2020届初三数学一模参考答案
最新2020届初三中考数学一模联考真题试题含参考答案 (9)

x
x
− +
2 1− m0
2
x
有解,则
m
的取值范围是-m>1,即
m<-1
故选:D
【小结】
本题考查不等式组解集的表示方法,也可以画数轴出来再求解,比较简单.
8.B
解析:B 【解析】
【点拨】
根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长
的比等于相似比解答即可.
【详解】
解:∵将一个三角形放大为与它相似的三角形,如果周长扩大为原来的 3 倍, ∴相似比为 1:3, ∴面积的比为:1:9, 即:面积扩大为原来的 9 倍, 故选:B. 【小结】
11.如图,在矩形 ABCD 中,对角线 AC,BD 交于点 O,过点 A 作 EA⊥CA 交
DB 的延长线于点 E,若 AB=3,BC=4,则 AC 的值为___________________. AE
12.如图,⊙O 的直径 CD 垂直于 AB,∠AOC=48°,则∠BDC=
度.
13.如图,在矩形 ABCD 中,AB=3,BC=4,动点 M,N 分别从 A,C 同时向 B,D 匀速移动,且两点的运动速度相同,当动点 M 到达 B 点时,M,N 同时停 止运动,过点 N 作 NP⊥CD,交 BD 于 P 点,当△BMP 为等腰三角形时,AM= _____.
2 故选 A.
考点:(1)切线的性质;(2)等腰三角形的性质;(3)三角形外角的性质; (4)特殊角的三角函数值. 2.A 解析:A
【解析】 【点拨】 先分析题意,把各个时间段内 y 与 x 之间的关系分析清楚,本题是分段函数, 分为三段. 【详解】 根据题意可知火车进入隧道的时间 x 与火车在隧道内的长度 y 之间的关系具体 可描述为:当火车开始进入时 y 逐渐变大,火车完全进入后一段时间内 y 不 变,当火车开始出来时 y 逐渐变小,故反映到图象上应选:A. 故选:A. 【小结】 考查函数的图象,把各个时间段内 y 与 x 之间的关系分析清楚是解题的关键. 3.D 解析:D 【解析】 解:由函数图象,得:甲的速度为 12÷3=4 米/秒,乙的速度为 400÷80=5 米/ 秒,故 A 错误; 设乙离开起点 x 秒后,甲、乙两人第一次相遇,根据题意得: 5x=12+4x, 解得:x=12, ∴离开起点后,甲、乙两人第一次相遇时,距离起点为:12×5=60(米), 故 B 错误; 甲从起点到终点共用时为:400÷4=100(秒),
北京市西城区2020年初三一模数学试卷(含答案)

西城区2020年初三一模数学试卷2020.5第1-8题均有四个选项,符合题意的选项只有一个.1.北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为 (A)45×106(B)4.5×107(C)4.5×108(D)0.45×1082.右图是某个几何体的三视图,该几何体是(A)圆锥 (B)圆柱 (C)长方体(D)正三棱柱3.下面的图形中,既是轴对称图形又是中心对称图形的是4.在数轴上,点A,B 表示的数互为相反数,若点A 在点B 的左侧,且AB =2√2,则点A 点B 表示的数分别是(A)−√2,√2 (B)√2,−√2 (C)0,2√2(D)−2√2,2√25.如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,若∠CAB =65°,则∠ADC 的度数为(A)65°(B)35°(C)32.5°(D)25°6. 甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x̅甲,x̅乙,射击成绩的方差依次记为S 甲2,S 乙2,则下列关系中完全正确的是(A )x̅甲=x̅乙, S 甲2>S 乙2 (B )x̅甲=x̅乙, S 甲2<S 乙2(C )x̅甲>x̅乙, S 甲2>S 乙2(D )x̅甲<x̅乙, S 甲2<S 乙27.如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度,阳光下他测得长1.0m 的竹竿落在地面上的影长为0.9m .在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD 为2.7m ,落在墙面上的影长CD 为1.0m ,则这棵树的高度是(A)6.0m (B)5.0m (C)4.0m(D)3.0m8.设m 是非零实数,给出下列四个命题:①若−1<m <0,则1m <m <m 2②m >1,则1m<m 2<m③m <1m<m 2,则m <0④m 2<m <1m,则0<m <1其中命题成立的序号是 (A )①③(B )①④(C )②③(D )③④二、填空题(本题共16分,每小题2分)9. 若√x −1在实数范围内有意义,则实数x 的取值范围是10.若多边形的内角和市外角和的2倍,则该多边形是边形11.已知y 是以x 为自变量的二次函数,且当x =0,时,y 的最小值为−1,写出一个满足上述条件的二次函数表达式12.如果a 2+a =1,那么代数式1a −a−1a 2−1的值是13. 如图,在正方形ABCD ,BE 评分∠CBD ,EF ⊥BD 于点F ,若DE =√2,则BC 的长为14. 如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC于点D,则AC的长为,BD的长为15.如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人:④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为3/10三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:(12)−1+(1−√3)0+|−√3|−2sin60°18.解不等式组:{3(x−2)<2x−2, 2x+54<x19.关于x的一元二次方程x2−(2m+1)x+m2=0有两个实数根(1)求m的取值范围:(2)写出一个满足条件的m的值,并求此时方程的根20.如图,在□ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:□ABCD是矩形;(2)若AD=2√5,cos∠ABE=2√55,求AC的长21.先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形小明的做法如下:是平行四边形,并证明22.运用语音识别输入软件可以提高文字输入的速度。
2020年中考数学一模试卷【答案+解析】

