公理(SAS)1、两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”2、“SAS”指判定两个三角形全等的条件是两边及这两条边的夹角对应相等,应特别注意其中的夹角是两已知边的夹角而不是其中一边的对角。

3、在列举两个三角形全等的条件时,一定要把夹角相等写在中间,以突出两边及其夹角对应相等。

4、有两边和其中一边的对角对应相等的两个三角形不一定全等。

典型例题:【例2】如图,已知E、F是线段AB上的两点,且AE=BF,AD=BC,∠A=∠B,求证,DF=CE解析:先证明AF=BE,在用“SAS”证明两个三角形全等。

【例3】如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE,(1)求证:AE=CF;(2)求证:AE∥CF。

第十二章全等三角形12.1全等三角形教案

第十二章全等三角形12.1全等三角形教案
其次,在讲解全等三角形的判定方法时,我尝试用了一些具体图形和实例来说明,但可能还不够充分。我打算在下一节课增加一些更具挑战性的题目,让学生们亲自动手操作,以加深对判定方法的理解。
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:

第十二章全等三角形知识点总结

第十二章全等三角形知识点总结

∵ △ABC≌△DEF
∴ ①AB=DE
④ ∠A= ∠D
② BC=EF ③ CA=FD
⑤ ∠B=∠E
⑥ ∠C= ∠F
注意: 寻找对应元素的规律 (1)有公共边的,公共边是对应边;
(2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边是对应边,最小边是对应边;
(5)最大角是对应角,最小角是对应角;
F
∴ △ABC ≌△ DEF(SAS)
“ASA”判定方法:
几何语言: 在△ABC和△ DEF中 ∠ B =∠ E BC=EF ∠ C =∠ F ∴ △ABC ≌△ DEF(ASA)
E B
A C
D F
“AAS”判定方法:
几何语言: 在△ABC和△ DEF中 ∠ A =∠ D ∠ B =∠ E BC=EF ∴ △ABC ≌△ DEF(AAS)
4
三 角 形 两边和它们的夹角分别相等的两个三角形全等 全 简写为“边角边”或“SAS ” 等 的 两角和它们的夹边分别相等的两个三角形全等 判 简写为“角边角”或“ASA” 定 方 两角分别相等且其中一组等角的对边相等的两个三角形 法 全等。简写为“角边角”或“AAS”
斜边和一条直角边分别相等的两个直角三角形全等 简写为“斜边、直角边”或“HL”
三边对应相等的两个三角形全等 简写为:“边边边”或“SSS”
“SSS”判定方法:
几何语言: 在△ABC和△ DEF中 AB=DE BC=EF CA=FD ∴ △ABC ≌△ DEF(SSS)
E B
A C
D F
“SAS”判定方法:
A
几何语言:
B
D E
C
在△ABC和△ DEF中

人教版初中数学八年级上册第十二章 全等三角形

人教版初中数学八年级上册第十二章 全等三角形
人教版 数学 八年级 上册
12.1 全等三角形/
12.1 全等三角形
导入新知
12.1 全等三角形/
观察这些图片,你能找出形状、大小完全一样的几何 图形吗?
导入新知
12.1 全等三角形/
你能再举出生活中的一些类似例子吗?
素养目标
12.1 全等三角形/
3. 初步帮助学生建立平移、翻折、旋转三种图形 变化与全等形的关系.
12.1 全等三角形/
观察思考:每组中的两个图形有什么特点?





探究新知
12.1 全等三角形/
归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
探究新知 下面哪些图形是全等图形?
12.1 全等三角形/
大小、形状 完全相同
课后作业
作业 内容
12.1 全等三角形/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 熟练掌握全等三角形的性质,并能灵活运用 全等三角形的性质解决相应的几何问题.
1. 熟记全等形及全等三角形的概念;能够正确找 出全等三角形的对应边、对应角.
探究新知
12.1 全等三角形/
知识点 1 全等图形的定义及性质
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
探究新知
正确的结论并证明.
解:结论:EF∥NM
其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
巩固练习
12.1 全等三角形/
如图,△ABC ≌△CDA,AB 与CD,BC 与DA 是对应边,