2020年中考数学一模试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣64.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=25.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5 6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.67.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.68.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3 9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1y2.(填“>”,“<”或“=”)13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.16.(6分)计算:(+)÷.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选:B.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:D.4.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=2【分析】把方程的左边的式子进行分解,得出两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程可化为:(x﹣1)(x﹣2)=0∴x1=1,x2=2.故选:A.5.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5【分析】根据合并同类项,同底数幂的乘除法,幂的乘方,对各选项分析判断后利用排除法求解.【解答】解:A、x3与x2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、x3•x2=x5,原计算正确,故此选项符合题意;C、x6÷x2=x4,原计算错误,故此选项不符合题意;D、(x3)2=x6,原计算错误,故此选项不符合题意.故选:B.6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.6【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:根据该几何体的俯视图的面积为5,可知每个小正方体的棱长为1,从正面看有两层,底层是三个正方形,上层是一个正方形,所以这个几何体的主视图的面积为4.故选:B.7.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.6【分析】将点A、B的坐标分别代入函数解析式,列出方程组,通过解方程组求得k、m 的值即可.【解答】解:把点A(2,m),B(﹣1,6)分别代入,得.解得k=﹣6,m=﹣3.故选:A.8.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3【分析】抛物线y=x2的顶点坐标为(0,0),向左平移2个单位,再向上平移3个单位,所得的抛物线的顶点坐标为(﹣2,3),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是BD的线段垂直平分线,∴BE=ED,∵△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD=6cm.故选:C.10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8【分析】连接OA,由垂径定理得:AC=BC,根据勾股定理,可以求出AC的长,从而得AB的长.【解答】解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为x=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=6x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1<y2.(填“>”,“<”或“=”)【分析】根据点P1、P2的横坐标结合二次函数图象上点的坐标特征,即可得出y1、y2的值,比较后即可得出结论.【解答】解:当x=﹣2时,y1=(﹣2+1)2﹣2=﹣1;当x=2时,y2=(2+1)2﹣2=7.∵﹣1<7,∴y1<y2.故答案为<.13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为6﹣2.【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【解答】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM=DE,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x=(2﹣x),解得x=4﹣2,∴CM=4﹣2,由旋转的性质可知:CF=CE=4﹣2,∴BF=BC+CF=2+4﹣2=6﹣2.故答案为:6﹣2.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为100°.【分析】连接OD,根据圆周角定理求出∠BOD,根据切线的性质得到∠ABO=90°,∠ADO=90°,根据四边形内角和等于360°计算即可.【解答】解:连接OD,由圆周角定理得,∠BOD=2∠C=80°,∵BC是⊙O的直径,AB、AD是⊙O的切线,∴OB⊥AB,OD⊥AD,∴∠ABO=90°,∠ADO=90°,∴∠A=180°﹣∠BOD=100°,故答案为:100°.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.【分析】(1)本题涉及零指数幂、平方、特殊角的三角函数值、绝对值、二次根式化简5个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可得解.【解答】解:(1)2cos45°﹣|﹣|+()0﹣(﹣2)2=2×﹣+1﹣4=﹣+1﹣4=﹣3;(2),解不等式①得x>1.5;解不等式②得x≤3.故不等式组的解集为1.5<x≤3.16.(6分)计算:(+)÷.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)【分析】首先根据题意分析图形,本题涉及到两个直角三角形,进而求得BE、AE的大小,再利用AB=BE﹣AE可求出答案.【解答】解:作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.【分析】(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b 的值,然后利用待定系数法即可求得函数解析式;(2)将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,得到E(﹣,0),解方程组得到B(6,﹣2),连接AE,BE,根据三角形的面积公式即可得到结论.【解答】解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=﹣,则函数的解析式是y=﹣x+2.故这个函数的解析式为y=﹣x+2;把点A(a,4)代入y=﹣x+2得,4=﹣a+2,解得:a=﹣3,∴A(﹣3,4),∴m=﹣12,∴反比例函数的解析式为y=﹣;(2)∵将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,当y=0时,即0=﹣x﹣3,解得:x=﹣,∴E(﹣,0),解得,,,∴B(6,﹣2),连接AE,BE,∵AB∥DE,∴S△ADB=S△AEB=(3+)×4+(3+)×2=.