第十二章 全等三角形

第十二章  全等三角形

图12.1-1第十二章 全等三角形12.1 全等三角形素读检测1. 叫做全等形.2. 叫做全等三角形.3.一个图形经过平移、翻折、旋转后, 变化了,但 、 都没有改变,即平移、翻折、旋转前后的图形 .4.把两个全等的三角形重合到一起. 叫做对应顶点. 叫做对应边. 叫做对应角.如图12.1-1,△ABC 和△DEF 全等,记作 .记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.其中 , , 是对应顶点, , , 是对应边, , , 是对应角.5.全等三角形的性质: ; .问题思考1.对边和对应边有什么区别?2.如图,指出下列各对全等三角形的对应边和对应角.对应边: 对应边: 对应角: 对应角:DCBAO△AOB ≌△DOCCBEDA△AEB ≌△ADC图12.1-2△ABC ≌△CDA△ABC ≌△AEF对应边: 对应边: 对应角: 对应角:对应边: 对应边: 对应角: 对应角:当堂检测1.下列各图中的两个图形是全等图形的是 .2.如图12.1-6,△ADE ≌△BCF ,(1)若AD =8cm ,CD =6cm ,则BD = (2)若∠B =30°,∠E =80°,则∠ADE =3.如图12.1-7,点A 、B 、C 、D 在一条直线上,△ABF ≌△DCE .你能得出哪些结论?(请写出三个以上的结论)△ABC ≌△DEF△ABN ≌△ACMNMCBA图12.1-4图12.1-5EFDCBA图12.1-6A FBEDC图12.1-7图12.1-7巩固拓展1.如图12.1-8,已知△ABC 是边长为1的正三角形,△BMD ≌△CPD ,△MND ≌△PND ,点P 在AC 的延长线上,求△AMN 的周长.2.如图12.1-9,A 、D 、E 三点在同一直线上,且△BAD ≌△ACE ,试说明: (1)BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE .12.2 .1 三角形全等的判定第一课时素读检测1.如果△ABC ≌△A′B′C ′,那么它们的对应边相等,对应角相等.反过来,如果△ABC 和△A′B′C′满足 , 即这六个条件,就能保证△ABC ≌△A′B′C′.2. 的两个三角形全等(可以简写成“边边边”或“SSS ”).PDNMC BA图12.1-8ACE BD图12.1-9问题思考1.六个条件满足一个条件时,分几种情况考虑?两三角形一定全等吗?(提示:可以用你的学具试一试,也可以用你的作图工具画一画,还可以用其它的方法). 通过上面的操作,可以得出怎样的结论?2.六个条件满足两个条件时,分几种情况考虑?两三角形一定全等吗?(提示:可以用你的学具试一试,也可以用你的作图工具画一画,还可以用其它的方法). 通过上面的操作,可以得出怎样的结论?3.六个条件满足三个条件时,分几种情况考虑?请一一罗列出来.4.已知△ABC ,如何画一个△A′B′C′,使AB =A′B′,BC =B′C′,CA =C′A′,你是怎样画的?可以参照第36页上面画法.并说明画法中第(2)步的意义.5.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?此结果反映了什么规律?6.仿照第36页例1的格式,解答下列问题: 如图12.2-2,在四边形ABCD 中,AB =CD ,AD =CB . 求证:∠A =∠C .CBDA 图12.2-2 C BA图12.2-17.已知∠AOB ,求作:∠A′O′B′,使∠A′O′B′=∠AOB .(保留作图痕迹) 想一想为什么这样作出∠A′O′B′和∠AOB 是相等的?当堂检测1.如图12.2-4,AC =BD ,若根据“SSS ”证得△ABC ≌ △BAD ,需要添加的条件是 .2.工人师傅常用角尺平分一个任意角.做法如下:如图12.2-5,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 作射线OC .由此做法得△MOC ≌△NOC 的依据是( ) A. AAS B. SAS C. ASA D. SSS3.如图12.2-6,AD =AC ,BD =BC ,∠DAC =31°,∠D =29°,∠DBE = °.4.如图12.2-7,在△ABC 中,AB =AC ,D 为BC 的中点,那么下面结论正确的有 (填序号).① △ABD ≌ △ACD ;② ∠B =∠C ; ③ AD 是△ABC 的角平分线; ④ AD 是△ABC 的高.巩固拓展如图12.2-8,AD =CB ,E 、F 是AC 上两动点,且有DE =BF .(1)若E 、F 运动至如图①所示的位置,且有AF =CE ,求证:△ADE ≌△CBF .(2)若E 、F 运动至如图②所示的位置,仍有AF =CE ,那么△ADE ≌△CBF 还成立吗?为什么?BOA 图12.2-3图12.2-4CBDA图12.2-6CBEDA图12.2-7CBDA图12.2-5 DFCBAED FCBAE图12.2-812.2.2 全等三角形的判定第二课时素读检测已知:△ABC求作:△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.AB C问题思考1.你画出的△ABC与△A'B'C'满足六个条件中的哪几个条件?把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?你还有其他的检验方法吗?2.两边及其中一边的对角对应相等的两三角形一定全等吗?为什么?3.课本给出了测量池塘两端距离的一种方法,你能说说这种方法的道理吗?A BCE D当堂检测1.如图12.2-9,AD ⊥AB 于A ,BE ⊥AB 于B ,AD =BC ,AC =BE ,则∠DCE = °. 2.如图12.2-10,AB =AC ,要想利用SAS 证明△ABE ≌△ACD ,需要添加的一个条件 是 .3.如图12.2-11,AB =AC ,AD 平分∠BAC ,E 是AD 上一点,写出图中所有的全等 三角形: .4.已知:如图12.2-12,AB =AC ,AD =AE ,∠BAC =∠DAE . 求证:∠B =∠C .巩固拓展1.如图12.2-13,点E,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C . 求证:∠A =∠D .AEDCB图12.2-9AEDCB图12.2-11图12.2-10D AB CE图12.2-9图12.2-10图12.2-11CAB FD图12.2-12ABCDE图12.2-122.已知,如图12.2-14, △ABC 中,AB =AC .求证: ∠B =∠C . 你能用几种方法证明出来? 试着写出来.12.2.3 全等三角形的判定第三课时素读检测已知:△ABC .画出△A 'B 'C ',使A 'B '=AB ,∠A '=∠A ,∠B '=∠B .问题思考1.你画出的△ABC 与△A 'B 'C '满足六个条件中的哪三个条件?把画好的△A 'B 'C '剪下,放到△ABC 上,它们全等吗?你还有其他的验证方法吗?2.两角及其中一角的对边对应相等的两三角形一定全等吗?ASA 与AAS 有什么区别与联系?CBA图12.2-14图12.2-15ABC3.如图12.2-15,AD 是∠BAC 的平分线,∠1=∠2. 求证: BD =CD .当堂检测1.如图12.2-16,∠A =∠D,BC =EF ,还需要添加一个条件 ,使△ABC ≌△DEF ,理由是 . _.2.如图12.2-17,AB ⊥BC ,AD ⊥DC ,∠1=∠2.求证:AB =AD3.如图12.2-18,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C .求证:BD =CE巩固拓展1.如图12.2-19, AB, CD, EF 交于O 点, 且AC =BD , AC ∥DB . 求证:O 是EF 的中点.图12.2-16图12.2-1912图12.2-17CBDA图12.2-17图12.2-18DBEA OC图12.2-182.如图11.2-20, AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC =DF . 求证:AC =EF .12.2.4三角形全等的判定第四课时素读检测1.三角形全等的判定方法有 、 、 、 四种. 它们的共同特点是需要 个条件,这些条件中至少有一个是 的条件.2.由三角形全等的条件可知,对于两个直角三角形,满足一边和一锐角对应相等,可以根据 判定它们全等;满足两直角边对应相等可以根据 判定它们全等.3.直角三角形可以用符号 表示.图12.2-204.已知Rt △ABC .画Rt △A 'B 'C ',使∠C '=90°,B 'C '=BC ,A 'B '=AB .(保留画图痕迹) 画法:(1)画∠MC′N =90°; (2)在射线C′M 上取B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′; (4)连结A′B′.问题思考1.观察所画△ABC 与△A 'B 'C ',它们全等吗?你是怎样验证的?2.由上可以得到的判定两个直角三角形全等的方法是什么?3.怎样利用HL 进行证明?你会用几何语言表示吗? 证明:∵ ∠C =∠ C′=90°,∴△ABC 和△A′B′C′都是直角三角形 在Rt △ABC 和Rt △A′B′C′中 AB = (已知)= B′C′(已知) ∴ △ABC ≌△A′B′C′( )4.你能够用几种方法判定两个直角三角形全等?5.斜边、直角边判定与前面几个判定方法的不同之处是什么?6.阅读课本第14页例4.写出下面题目规范的证明过程.CBA如图12.2-21,AC ⊥BC ,BD ⊥CB ,AB =DC . 求证:∠ABD =∠ACD .当堂检测1.如图12.2-22,BD ⊥AC 于D,CE ⊥AB 于E,BE=CD,则△BEC ≌△CBD 的理由是 .2.如图12.2-23,AC ⊥BD 于点O ,AO =CO ,添加一个条件使△ABO ≌△CDO ,你添加的条件是 .3.如图12.2-24,已知AB =AC ,AD ⊥BC 于D , 且△ABC 的周长是50cm ,△ABD 的周长是40cm ,则AD = .4.如图12.2-25,AB =CD ,DE ⊥AC ,BF ⊥AC ,E 、F 是垂足,DE =BF . 求证:(1)AE =CF . (2)AB ∥CD .巩固拓展1.如图12.2-26,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD . 求证:BE ⊥AC .FEDCBA图12.2-25图12.2-21A BCDDCBAOD CBAEDCBA图12.2-22 图12.2-23 图12.2-24图12.2-26F EDCBA图12.2-262.如图12.2-27,△ABC 中,AB =AC . (1)求证:∠B =∠C .(2)你用了几种方法证明?这些方法的基本思路是什么?(3)在证明的过程中你发现了等腰三角形有哪些性质?用简练的语言叙述出来.12.2.5三角形全等习题课问题思考1.如图12.2-28, 90=ACB 中,∠ABC 在△,AC =BC ,BE ⊥CE 于点E .AD ⊥CE 于点D . 求证:△BEC ≌△CDA .图12.2-28图12.2-27CAB图12.2-272.如图12.2-29所示,在△ADF 和△BCE 中,B =A ∠ ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①BC =AD ;②CF =DE ;③AF ∥BE .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写 出命题书写形式,如如果①、②,那么③)(2)选择(1)中你写出的一个命题,说明它正确的理由.3.如图12.2-30,已知AC=BC,EC=CD,BC ⊥AD 于C ,A 、C 、D 三点在同一直线上,连接BD ,AE ,并延长AE 交BD 于F . (1)求证:△ACE ≌△BCD ;(2)请说出AE 与BD 的关系,并证明你的结论.巩固拓展1.如图12.2-31,已知在四边形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F,交BC 于点G ,交AB 的延长线于点E ,且AE =AC . 求证:BG =FG .图12.2-29图图12.2-30 图12.2-31G FEB C DA图12.2-312.如图12.2-32,已知AD∥BC,EA,EB分别平分∠DAB,∠CBA,点E在DC上.求证:AD+BC=AB.12.3.1角的平分线的性质第一课时素读检测1.从一个角的顶点出发,把这个角分成的两个角的,叫做这个角的平分线.2.直线一点到这条直线的,叫做点到直线的距离.3.角的平分线性质: .4.证明一个几何命题的步骤:(1)明确命题中的和 .(2)根据题意,,并用表示和 . (3)经过分析,找出由推出要证的的途径,写出 .3.如图12.3-1是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE 就是角的平分线.你能说明它的道理吗?图12.2-32E CAB D图12.2-32图12.3-1问题思考1.如图12.3-2用直尺和圆规作出∠AOB 的平分线OC .2.射线OC 为什么是∠AOB 的平分线?3.在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D ,E ,测量PD ,PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上的测量,你发现了角的平分线的什么性质?4.用所学的知识证明你猜想的角的平分线的性质.梳理深化:1.角的平分线的画法的依据是 .2.角平分线的性质的应用:①证明两条 相等(比运用全等证明两条 相等更简捷); ②为证明三角形全等准备条件. 3.运用时要注意: ①点要在角的平分线上;②点到角两边的距离是指这点到角两边的 的长度.③解决有关角的平分线的问题时常做的辅助线是过角平分线上的点做角两边的垂线段.当堂检测1.如图12.3-3,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E , DE =3cm ,BC =7cm ,则BD 的长为 .2.如图12.3-1,BE 是∠ABC 的平分线,DE ⊥AB 于D ,S △ABC =90cm 2, AB =18cm ,BC =12cm ,则DE = .ED CBA图 12.3-3EDCBA图12.3-4 AOB 图12.3-23.如图12.3-5,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:BE=CF。