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.【分析】(1)连接OC,OE,根据等腰三角形的性质得到∠E=∠OCE,求得∠E+∠ODE =90°,得到∠PCD=∠ODE,得到OC⊥PC,于是得到结论;(2)连接AC,BE,BC,根据相似三角形的性质得到=,推出CD•DE=AO2﹣OD2;由△ACP∽△CBP,得到,得到PD2=PD2+2PD•OD+OD2﹣OA2,于是得到结论;(3)由(2)知,CD•DE=AO2﹣OD2;把已知条件代入得到OD=1(负值舍去),求得AD=3,由(2)知,CD•DE=2OD•PD,于是得到结论.【解答】(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为﹣2.【分析】由点的坐标,利用一次函数图象上点的坐标特征可求出a﹣b的值,此题得解.【解答】解:∵直线y=ax+b经过点(﹣1,2),∴2=﹣a+b,∴a﹣b=﹣2.故答案为:﹣2.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.【分析】首先根据题意可求得,所有可能结果,然后解不等式组求得不等式组的解集得出符合要求的点的坐标,再利用概率公式即可求得答案.【解答】解:根据题意列出树状图得:则(a,b)的等可能结果有:(﹣2,﹣6),(﹣2,2),(﹣2,6),(﹣6,﹣2),(﹣6,2),(﹣6,6),(2,﹣2),(2,6),(2,﹣6),(6,﹣2),(6,2),(6,﹣6)共12种;,解①得:x<7,当a>0,解②得:x>,根据不等式组的解集中有且只有3个非负整数解,则3<x<7时符合要求,故=3,即b=6,a=2符合要求,当a<0,解②得:x<,根据不等式组的解集中有且只有3个非负整数解,则x<3时符合要求,故=3,即b=﹣6,a=﹣2符合要求,故所有组合中只有2种情况符合要求,故使关于x的不等式组的解集中有且只有3个非负整数解的概率为:=.故答案为:.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为1.【分析】设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入抛物线的解析式,两式相减,计算即可求得.【解答】解:设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入y=x2+mx﹣m得,①﹣②得2a=2am,解得m=1,故答案为1.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为2.【分析】如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.再根据矩形性质和勾股定理即可求出DG的长.【解答】解:如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.∵BC=AD=2,AB=CD=6,根据翻折可知:DE=EF=x,AF=AD=2,则CE=CD﹣DE=6﹣x,在Rt△ABF中,根据勾股定理,得BF==4,则BE=BF+EF=4+x,在Rt△BEC中,根据勾股定理,得(4+x)2=(6﹣x)2+(2)2,解得x=2.则DG的最大值为2.故答案为:2.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为3.【分析】根据双曲线的对称性得到BC=AD,设BC=AD=a,用a表示出点C和得D的坐标,根据梯形面积公式、三角形面积公式求出a、b的关系,根据反比例函数图象上点的坐标特征列出方程,解方程求出b.【解答】解:由题意点B的坐标为(0,b),点A的坐标为(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵=,∴=,整理得,12a2+17ab﹣14b2=0,解得,a1=b,a2=﹣b(舍去),则D(b,﹣b),∴b×(﹣b)=﹣4,解得,b1=3,b2=﹣3(舍去),∴b=3,故答案为:3.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯,列方程求解;(2)设再购进彩灯a盏,根据利润=售价﹣进价和货栈要想获得利润不低于15000元列出不等式并解答.【解答】解:(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,依题意得:=+100,解得x=75,经检验x=75是所列方程的根,则0.8x=0.8×75=60(元).答:该货栈实际购进每盏彩灯为60元;(2)设再购进彩灯a盏,由(1)知,实际购进30000÷60=500(盏),依题意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,解得a≥.因为a取正整数,所以a=215.答:至少再购进彩灯215盏.27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.【分析】(1)由EB=EB1,EA=EA1,可得∠EBB1=∠EB1B,∠EAA1=∠EA1A,由∠BEB1=∠AEA1,可得∠EBB1=∠EB1B=∠EAA1=∠EA1A,由此即可证明;(2)连接BF,延长EB1交AA1于M.由△MFB1∽△MEA1,推出△MEF∽△MA1B1,推出∠MFE=∠MB1A1=90°,即EF⊥AA1,由EA=EA1,可得AF=F A1;(3)首先求出AE,由cos∠GBC=cos∠EAF===,在Rt△AEF中,根据AF=AE•cos∠EAF,计算即可;【解答】(1)证明:如图∵EB=EB1,EA=EA1,∴∠EBB1=∠EB1B,∠EAA1=∠EA1A,∵∠BEB1=∠AEA1,∴∠EBB1=∠EB1B=∠EAA1=∠EA1A,∴△AA1E∽△BB1E.(2)证明:连接BF,延长EB1交AA1于M.∵∠BB1B=∠FB1M=∠MA1E,∠FMB1=∠EMA1,∴△MFB1∽△MEA1,∴=,∴=,∵∠EMF=∠A1MB1,∴△MEF∽△MA1B1,∴∠MFE=∠MB1A1=90°,∴EF⊥AA1,∵EA=EA1,∴AF=F A1.(3)解:在Rt△ABE中,∵AB=4,BE=1,∴AE==,∵DG=GC,∴cos∠GBC=cos∠EAF===,在Rt△AEF中,AF=AE•cos∠EAF=•=.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.【分析】(1)先求出对称轴为x=4,进而求出AB=4,进而求出点A,B坐标,即可得出结论;(2)利用面积的和差建立方程求解,即可得出结论;(3)Ⅰ、当点Q在对称轴右侧时,先判断出点E,M,Q,P四点共圆,得出∠EMQ=90°,利用同角的余角相等判断出∠EMF=∠HGM,得出tan∠EMF==2,得出HG =HM=1,进而求出Q(8,6),得出结论;Ⅱ、当点Q在对称轴左侧时,先判断出△PDQ∽△EFP,得出,进而判断出DP=,PF=2QD,即可得出结论.【解答】解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.。
2020年度中考初三数学一模试卷(含答案解析)

2020年初三数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.-3的绝对值是 A .-13B .-3C .13D .32.函数中y =x2-x 自变量x 的取值范围是A .x ≥2B .x ≤2C .x ≠2D .x >23.在下列四个图形中,是中心对称图形的是A .B .C .D .4.下列运算正确的是 A .2a 2+a 2=3a 4B .(-2a 2)3=8a 6C .a 3÷a 2=aD .(a -b )2=a 2-b 25.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的 A .最高分B .方差C .中位数D .平均数6.下列图形中,主视图为①的是A .BC .D .7.已知a -b =2,则a 2-b 2-4b 的值为 A .2B .4C .6D .88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形9.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数y =k x的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = A .-20B .-16C .-12D .-810.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B ′DE ,若B ′D ,B ′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是 A .△ADF ≌△CGEB .△B ′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB ′F 的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分) 11.16的平方根是 .12.某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 . 13.若3m =5,3n =8,则32m +n= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 . 15.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB = . 16.如图,△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的O 和AB ,BC 均相切,则⊙O 的半径为 .(第16题图)(第15题图)ABCDFGB′O(第10题图)(第9题图)(第6题图①)17.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (-1,0),点B在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .18.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A 旋转,当∠ABF 最大时,S △ADE = .三、解答题(共84分) 19.(本题满分8分)(1)计算:(π-3)0+2sin45°-⎝ ⎛⎭⎪⎫18-1 (2)解不等式组:⎩⎨⎧1-2x <3x +13<220.(本题满分8分)解方程: (1)x 2-8x +1=0 (2)3x -2-1-x2-x=121.(本题满分8分)如图,□ABCD 中,E 为AD 的中点,直线BE ,CD 相交于点F .连接AF ,BD . (1)求证:AB =DF ;(2)若AB =BD ,求证:四边形ABDF 是菱形.ABCDEF(第18题图)(第17题图)22.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有________人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在________组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?调查测试成绩扇形统计图ADFEBC23.(本题满分8分)有甲,乙两把不同的锁和A,B,C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(本题满分8分)如图,△ABC中,⊙O经过A,B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.y/千克)26.(本题满分8分)如图,线段OB 放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA ,使tan ∠AOB 的值分别为1,2,3.27.(本题满分10分)已知,二次函数y =ax 2+2ax -3a (a >0)图象的顶点为C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),点C ,B 关于过点A 的直线l 对称,直线l 与y 轴交于D . (1)求A ,B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E ,连接OE 交直线l 于点F ,求EFOF的最大值.BO图3B O图2B O图128.(本题满分10分)如图,矩形ABCD ,AB =2,BC =10,点E 为AD 上一点,且AE =AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰Rt △BFG ,以BG ,BF 为邻边作□BFHG ,连接AG .设点F 的运动时间为t 秒,(1)试说明:△ABG ∽△EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出HC 的最小值.图2AB CDE图1ABC DFEG H9.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC ﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B 在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是﹣4≤x≤﹣1 .【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.22.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在B组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?【分析】(1)根据E组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得B组和C组所占的百分比.