第十二章第1节《全等三角形》课件(26张ppt)

第十二章第1节《全等三角形》课件(26张ppt)
同一张底片洗出的照片是 能够完全重合的
观察 (1)
(2)
(3)
思 考
每组的两个图形有什么特点?
能够重合,大小相同,形状相同
能够完全重合的两个图形叫做全等形: 思考
如果两个图形全等,它们的形状大小一定都相同吗?
全等图形的特征: 全等图形的形状和大小都相同
及时反馈
观察下面两组图形,它们是不是全等图形?
例2:如图△ABC≌ △ADE
若∠D= ∠B,
∠C= ∠AED,则
D
∠DAE= ∠BAC ;
∠DAB= ∠CAE 。
B
A
E
C
例 3: 如图已知△ AOC ≌ △BOD 求证:AC∥BD
证明:∵ △ AOC ≌ △BOD
∴∠A=∠B(全等三角 形对应角相等) ∴AC∥BD(内错角相等,两直线平行)
1、大边对应大边,大角对应大角;
2、公共边是对应边,公共角是对应角;
3、对应边所对的角是对应角,对应角 所对的边是对应边; 4、根据书写规范,按照对应顶点找对应 边或对应角;
A
D
B
C
E
F
全等三角形的性质:全等三角形对应边相等;
全等三角形对应角相等;
如图:∵ △ABC≌△DEF ∴A B=D E,A C=D F,B C=EF(全等三角形对应边相等)
谢谢观赏
You made my day!
我们,还在路上……
• 小结提高
1、回忆这节课,学习了全等三角形的哪些知识? 全等三角形的概念、性质、表示方法、对应写法等
2、找全等三角形对应边、对应角的方法 1、大边对应大边,大角对应大角 2、公共边是对应边,公共角是对应角 3、对应边所对的角是对应角,对应角 所对的边是对应边

最新人教版数学八年级上册第十二章-全等三角形(含答案)

最新人教版数学八年级上册第十二章-全等三角形(含答案)

第十二章 --全等三角形一、基本概念1.全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;(3)能够完全重合的三角形叫做全等三角形2.全等三角形的表示两个三角形全等用“≌”符号表示;例如:△ABC与△DEF全等,那么我们可以表示为:△ABC≌△DEF。

3.全等三角形的基本性质(1)全等三角形对应边相等;(2)全等三角形对应角相等4.全等三角形的判定方法(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)例:在如图所示的三角形中,AB=AC,AD是△ABC的中线,求证△ABD≌△ACD.AB D C(2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)例:如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C不经过池塘可以直接到达点A和B。

连接AC并延长到点D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离。

为什么?(3)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C。

求证AD=AE.AD EB C(4)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).例:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证△ABC≌△DEF(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)例:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.5.角平分线的性质及判定性质:角平分线上的点到角两边的距离相等判定:到一个角的两边距离相等的点在这个角的平分线上。

二、灵活运用定理1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找相等的可能性。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)三、常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等(2)利用判定公理来证明两个三角形全等练习题1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.33.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 4.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+25.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB 的依据是()A.SSS B.SAS C.ASA D.AAS 7.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(2015•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45°B.∠BAC=90°C.BD=AC D.AB=AC 9.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对10.(2015春•泰山区期末)如图,△A BC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2015春•沙坪坝区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是.13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.20.如图,在△A BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三.解答题(共7小题)21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB 延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系请证明你的结论.23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.24.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少请说明理由.练习题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.C 6.A 7.D 8.D 9.B 10.C 二.填空题(共10小题)11.4 12.70°13.30 14.30°15.AB=CD 16.AC=DE 17.60 18.90 19. 20.4三.解答题(共7小题)21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+E B=AF+2EB.25.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.。

人教版数学《第十二章全等三角形》知识点梳理及同步训练

人教版数学《第十二章全等三角形》知识点梳理及同步训练

人教版数学《第十二章全等三角形》知识点梳理及同步训练知识梳理一.全等三角形概念1.全等形的概念:能够完全重合的两个图形叫做全等形.2.全等形的性质:(1)形状相同.(2)大小相等.3.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.4.全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,和全等,记作.通常对应顶点字母写在对应位置上.二.全等三角形的性质:1.全等三角形的对应边相等;全等三角形的对应角相等.2.全等三角形的周长、面积相等.三.全等的变换1.全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.2.全等三角形基本图形翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素四.两个三角形全等的条件1.全等三角形的判定1——边边边公理三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架).2.全等三角形的判定2——边角边公理两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.3.全等三角形的判定3——角边角公理两角和它们的夹边对应相等的两个三角形全等.简写为“角边角”或“ASA”.4.全等三角形的判定4——角角边推论两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”.5.直角三角形全等的判定——斜边直角边公理斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边直角边”或“HL”.判定直角三角形全等的方法:①一般三角形全等的判定方法都适用;②斜边-直角边公理五.判定三角形全等方法的选择:1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