根据本次调查的总人数和B组所占的百分比可以求得B组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率(请用“画树状图”或“列表”等方法给出分析过程)【分析】首先根据题意列表,得所有等可能的结果,可求得打开一把锁的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.25.某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.【分析】本题是通过构建函数模型解答销售利润的问题.(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a,解得m即可(2)可先求出y与销售单价x之间的函数关系为:y=﹣5x+130,再根据销售利润=销售量×(售价﹣进价),列出销售利润w与销售价x之间的函数关系式,即可求最大利润(3)设扣除捐赠后利润为s,则s=﹣5x2+(5p+200)x﹣130(p+14),再根据对称轴的位置及增减性进行判断即可.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤4【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.26.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..【点评】此题主要考查了应用与设计作图以及锐角三角函数关系、勾股定理等知识,正确构造直角三角形是解题关键.27.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.28.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H 在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。
2020北京密云初三一模数学含答案

2020北京密云初三一模数学 2020.5考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B..铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1. 下列四个角中,有可能与70°角互补的角是()2. 5G是第五代移动通信技术,5G网络下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需1秒.将1300000用科学记数法表示应为()A.51310⨯ B.51.310⨯ C.61.310⨯ D.71.310⨯3. 下列各式计算正确的是()A.326•a a a= B.5510a a a+= C. D.22(1)1a a-=-4.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.科克曲线 B.笛卡尔心形线 C.赵爽弦图 D.斐波那契螺旋线5.实数a,b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A. a-5 > b-5 B.-a > -b()33928a a=--C . 6a > 6bD .a -b > 06.如图,点A ,B 是正方体上的两个顶点,将正方体按图中所示方式展开,则在展开图中B 点的位置为( )A .1B B .2BC .3BD .4B7. 《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉. 问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子. 问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x 斗谷子,下等稻子每捆打y 斗谷子,根据题意可列方程组为( )A .B .C .D .8. 据统计表明,2019年中国电影总票房高达642.7亿元,其中动画电影发展优势逐渐显现出来.下面的统计表反映了六年来中国上映的动画电影的相关数据:2014—2019年中国动画电影影片数量及票房统计表年份 国产动画影片数量 (单位:部)国产动画影片票房 (单位:亿元) 进口动画影片数量 (单位:部) 进口动画影片票房(单位:亿元) 2014 21 11.4 18 19.5 2015 26 19.8 14 24.2 2016 24 13.8 24 57.0 2017 16 13.0 21 36.8 2018 21 15.8 22 25.0 2019 3170.954244.09(以上数据摘自《中国电影产业市场前瞻与投资战略规划分析报告》) 根据上表数据得出以下推断,其中结论不正确...的是( ) A .2017年至2019年,国产动画影片数量均低于进口动画影片数量 B .2019年与2018年相比,中国动画电影的数量增加了50%以上3610512x y y x +=⎧⎨+=⎩3610512x y y x -=⎧⎨-=⎩3610512y x x y +=⎧⎨+=⎩3610512y xx y -=⎧⎨-=⎩C.2014年至2019年,中国动画电影的总票房逐年增加D.2019年,中国动画电影的总票房占中国电影总票房的比例不足20% 二、填空题(本题共16分,每小题2分)9. 请写出一个绝对值大于2的负无理数:.若代数式X+1x−3有意义,则x的取值范围是.11.在如图所示的几何体中,其三视图中有三角形的是.(写出所有正确答案的序号)12. 化简2b a baa a⎛⎫--÷⎪⎝⎭的结果是.13. 如图,AB为⊙O直径,点C为⊙O上一点,点D为AĈ的中点,且OD与AC相交于点E,若⊙O的半径为4,∠CAB=30°,则弦AC的长度为.14.为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)15. 为提升英语听力及口语技能,小明打算在手机上安装一款英语口语APP辅助练习.他分别从甲、乙、丙三款口语APP中随机选取了1000条网络评价进行对比,统计如下:等级评价数量APP五星四星三星二星一星合计甲562 286 79 48 25 1000乙517 393 52 21 17 1000丙504 210 136 116 34 1000(说明:网上对于口语APP的综合评价从高到低,依次为五星、四星、三星、二星和一星).小明选择(填“甲”、“乙”或“丙”)款英语口语APP ,能获得良好口语辅助练习(即评价不低于四星)的可能性最大.16. 如图16-1,将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1.取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图16-2中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图16-3中阴影部分......如此下去,则正六角星形A n F n B n D n C n E n的面积为.三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.计算:101()(1)2cos6092π-++-+18.解不等式组,并写出它的所有整数解.19.下面是小菲设计的“作一个角等于已知角的二倍”的尺规作图过程.已知:△ABC中,AC>BC.求作:∠ADB,使得∠ADB=2∠C.作法:如图,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧交于M、N点,作直线MN;分别以点A和点B为圆心,大于12AB的长为半径53291032x xxx-≤+⎧⎪⎨+>⎪⎩作弧,两弧交于P、Q点,作直线PQ,MN和PQ交于点D;●连接AD和BD;❍以点D为圆心,AD的长为半径作⊙D.所以∠ADB=2∠C.根据小菲设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接CD∵MN和PQ分别为AC、AB的垂直平分线,∴CD=AD= .∴⊙D是△ABC的外接圆.∵点C是⊙D上的一点,∴∠ADB=2∠C.()(填推理的依据)20.已知:关于x的一元二次方程x2- 2x + m -1= 0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为非负整数..,求m的值.....,且该方程的根都是整数21.如图,在Rt△ABC中,∠ACB=90°.CD⊥AB,AF平分∠CAB,交CD于点E,交BC于点F.过点F作FG⊥AB交AB于点G,连接EG.(1)求证:四边形CEGF是菱形;(2)若∠B=30°,AC=6,求CE的长.22. 如图,在平面直角坐标系xOy 中,直线l :的图象与反比例函数的图象交于点A (3,m ).(1)求m 、k 的值;(2)点P (x p ,0)是x 轴上的一点,过点P 作x 轴的垂线,交直线l 于点M ,交反比例函数ky x=(0x >)的图象于点N . 横、纵坐标都是整数的点叫做整点.记ky x=(0x >)的图象在点A ,N 之间的部分与线段AM ,MN 围成的区域(不含边界)为W .① 当x p =5时,直接写出区域W 内的整点的坐标为 ; ② 若区域W 内恰有6个整点,结合函数图象,求出x p 的取值范围.23.如图,AB 为⊙O 的直径,点C 、点D 为⊙O 上异于A 、B 的两点,连接CD ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,连接AC 、AD .(1)若∠ABD =2∠BDC ,求证:CE 是⊙O 的切线.(2)若⊙O,求AC 的长.1y x =-(0)ky x x=>1tan 2BDC ∠=24. 2020年新冠肺炎疫情发生以来,我市广大在职党员积极参与社区防疫工作,助力社区坚决打赢疫情防控阻击战。
2020西城初三数学一模答案

北 京 市 西 城 区 九 年 级 统 一 测 试数学试卷答案及评分标准 2020.5一、选择题(本题共16分,每小题2分)三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)17.解:101() +(12sin602=2122= 3.························································································· 5分18.解:原不等式组为3(2)22,25.4x xxx①②解不等式①,得x<4.解不等式②,得52x .∴原不等式组的解集为542x.································································································ 5分19.解:(1)依题意,得△=22[(21)]41m m.=41m ≥ 0.解得 m ≥14.(2)答案不唯一,如: 0m ,此时方程为20x x .解得10x ,21x . ····························································· 5分20.(1)证明:∵ 四边形ABCD 是平行四边形,∴ OA =OC ,OB =OD . ∵ OA =OB , ∴ OA =OC =OB =OD . ∴ AC =BD . ∴ □ABCD 是矩形.(2)解: ∵ 四边形ABCD 是矩形,∴ ∠BAD =∠ADC =90°. ∴ ∠BAC +∠CAD =90°. ∵ BE ⊥AC ,∴ ∠BAC +∠ABE =90°. ∴∠CAD =∠ABE .在Rt △ACD 中, AD=cos ∠CAD =cos ∠ABE=5, ∴ AC =5. ······························································ 5分21.答案不唯一,如:(1)两组对边分别相等的四边形是平行四边形. (2)如图.(3)证明:∵ CF =BD ,DF =BC ,∴ 四边形DBCF 是平行四边形.·························································································· 5分22.解:(2)(3)(4) 答案不唯一,理由须支撑推断的结论.·························································································· 6分23.(1)证明:连接AC ,∵ OC = OA , ∴点C 在⊙O 上. ∵ OA = OC , BA = BC ,∴ ∠OAC =∠OCA ,∠BAC =∠BCA . ∴ ∠OCB =∠OAB =90°.∴ OC ⊥BC 于点C . ∴ BC 是⊙O 切线.(2)① 补全图形.② 证明:∵ BA ,BC 是⊙O 的两条切线,切点分别为A ,C ,∴ BA =BC ,∠DBA =∠DBC . ∴ BD 是AC 的垂直平分线.∵ OA =OC , ∴ ∠AOB =∠COB .B频数字数1009080706050∵ AD AC ,AE 为⊙O 的直径,∴ CEDE . ∴ ∠COE =∠DOE . ∵ ∠AOB =∠DOE ,∴ ∠AOB =∠BOC =∠COE =60°. ∵ BC 是⊙O 的切线,切点为C , ∴ ∠OCB =∠OCF =90°. ∴ ∠OBC =∠OFC =30°.∴ OF = OB . ······························································· 6分24.解:(1)(2)画出函数y 1的图象;(3)① 0.83或2.49 . ② 5.32.···························································································· 6分25.解:(1)①令y =0 ,则20kx k .∵0k ,解得 x = -2. ∴ 点A 的坐标为(-2,0) . ∵点P 的坐标为(1,6), ∴ m = 6. ②13. (2)① P (1,3k ) .② 依题意,得222 kx k kx ,解得22x k. ∴点Q 的横坐标为 22k, ∵22k>1(0k ), ∴ 点Q 在点P 的右侧.