八年级数学上册第十二章全等三角形考点大全笔记(带答案)

八年级数学上册第十二章全等三角形考点大全笔记(带答案)

八年级数学上册第十二章全等三角形考点大全笔记单选题1、判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等答案:D分析:根据直角三角形全等的判定条件逐一判断即可.解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.小提示:本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.2、如图所示,在平面直角坐标系中,等腰Rt△ABC的直角顶点C在x轴上,点A在y轴上,若点B坐标为(6,1),则点A坐标为()A.(4,0)B.(5,0)C.(0,4)D.(0,5)答案:D分析:作BD⊥x轴于点D,由等腰Rt△ABC可得AC=BC,进一步可证明Rt△AOC≌Rt△CDB,得到CO=BD=1,AO=CD=OD-OC=5,即可得到点A的坐标.解:如图,作BD ⊥x 轴于点D ,’∴∠BDC =90°,∴∠BCD +∠CBD =90°,∵点B 坐标为(6,1),∴ OD =6,BD =1,∵△ABC 为等腰直角三角形,∴ ∠ACB =90°,AC=BC ,∴ ∠ACO +∠BCD =90°∴ ∠ACO=∠CBD在Rt △AOC 和Rt △CDB 中,∵{∠ACO =∠CBD ∠ACO =∠CBD AC =BC,∴ Rt △AOC ≌Rt △CDB (AAS ),∴ CO=BD =1,AO=CD ,∴AO=CD=OD-OC =5,∵点A 在y 轴上,∴点A 坐标为(0,5),故答案选:D .小提示:本题考查了利用几何图形的性质求点的坐标的问题,综合性稍强,灵活运用所学知识是关键.3、数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是()A.边角边B.三角形中位线定理C.边边边D.全等三角形的对应角相等答案:A分析:根据O是AD与BC的中点,得到OA=OD,OB=OC,根据∠AOB=∠DOC,推出△AOB≌△DOC,是SAS.∵O是AD与BC的中点,∴OA=OD,OB=OC,∵∠AOB=∠DOC,∴△AOB≌△DOC(SAS).故选A.小提示:本题考查了测量原理,解决此类问题的关键是根据测量方法和工具推导测量原理.4、下列选项可用SAS证明△ABC≅△A′B′C′的是()A.AB=A′B′,△B=△B′,AC=A′C′B.AB=A′B′,BC=B′C′,△A=△A′C.AC=A′C′,BC=B′C′,△C=△C′D.AC=A′C′,BC=B′C′,△B=△B′答案:C分析:根据全等三角形SAS的判定逐项判定即可.解:A.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;B.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;C.满足SAS,能证明△ABC△△A′B′C′,故该选项符合题意;D.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意,故选:C.小提示:本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.5、如图,Rt△ABC中,∠ACB=90°,∠B=50°,D,F分别是BC,AC上的点,DE⊥AB,垂足为E,CF=BE,DF =DB,则∠ADE的度数为()A.40°B.50°C.70°D.71°答案:C分析:先利用三角形内角和算出∠CAB,再证明△CDF△△EDB得到CD=DE;再证明△ACD△△AED,得到∠CAD=∠EAD,即可算出根据题意:在Rt△ABC中∠CAB=90°−∠B=40°在Rt△CDF和Rt△EDB中{FC=BEDF=DB∴Rt△CDF△Rt△EDB(HL)∴CD=DE在Rt△ACD和Rt△AED中{CD=DEAD=AD∴Rt△ACD△Rt△AED(HL)∴∠CAD=∠EAD=1∠CAB=20°2在Rt△ADE中∴∠ADE=90°−∠EAD=70°故选:C.小提示:本题主要考查了全等三角形的判定及性质,注意HL这个判定方法的使用.6、如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是()A.6B.7C.8D.9答案:A分析:在AC上取AE=AB=5,然后证明△AEP-ABP,根据全等三角形对应边相等得到PE=PB=3,再根据三角形的任意两边之差小于第三边即可求解.解:在AC上截取AE=AB=5,连接PE,∵AC=9,∴CE=AC-AE=9-5=4,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,{AE=AB∠CAP=∠BADAP=AP,∴△APE≌△APB(SAS),∴PE=PB=3,∵4-3<PC<4+3,解得1<PC<7,观察四个选项,PC的长可能是6,故选:A.小提示:本题主要考查了全等三角形的判定与性质、三角形的三边关系;通过作辅助线构造全等三角形是解题的关键.7、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,BE=3cm,AD=7cm,则DE的长是()A.3cmB.3.5cmC.4cmD.4.5cm答案:C分析:根据同角的余角相等,得∠CBE=∠ACD,再利用AAS证明△ACD≌△CBE,得CD=BE=3cm,CE=AD=7cm,进而求得DE.解:∵BE⊥CE,AD⊥CE∴∠BEC =90°,∠ADC =90°∴∠CBE +∠BCE =90°,∵∠ACB =90°∴∠ACD +∠BCE =90°,∴∠CBE =∠ACD ,在△ACD 与△CBE 中,{∠CBE =∠ACD∠BEC =∠ADC AC =BC∴△ACD ≌△CBE (AAS ),∴CD =BE =3cm ,CE =AD =7cm ,∴DE =CE ﹣CD =7﹣3=4cm ,故选:C .小提示:本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,本题证明△ACD ≌△CBE 是关键.8、如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C ′=24°,则∠B =( )A .60°B .100°C .120°D .135°答案:C分析:由全等三角形的性质,先求出∠C =∠C ′=24°,即可求出∠B 的度数.解:∵△ABC ≌△A ′B ′C ′,∴∠C =∠C ′=24°,∵∠A =36°,∴∠B =180°−36°−24°=120°;故选:C.小提示:本题考查了三角形的内角和定理,全等三角形的性质,解题的关键是掌握所学的知识,正确得到∠C=24°.9、如图,若△ABC△△ADE则下列结论中不成立...的是()A.∠BAD=∠CAEB.∠BAD=∠CDEC.DA平分∠BDED.AC=DE答案:D分析:根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.小提示:本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.10、下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.填空题11、如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以每秒2cm的速度从点A出发向C运动,到点C停止运动,点Q在射线AM上运动,且PQ=AB,当点P的运动时间为_________秒时,△ABC 才能和△PQA全等.答案:2或4##4或2分析:据全等三角形的判定HL定理分AP=BC和AP=AC解答即可.解:设点P的运动时间为t秒,∵∠C=∠CAM=90°,PQ=AB,∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL),∴t=4÷2=2秒;当AP=AC=8cm,时,Rt△PQA≌Rt△ABC(HL),∴t=8÷2=4秒,综上,当点P的运动时间为2或4秒时,△ABC才能和△PQA全等.所以答案是:2或4.小提示:本题考查全等三角形的判定,熟练掌握证明直角三角形全等的HL定理,利用分类讨论思想是解答的关键.12、已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为大于12__________.答案:15°或45°分析:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于12MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,即可求解.解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于12MN的长度为半径作弧,两弧在∠AOB内交于点P,得到O P为∠AOB的平分线,再以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,所以∠BOC=15°或45°.所以答案是:15°或45°.小提示:本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作∠POC=15°的两种情况,避免遗漏.13、如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E,S四边形ABCD=10,则BE的长为__________答案:√10分析:过点B作BF⊥CD交DC的延长线交于点F,证明△AEB≌△CFB(AAS)推出BE=BF,S△ABE=S△BFC,可得S四边形ABCD =S正方形BEDF=12,由此即可解决问题;解:过点B作BF⊥CD交DC的延长线交于点F,如右图所示,∵BF⊥CD,BE⊥AD∴∠BFC=∠BEA=90∘∵∠ABC=∠ADC=90∘∴∠ABE+∠EBC=90∘,∠EBC+∠CBF=90∘∴∠ABE=∠CBF∵AB=CB∴△AEB≌△CFB(AAS)∴BE=BF,S△ABE=S△BFC∴S四边形ABCD =S正方形BEDF=10,∴BE×BF=10,即BE2=10,∴BE=√10,故答案为√10.小提示:本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.14、如图,在△ABC中,已知AD是△ABC的角平分线,作DE⊥AB,已知AB=4,AC=2,△ABD的面积是2,则△ADC的面积为___.答案:1分析:先根据三角形面积公式计算出DE= 1,再根据角平分线的性质得到点D到AB和AC的距离相等,然后利用三角形的面积公式计算△ADC的面积.∵DE⊥AB,× DE × AB= 2,∴S△ABD=12=1,∴DE=2×24∵AD是△ABC的角平分线,∴点D到AB和AC的距离相等,∴点D到AC的距离为1,×2×1= 1.∴S△ADC=12所以答案是:1.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,属于基础题,熟练掌握角平分线的性质是解题的关键.15、如图,BE交AC于点M,交CF于点D,AB交CF于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出的下列五个结论中正确结论的序号为.①∠1=∠2;②BE=CF;③△CAN≅△BAM;④CD=DN;⑤△AFN≌△AEM.答案:①;②;③;⑤分析:①先证明△ABE≌△ACF,然后根据全等三角形的性质即可判定;②利用全等三角形的性质即可判定;③根据ASA即可证明三角形全等;④无法证明该结论;⑤根据ASA证明三角形全等即可.解:在△ABE和△ACF中,{∠E =∠F =90°∠B =∠C AE =AF,∴△ABE ≌△ACF (AAS ),∴∠BAE =∠CAF ,BE =CF ,故②正确,∴∠BAE -∠BAC =∠CAF -∠BAC ,即∠1=∠2,故①正确,∵△ABE ≌△ACF ,∴AB =AC ,在△CAN 和△BAM 中,{∠N AC =∠M AB ,AB=AC∠B =∠C, ∴△CAN ≌△BAM (ASA ),故③正确,CD =DN 不能证明成立,故④错误在△AFN 和△AEM 中{∠1=∠2AF =AE ∠F =∠E,∴△AFN ≌△AEM (ASA ),故⑤正确.结论中正确结论的序号为①;②;③;⑤.故答案为①;②;③;⑤.小提示:本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件. 解答题16、如图所示,A ,C ,E 三点在同一直线上,且△ABC △△DAE .(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC△DE?请说明理由.答案:(1)见解析(2)当△ABC满足∠ACB为直角时,BC△DE.分析:(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.(1)证明:∵△ABC△△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC△DE,∴∠BCE=∠E,又∵△ABC△△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC△DE.小提示:本题考查了全等三角形的性质和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.17、如图,△ABC是格点三角形(顶点在网格线的交点上),请在下列每个方格纸上按要求画一个与△ABC 全等的格点三角形.(1)在图①中所画三角形与△ABC有一条公共边AB;(2)在图②中所画三角形与△ABC有一个公共角C;(3)在图③中所画三角形与△ABC有且只有一个公共顶点A.答案:(1)见解析(2)见解析(3)见解析分析:(1)根据题意以及网格的特点根据轴对称画出图形即可;(2)根据题意以及网格的特点根据轴对称画出图形即可;(3)根据题意以及网格的特点画出图形即可.(1)如图①所示,△ABD即为所求;(2)如图②所示,△DEC即为所求;(3)如图③所示,△AED即为所求,小提示:本题考查了作图-应用与设计作图、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.18、如图,小明和小华住在同一个小区不同单元楼,他们想要测量小明家所在单元楼AB的高度,首先他们在两栋单元楼之间选定一点E,然后小华在自己家阳台C处测得E处的俯角为∠1,小明站在E处测得楼顶A的仰角为∠2,发现∠1与∠2互余,过点F作FG⊥AB于点G,已知BG=1米,BE=CD=20米,BD=58米,点B、E、D在一条直线上,AB⊥BD,FE⊥BD,CD⊥BD,试求单元楼AB的高.(注:BE=FG,BG=EF,∠1与∠3互余).答案:39米分析:根据题意得出∠2=∠3,∠AGF=∠EDC=90°,FG=CD,然后利用全等三角形的判定和性质求解即可.解:由图可得∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3,∵FG⊥AB,CD⊥BD,∴∠AGF=∠EDC=90°,∵BE=CD,FG=BE,∴FG=CD,在△AFG与△ECD中,{∠AGF =∠EDCFG =CD ∠2=∠3∴△AFG ≌△ECD(ASA),∴AG =DE =BD −BE =38(米),∴AB =AG +BG =38+1=39(米),答:单元楼AB 的高为39米.小提示:题目主要考查全等三角形的判定和性质,理解题意,熟练掌握运用全等三角形的判定和性质是解题关键.。