如图,分别过点P ,Q 作PM ⊥x 轴于M ,QN ⊥x 轴于N , 则点M ,点N 的横坐标分别为1,22k. 若PQ =P A ,则 1PQPA. ∴1 PQ MNPA MA. ∴ MN =MA . ∴ 2213k,解得 k =1. ∵ MA = 3, ∴ 当PQ PA =MNMA≤1时,k ≥1. ∴ 3m k ≥3.∴ 当PQ ≤P A 时,m ≥3. ·················································· 5分26.解:(1)∵ 抛物线22 y ax bx a 的对称轴为直线x = -1,∴ 12ba. ∴ 2 b a .∴ 222y ax ax a 化为2(1)2 y a x .将点A (-3,0)代入2(1)2 y a x 中, 得 12a . ∴ 21(1)22y x21322x x . ∴ 抛物线的表达式为21322y x x . 点B 的坐标为(1,0).(2)210 x .(3)∵ 抛物线的顶点为(-1,2), ∴ 点D 的坐标为(1,0 ).∵∠DOP =45°,且抛物线上满足条件的 点P 恰有4个,∴ 抛物线与x ∴ 满足条件的点P 在x 轴上方有2个, 在x 轴下方也有2个. ∴ 20a . 解得 2a .∴ a 的取值范围是2a .27.(1)补全图形,如图1.证明:(2)∵ CQ =CP ,∠ACB = 90°,∴ AP =AQ . ∴ ∠APQ =∠Q . ∵ BD ⊥AQ ,∴∠QBD +∠Q =∠QBD +∠BFC = 90°. ∴ ∠Q =∠BFC . ∵∠MFN =∠BFC , ∴∠MFN =∠Q .同理,∠NMF=∠APQ . ∴ ∠MFN =∠FMN . ∴ NM =NF . (3) 连接CE ,如图2.由(1)可得 ∠P AC =∠FBC , ∵ ∠ACB =90°,AC =BC , ∴ △APC ≌ △BFC . ∴ CP =CF . ∵ AM =CP , ∴ AM =CF .∵ ∠CAB =∠CBA =45°. ∴ ∠EAB =∠EBA . ∴ AE =BE . 又 ∵ AC =BC ,∴ CE 所在直线是AB 的垂直平分线. ∴ ∠ECB =∠ECA =45°. ∴ ∠GAM =∠ECF =45°. 由(1)可得 ∠AMG =∠CFE , ∴ △AGM ≌ △CEF . ∴ GM =EF .∵ BN =BE + EF + FN =AE +GM + MN . ∴ BN =AE + GN .···························································································· 7分图2图1CBAP QN DM GHKFE28.解:(1)①2;3≤CP ≤2; ② O .(2)直线y b与x 轴、y 轴分别交于点F , G (0,b ),当0<b <1时,线段FG 在⊙O 的内部,与⊙O 无公共点, 此时⊙O 上的点到线段FG 的最小距离为1 b ,最大距离为1b .∵ 线段FG 与⊙O 满足限距关系, ∴ 1b ≥2(1) b . 解得b ≥13. ∴ b 的取值范围是13≤b <1. 当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系. 当b >2时,线段FG 在⊙O 的外部,与⊙O 无公共点, 此时⊙O 上的点到线段FG 的最小距离为112b ,最大距离为1b . ∵ 线段FG 与⊙O 满足限距关系,∴ 1b ≥12(1)2b .而112(1)2b b 总成立.∴ 当b >2时,线段FG 与⊙O 满足限距关系. 综上,b 的取值范围是b ≥13. (3)0<r ≤3.································································································ 7分。
江苏2020届中考数学一模试题(含答案解析)

江苏2020届中考数学一模试题一、单选题1.截至今年一季度末,江苏省企业养老保险参保人数达850万,则参保人数用科学记数法表示为 A .8.50×106 B .8.50×105 C .0.850×106 D .8.50×1072.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( ) A .83,74x y x y =+⎧⎨=-⎩ B .83,74x y x y =-⎧⎨=+⎩ C .84,73x y x y =+⎧⎨=-⎩ D .84,73x y x y =-⎧⎨=+⎩3.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分AB ,垂足为点E ,交AC 于D 点,连接BD ,若AD =4,则DC 的值为( )A .1B .1.5C .2D .34.已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )A .B .C .D .5.如图,某同学用圆规BOA 画一个半径为4cm 的圆,测得此时90O ∠=︒,为了画一个半径更大的同心圆,固定A 端不动,将B 端向左移至B '处,此时测得120O '∠=︒,则BB '的长为( )A .4B 2-C .D .26.如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2的图象上,则a 的值为( )A .23-B .3-C .2-D .12- 7.如图,已知A 为反比例函数k y x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( )A .2B .-2C .4D .-48.将等边三角形ABC 放置在如图的平面直角坐标系中,已知其边长为2,现将该三角形绕点C 按顺时针方向旋转90°,则旋转后点A 的对应点A’的坐标为( )A .(1+,1)B .(﹣1,1-)C .(﹣1,-1)D .(2,)9.如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD =D .AG 平分CAD ∠ 10.若整数a 既使关于x 的分式方程13x x --﹣2(3)a x x --=1的解为非负数,又使不等式组3024385x a x x+⎧+>⎪⎨⎪-+>⎩有解,且至多有5个整数解,则满足条件的a 的和为( ) A .﹣5 B .﹣3 C .3 D .211.若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .1412.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为( )A .(0,1)B .(1,0)C .(0,1)或(0,-1)D .(1,0)或(-1,0)二、填空题13.若3x =+3y =,则222x xy y ++=___. 14.李叔叔骑车从家到工厂,通常要40分钟,如果他骑车速度比原来每小时增加2千米,那么可节约10分钟,李叔叔的家离工厂有_______千米.15.