第十二章 全等三角形知识点详解

第十二章  全等三角形知识点详解

第十二章 全等三角形
12.1 全等三角形
1.全等形:能够完全重合的两个图形叫做全等形。

2.全等三角形:能够完全重合的两个三角形叫做全等三角形。

3.全等三角形的对应顶点、对应边、对应角:
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

4.全等三角形的性质:(1)全等三角形的对应边相等;
(2)全等三角形的对应角相等。

5.全等用≅表示,读作“全等于”
6.ABC ∆和DEF ∆全等,记作ABC DEF ∆≅∆,读作ABC ∆全等于DEF ∆
12.2 全等三角形的判定
1.全等三角形的判定:
(1)三边分别相等的两个三角形全等; (简写成“边边边”或“SSS ”)
(2)两边和它们的夹角分别相等的两个三角形全等; (简写成“边角边”或“SAS ”)
(3)两角和它们的夹边分别相等的两个三角形全等; (简写成“角边角”或“ASA ”)
(4)两角和其中一个角的对边分别相等的两个三角形全等;(简写成“角角边”或“AAS ”)
(5)斜边和一条直角边分别相等的两个直角三角形全等;
(简写成“斜边、直角边”或”“ HL ”)
12.3 角的平分线的性质
1.角的平分线的性质:角的平分线上的点到角的两边的距离相等。

2.证明一个几何命题的步骤:
(1)明确已知和求证:
(2)画图,并用数学符号表示已知和求证;
(3)证明。

3.角的平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。

八年级数学上册第十二章全等三角形知识点汇总(带答案)

八年级数学上册第十二章全等三角形知识点汇总(带答案)

八年级数学上册第十二章全等三角形知识点汇总单选题1、如图,已知点A、D、C、F在同一条直线上,∠B=∠E =90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF答案:D分析:根据题目给的条件可知道直角边和直角,因为需用“HL”的方法判定Rt△ABC≌Rt△DEF,故只能添上斜边这一条件,即可解答.解:∵∠B=∠E=90°,AB=DE,∴添加条件AC=DF,根据“HL”即可判定Rt△ABC≌Rt△DEF;或添加条件AD=CF,也可得出AC=DF,根据“HL”即可判定Rt△ABC≌Rt△DEF,故D正确.故选:D.小提示:本题主要考查了利用“HL”判定三角形全等,掌握三角形全等的判定是解题的关键.2、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,{CE=BDBC=CB,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.3、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、为了测量工件的内径,设计了如图所示的工具,点O为卡钳两柄的交点,且有OA=OB=OC=OD,只要量得CD之间的距离,就可知工件的内径AB.其数学原理是利用△AOB≌△COD,判断的依据是()A.SSSB.SASC.ASAD.AAS答案:B分析:利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等解答.解:在△ABO和△CDO中{OA=OC ∠AOB=COD OB=OD∴△ABO≌△CDO(SAS)故选B小提示:本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5、观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C .D .答案:C 分析:根据角平分线画法逐一进行判断即可.A :所作线段为AB 边上的高,选项错误;B :做图痕迹为AB 边上的中垂线,CD 为AB 边上的中线,选项错误;C :CD 为∠ACB 的角平分线,满足题意。

人教版八年级上册第十二章全等基础模型课件

人教版八年级上册第十二章全等基础模型课件

谢谢
模型解读
类型四: 三垂直型 模型解读:常用三个垂直作条件进行角度等量代换,即同(等) 角的余角相等,相等的角就是对应角,证三角形全等时必须还有 一组边相等.
基本模型: (1)一线三垂直型:
(2)三个直角不在同一直线上:
已知:AB⊥BC, DC⊥BC, AE⊥BD, AB=BC,
结论:△ABE≌△BCD, CE=AB-CD
基本模型: (1)共顶点:
(2)不共顶点:
针对训练
4.如图Z12-4-4,在△ABC和△AEF中,点E在BC边上,∠C=∠F, AC=AF,∠CAF=∠BAE,EF与AC交于点G.求证:AE=AB.
5.如图Z12-4-5,点C,E,F,B在同一条直线上,CE=BF,AB=DC 且AB∥DC.求证:∠A=∠D.
模型解读
类型二:翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分 能够完全重合,这两个三角形称之为翻折型全等三角形.此类图 形中要注意其隐含条件,即公共边或公共角相等.
基本模型: (1)有公共边:
(2)有公共顶点:
针对训练
2.如图Z12-4-2,已知AC=BC,∠1=∠2,求证:OD平分∠AOB.
3.如图Z12-4-3,已知AB=AC,BE⊥AC于点E,CD⊥AB于点D.求证 :AD=AE.
模型解读
类型三:旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角 形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转 型三角形时,注意涉及对顶角相等或者等角加(减)公共角的条件 .
已知:AB⊥BC, CD⊥BD, AE⊥BD, AB=BC,
结论:△ABE≌△BCD, DE=AE-CD
针对训练
6.如图Z12-4-6,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB ,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点 F.若EF=5 cm,求AE的长.

第十二章 全等三角形

第十二章 全等三角形

续表
核心内容
角的平分 线的性质
角的平分线的性质:角的平分线上的点到角的两边的距 离相等. 几何语言:如图①,∵点P是∠AOB的 平分线上的一点,PD⊥OA, PE⊥OB,∴PD=PE.
角的平分线的判定:(1)定义法;(2)角的内部到角两边 距离相等的点在这个角的平分线上. 几何语言:如图②, ∵PD=PE,PD⊥OA,PE⊥OB, ∴点P在∠AOB的平分线上.
续表
核心内容
角的平分 线的性质
尺规作图
三角形三个内角的平分线交于一点,这一点到三角形三 边的距离相等;三角形内到三边距离相等的点是三条内 角平分线的交点. 作一个角等于已知角
作一个角的平分线
HL——斜边与直角边对应相等的两个直角三角形全等.
续表
核心内容
三角形全 等的判定
三角形全等的5种判定方法中,选用哪一种方法,取决于 题目中的已知条件,若已知两边对应相等,则找它们的 夹角或第三边;若已知两角对应相等,则必须再找一组 对应边;若已知一边一角对应相等,则找另一组角,或找 这个角的另一组对应邻边.
数学● 八年级 ●全一册● 配人教版
第一部分 新 课 内 容
第十二章 全等三角形
本章知识结构图
核心内容
全等三角形:能够完全重合的两个三角形叫做全等三角 形.“全等”用符号“≌”表示.注意:在记两个三角形 全等时,通常把对应顶点写在对应全等三角形重合到 一起,重合的顶点叫做对应顶点;重合的边叫做对应边; 重合的角叫做对应角.
续表
核心内容
全等三角 三角形的三边关系:三角形两边的和大于第三边,两边的 形的性质 差小于第三边.
SSS——三条边分别对应相等的两个三角形全等.
SAS——两边及其夹角分别对应相等的两个三角形全等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟) 总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图) 3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO =DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△OCA≌△OBD,若OC=3 cm,BD=4 cm,OD=6 cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB与DB,AC与DC,BC 与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC 沿BC所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB与AE,AC与AD,BC 与ED是对应边,∠BAC与∠EAD,∠B与∠E,∠C与∠D是对应角,△AED是△ABC 绕点A旋转180°得到的.探究2如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC =EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D+∠F=90°,∴∠A +∠ACB=90°,∴∠B=90°,∴AB⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△ABC≌△CDA,求证:AB∥CD.证明:∵△ABC≌△CDA,∴∠BAC=∠DCA,∴AB∥CD.2.如图,△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.解:对应边有AB与AC,AE与AD,BE与CD,对应角有∠BAE=∠CAD.(3分钟)找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(1)1.掌握三角形全等的判定(SSS),掌握简单的证明格式.2.初步体会尺规作图.重、难点:掌握三角形全等的判定(SSS).一、自学指导自学1:自学课本P35-36页“探究1,探究2及例1”,掌握三角形全等的判定条件SSS,并掌握简单的证明格式,了解三角形的稳定性,完成填空.(7分钟) 画△ABC:①使AB=3 cm;②使AB=3 cm,BC=4 cm;③使AB=3 cm,BC=4 cm,AC=5 cm;④使∠A=30°;⑤使∠A=30°,∠B=50°;⑥使∠A=30°,∠B=50°,∠C=100°.每画完一个,与同桌画的三角形对比一下,形状与大小是一样的吗?总结归纳:(1)已知三角形的一个或两个元素,三角形的形状和大小不能确定,三个角相等的三角形形状确定,但大小不确定.(2)三边分别相等的两个三角形全等,简写成边边边或SSS.(3)三角形三边的长度确定了,这个三角形的形状、大小也就确定了.自学2:自学课本P36-37页“探究与例题”,利用尺规作图画一个角等于已知角,初步体会尺规作图.(3分钟)点拨精讲:用尺规作图作一个角等于已知角的依据是“三边对应相等的两个三角形全等”,可通过添加辅助线构造全等三角形加以证明.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.在△ABC和△DEF中,若AB=DE,BC=EF,AC=DF,则△ABC≌△DEF.2.若两个三角形全等,则它们的三边对应相等;反之,若两个三角形的三边对应相等,则这两个三角形全等.3.下列命题正确的是(A)A.有一边对应相等的两个等边三角形全等B.有两边对应相等的两个等腰三角形全等C.有一边对应相等的两个等腰三角形全等D.有一边对应相等的两个直角三角形全等4.已知AB=3,BC=4,AC=6,EF=3,FG=4,要使△ABC≌△EFG,则EG=6.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,AB =AD ,CB =CD ,求证:(1)△ABC ≌△ADC ;(2)∠B =∠D.证明:(1)连接AC ,在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS ). (2)∵△ABC ≌△ADC ,∴∠B =∠D.点拨精讲:在证明过程中善于挖掘如“公共边”这个隐含条件,可以考虑添加辅助线.探究2 如图,△ABC 是一个风筝架,AB =AC ,AD 是连接A 与BC 中点D 的支架,求证:AD ⊥BC.证明:∵点D 的BC 中点,∴BD =CD ,∴在△ABD 与△ACD 中,⎩⎨⎧AB =AC ,BD =CD ,BD =AC ,∴△ABD ≌△ACD(SSS ),∴∠ADB =∠ADC ,∵∠ADB +∠ADC =180°,∴∠ADB =∠ADC =90°,∴AD ⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,AD =BC ,AC =BD ,求证:(1)∠DAB =∠CBA ;(2)∠ACD =∠BDC.证明:(1)在△ABD 与△BAC 中,⎩⎨⎧AB =BA ,AD =BC ,AC =BD ,∴△ABD ≌△BAC(SSS ),∴∠DAB =∠CBA.(2)在△ADC 与△BCD 中,⎩⎨⎧DC =CD ,AD =BC ,AC =BD ,∴△ADC ≌△BCD(SSS ),∴∠ACD =∠BDC. 点拨精讲:三角形全等的判定与性质的应用经常交替使用.(3分钟)本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS,并利用它可以证明简单的三角形全等问题.添加辅助线构造公共边,可以为证明两个三角形全等提供条件,证明两个三角形全等是证明线段相等或角相等的重要方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(2)1.理解和掌握全等三角形判定方法2——“边角边”,理解满足边边角的两个三角形不一定全等.2.能把证明角或线段相等的问题转化为证明它们所在的两个三角形全等.重点:能把证明角或线段相等的问题,转化为证明它们所在的两个三角形全等.难点:理解满足边边角的两个三角形不一定全等.一、自学指导自学1:自学课本P37-38页“探究3及例2”,掌握三角形全等的判定条件SAS,进一步掌握证明的格式,完成填空.(5分钟)任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?总结归纳:两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”).点拨精讲:三角形的两条边的长度和它们的夹角的大小确定了,这个三角形的形状、大小就确定了.自学2:自学课本P39页“思考”,明白有两边和其中一边的对角对应相等的两个三角形不一定全等,并会通过画图举反例.(5分钟)画出一个△ABC,使AB=3,AC=4,∠B=30°(即已知两边和其中一边的对角).小组内展示各自画出来的三角形,它们的形状是一样的吗?点拨精讲:如果给定两个三角形的类型(如两个钝角三角形),两边和其中一边的对角对应相等的这两个三角形全等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是(D)A.∠A=∠DB.∠E=∠CC.∠A=∠C D.∠ABD=∠EBC2.如图,AO=BO,CO=DO,AD与BC交于E,∠O=40°,∠B=25°,则∠BED 的度数是(B)A.60°B.90°C.75°D.85°3.有两边和一个角对应相等的两个三角形不一定全等.(填“一定”或“不一定”)4.如图,AB ,CD 相交于O 点,AO =CO ,OD =OB.求证:∠D =∠B.证明:在△AOD 与△COB 中,⎩⎨⎧AO =CO ,∠AOD =∠COB ,OD =OB ,∴△AOD ≌△COB(SAS ),∴∠D =∠B.点拨精讲:利用SAS 证明全等时,要注意“角”只能是两组相等边的夹角,在书写证明过程时相等的角应写在中间;证明过程中注意隐含条件的挖掘,如“对顶角相等”“公共角”“公共边”等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,AB ∥CD ,AB =CD.求证:AD ∥BC.证明:∵AB ∥CD ,∴∠1=∠2,在△ABD 与△CDB 中,⎩⎨⎧AB =CD ,∠1=∠2,BD =DB ,∴△ABD ≌△CDB(SAS ),∴∠3=∠4,∴AD ∥BC.点拨精讲:可从问题出发,要证线段平行只需角相等即可(∠3=∠4),而证角相等可证角所在的三角形全等.探究2 如图,将两个一大、一小的等腰直角三角尺拼接(A ,B ,D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE ,CD ,试确定AE 与CD 的关系,并证明你的结论.解:结论:AE =CD ,AE ⊥CD.证明:延长AE 交CD 于F ,在△ABE 与△CBD 中,⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS ),∴AE =CD ,∠EAB =∠DCB ,∵∠DCB +∠CDB =90°,∴∠EAB +∠CDB =90°,∴∠AFD =90°,∴AE ⊥CD.点拨精讲:注意挖掘等腰直角三角形中的隐藏条件,线段的关系分数量与位置两种关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE.证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,在△BAC 与△DAE 中⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△BAC ≌△DAE(SAS ),∴BC =DE. (3分钟)1.利用对顶角、公共角、直角用SAS 证明三角形全等.2.用“分析法”寻找命题结论也是一种推理论证的方法,即从结论出发逐步递推到题中条件,常以此作为分析寻求推理论证的途径.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(3)理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”,能运用它们判定两个三角形全等.重、难点:理解和掌握全等三角形判定方法3和判定方法4及应用.一、自学指导自学1:自学课本P39-40页“探究4、例3”,理解和掌握全等三角形判定方法“ASA”,完成填空.(5分钟)总结归纳:两角和它们的夹边分别对应相等的两个三角形全等,简称角边角或ASA.自学2:自学课本P40-41页“例4、思考”,理解和掌握全等三角形判定方法“AAS”,试总结全等三角形判定方法.(5分钟)总结归纳:(1)两个角和其中一个角的对边分别相等的两个三角形全等,简称角角边或AAS.(2)三角形全等的条件至少需要三对相等的元素(其中至少需要一条边相等).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.能确定△ABC≌△DEF的条件是(D)A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是(B)A.甲和乙B.乙和丙C.只有乙D.只有丙3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是(C) A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF点拨精讲:应用AAS证三角形全等时应注意边是对应角的对边.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.证明:∵MQ ⊥PN ,NR ⊥MP ,∴∠PQM =90°,∠HQN =90°,∴∠P +∠PNR =90°,∠QHN +∠PNR =90°,∴∠P =∠QHN.在△PQM 与△HQN 中⎩⎨⎧∠MPQ =∠NHQ ,∠PQM =∠HQN ,MQ =NQ ,∴△PQM ≌△HQN ,∴HN =PM. 点拨精讲:有直角三角形就有互余的角,利用同角(等角)的余角相等是证角相等的常用方法.探究2 求证:三角形一边的两端点到这边的中线或中线延长线的距离相等.如图,AD 为△ABC 的中线,且CF ⊥AD 于点F ,BE ⊥AD ,交AD 的延长线于点E ,求证:BE =CF.证法1:∵AD 为△ABC 的中线,∴BD =CD.∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD=90°.在△BED 与△CFD 中⎩⎨⎧∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED ≌△CFD(AAS ),∴BE =CF. 证法2:∵S △ABD =12AD·BE ,S △ACD =12AD·CF ,且S △ABD =S △ACD (等底同高的两个三角形面积相等),∴12AD·BE =12AD·CF ,∴BE =CF. 点拨精讲:对于文字命题的证明,应先根据题意画出图形,再结合题意,写出已知、求证,最后证明;用“面积法”证线段相等,可使问题简化.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,PM =PN ,∠M =∠N.求证:AM =BN.证明:在△PMB 与△PNA 中⎩⎨⎧∠P =∠P ,PM =PN ,∠M =∠N ,∴△PMB ≌△PNA ,∴PB =PA ,∴PM -PA =PN -PB ,∴AM =BN.(3分钟)已知两个角和一条边对应相等得全等,三个角对应相等不能确定全等.三角形全等的判定和全等三角形的性质常在一起进行综合应用.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(4)1.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”(即“HL”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.重、难点:直角三角形全等判定方法“斜边、直角边”(即“HL”)的应用.一、自学指导自学1:自学课本P41-42页“思考、探究5及例5”,掌握判定直角三角形全等的特殊方法“HL”,完成填空.(7分钟)总结归纳:(1)斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边”或“HL”.(2)两直角边对应相等的两个直角三角形全等,根据是边角边或SAS.(3)一锐角和一直角边或斜边对应相等的两个直角三角形全等,根据是角角边或AAS和角边角或ASA.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,E,B,F,C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF,则Rt△ABC≌Rt△DFE,全等的根据是HL.2.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;(AAS)(2)一个锐角和这个角的邻边对应相等;(×)(3)一个锐角和斜边对应相等;(AAS)(4)两直角边对应相等;(SAS)(5)一条直角边和斜边对应相等.(HL)3.下列说法正确的是(C)A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等点拨精讲:直角三角形除了一般证全等的方法外,“HL”可使证明过程简化,但前提是已知两个直角三角形,即在证明格式上表明“Rt△”.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB =DC ;(2)AD ∥BC.证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°.在Rt △ADB 与Rt △CBD 中,⎩⎨⎧AD =CB ,DB =BD ,∴Rt △ADB ≌Rt △CBD(HL ),∴AB =DC. (2)∵Rt △ADB ≌Rt △CBD ,∴∠ADB =∠CBD ,∴AD ∥BC.探究2 如图,E ,F 分别为线段AC 上的两点,且DE ⊥AC 于点E ,BF ⊥AC 于点F ,若AB =CD ,AE =CF ,BD 交AC 于点M.求证:BM =DM ,ME =MF.证明:∵AE =CF ,∴AE +EF =CF +EF ,∴AF =CE.在Rt △ABF 与Rt △CDE 中⎩⎨⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE(HL ),∴BF =DE.∵DE ⊥AC ,BF ⊥AC ,∴∠DEM =∠BFM =90°.在△BFM 与△DEM 中⎩⎨⎧∠BFM =∠DEM ,∠BMF =∠DME ,BF =DE ,∴△BFM ≌△DEM(AAS ),∴BM =DM ,ME =MF.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)如图,AE =DF ,∠A =∠D ,欲证△ACE ≌△DBF ,需要添加什么条件?证明全等的理由是什么?解:①若AC =DB ,则根据SAS ,可以判定△ACE ≌△DBF ;②若∠1=∠2,则根据AAS ,可以判定△ACE ≌△DBF ;③若∠E =∠F ,则根据ASA ,可以判定△ACE ≌△DBF.(3分钟)1.“HL ”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形,但两个直角三角形全等的判定,也可以用前面的各种方法.2.证明两个三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,HL ,注意SSA 和AAA 条件不能判定两个三角形全等.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.3角的平分线的性质掌握角平分线的性质及画法.重、难点:掌握角平分线的性质及画法.一、自学指导自学1:自学课本P48-49页“思考1、思考2”,掌握并理解三角形的三条角平分线的性质,掌握角平分线的画法和文字命题的证明方法,完成填空.(5分钟) 总结归纳:①角的平分线上的点到角的两边的距离相等.②文字命题的证明方法:a.明确命题中的已知和求证;b.根据题意,画出图形,并用数学符号表示已知和求证;c.经过分析,找出由已知推出要证的结论的途径,写出证明过程.自学2:自学课本P49-50页“思考3与例题”,掌握角平分线的判定.(5分钟)总结归纳:(1)角的内部到角的两边的距离相等的点在角的平分线上.(2)三角形三条角平分线的交点到三边的距离相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P50页练习题1,2.2.如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5 cm,则BC的长多少?解:过点D作DE⊥AB于点E,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE =5 cm,∵BD=2CD,∴BD=10 cm.点拨精讲:角平分线的性质是证明线段相等的另一途径.3.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么它到角两边的距离相等;(2)如果角的内部某点到角两边的距离相等,那么这个点在角的平分线上;(3)综上所述,角的平分线是到角两边距离相等的所有点的集合.4.三角形内,到三边距离相等的点是三个内角平分线的交点.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)有几处可选择?(2)你能画出塔台的位置吗?解:(1)有4处可选择;(2)略.点拨精讲:在三条直线围成三角形的内部有1个点,外部有3个点.探究2 如图,OD 平分∠POQ ,DA ⊥OP 于A ,DB ⊥OQ 于B ,点C 在OD 上,CM ⊥AD 于M ,CN ⊥BD 于N.求证:CM =CN.证明:∵OD 平分∠POQ ,DA ⊥OP ,DB ⊥OQ ,∴OA =OB.在Rt △OAD 与Rt △OBD 中⎩⎨⎧OD =OD ,DA =DB ,∴Rt △OAD ≌Rt △OBD(HL ),∴∠ADO =∠BDO ,又∵CM ⊥AD ,CN ⊥BD ,∴CM =CN.点拨精讲:角平分线的性质与判定通常是交叉使用,在这里先要证OD 平分∠ADB.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)如图,在△ABC 中,AD 是△ABC 的角平分线,E ,F 分别是AB ,AC 上一点,并且有∠EDF +∠EAF =180°.试判断DE 和DF 的大小关系并说明理由.解:结论:DE =DF.证明:过点D 作DG ⊥AB 于点G ,作DH ⊥AC 于点C ,∵AD 是△ABC 的角平分线,∴DG =DH.∵∠DGA =∠DHA =90°,∴∠GDH +∠BAC =180°,∵∠EDF +∠EAF =180°,∴∠GDH =∠EDF ,∴∠GDH -∠EDH =∠EDF -∠EDH ,∴∠GDE =∠FDH.在△DGE 与△DHF 中,⎩⎨⎧∠DGE =∠DHF =90°,DG =DH ,∠GDE =∠HDF ,∴△DGE ≌△DHF(ASA ),∴DE =DF. 点拨精讲:在已知角的平分线的前提下,作两边的垂线段是常用辅助线之一. (3分钟)在已知角平分线的条件下,也可想到翻折构造全等的方法.角平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,作角的平分线或过角的平分线上一点作角两边的垂线段是常用的辅助线.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)。

相关文档
最新文档