如图,已知∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A上取点O 2,以点O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心,O 3O 2为半径的圆与OB 相切……,若⊙O 1的半径为1,则⊙O n 的半径是______________.16.如图,在4×4的正方形网格图中,以格点为圆心各画四条圆弧,则这四条圆弧所围成的阴影部分面积为_____.17.如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,111n n n n A B C A ---中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为_____.三、解答题18.进入夏季,为了解某品牌电风扇销售量的情况,厂家对某商场5月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场5月份售出这种品牌的电风扇共多少台?(2)补全条形统计图.(3)若该商场计划订购这三种型号的电风扇共2000台,根据5月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?19.如图,已知E ,F 分别是▱ABCD 的边BC 、AD 上的点,且BE=DF求证:四边形AECF 是平行四边形.20.某特产店销售核桃,进价为每千克40元,按每千克60元出售,平均每天可售100千克,后经市场调查发现,单价每降低2元,则平均每天销售可增加20千克,若该专卖店销售该核桃要想平均每天获利2240元,且在平均每天获利不变的情况下,为尽可能让利于顾客,求每千克核桃应降价多少元?21.设用符号〈a ,b 〉表示a ,b 两数中较小的数,用符号[a ,b]表示a ,b 两数中较大的数,试求下列各式的值.(1)〈-5,-0.5〉+[-4,2]; (2)〈1,-3〉+[-5,〈-2,-7〉].22.已知:2(1)3a b a x y -+=是关于y x 、二元一次方程,点A 在坐标平面内的坐标为a b (,) 点B (3,2)将线段AB 平移至A’B’的位置,点B 的对应点'B (-1,3).求点A’的坐标23.先化简,再求值:,其中.24.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,AD 平分∠BAC ,BD=CD(1)求证:BE=CF ;(2)已知AC=10,DE=4,BE=2,求△AEC 的面积25.如图,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x 、y 轴交于,A B 两点,正比例函数的图像2l 与1l 交于点(),3C m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S ∆∆-的值;(3)在坐标轴上找一点P ,使以OC 为腰的OCP ∆为等腰三角形,请直接写出点P 的坐标. 26.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线2x =,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P 为抛物线上一点(不与点A 重合),联结PC .当PCB ACB ∠=∠时,求点P 的坐标; (3)在(2)的条件下,将抛物线沿平行于y 轴的方向向下平移,平移后的抛物线的顶点为点D ,点P 的对应点为点Q ,当OD DQ ⊥时,求抛物线平移的距离.参考答案1.A解:850万=8500000=8.5×106,故选A .2.A根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.3.C由线段垂直平分线的性质定理可知4BD AD ==,30ABD A ︒∠=∠=,易知30CBD ︒∠=,根据直角三角形中30︒角所对的直角边是斜边的一半可得122DC BD ==. 解:在Rt △ABC 中,∠A =30° 60ABC ︒∴∠=DE 垂直平分AB ,点D 在AB 上4BD AD ∴==,30ABD A ︒∠=∠=30CBD ABC ABD ︒∴∠=∠-∠=122DC BD ∴== 故选:C本题考查了线段垂直平分线的性质定理,同时涉及到了直角三角形30︒角这一性质,灵活利用这两个性质求线段长是解题的关键.4.C根据绝对值的性质可得a ≤0, b ≥0,由a b >可得a 到原点的距离大于b 到原点的距离,进而可得答案. 解:,a a b b =-=,∴a ≤0, b ≥0∴B, D 错误;a b >∴a到原点的距离大于b到原点的距离.C是正确的, A是错误的,故选C本题主要考查数轴上的点与绝对值.5.A△ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O'作O'D⊥AB于点D,在直角△AO'D 中利用三角函数求得AD的长,则AB'=2AD,然后根据BB'=AB'-AB即可求解.解:在等腰直角△OAB中,AB=4,则OA=cm,AO'=,∠AO'D=12×120°=60°,过O'作O'D⊥AB于点D.则AD=AO'•sin60°=22×3=6.则AB'=2AD=26,故BB'=AB'-AB=26-4.故选:A.本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.6.B连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得12BD OB=,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.如图,连接OB,∵四边形OABC 是边长为1的正方形,∴451BOC OB ∠===, 过点B 作BD ⊥x 轴于D ,∵OC 与x 轴正半轴的夹角为15,∴451530BOD ∠=-=,∴122BD OB ==OD ==∴点B 的坐标为⎝⎭,∵点B 在抛物线y =ax 2(a <0)的图象上,∴2a =⎝⎭解得a =3-故选B.考查正方形的性质,勾股定理,二次函数图象上点的坐标特征等,求出点B 的坐标是解题的关键. 7.D设A 点坐标为(m ,n),则有AB=-m ,OB=n ,继而根据三角形的面积公式以及反比例函数图象上点的坐标特征即可求得答案. 设A 点坐标为(m ,n),则有AB=-m ,OB=n ,。
2020学年丰台区初三一模数学试卷答案

1丰台区2020年初三毕业及统一练习初三数学评分标准及参考答案一、选择题(本题共16分,每小题2分)题号 1 2 3 4 5 6 7 8 答案 AC BD BD CD 二、填空题(本题共16分,每小题2分)9. a ≥1 10. 4511.412. 313.=14. 315.(0,1);0(答案不唯一,m ≥-1即可)16.160;180三、解答题(本题共68分,第17-23题,每小题5分,第24-25题,每小题6分,第26- 28题,每小题7分)17. 解:原式=32321312-++-,……3分=233131-++-,…4分=23.……5分18. 解:()3411.2>①,②-+x x x x 解不等式①得x4 .……2分解不等式②得x ≥1. ……4分∴不等式组的解集为1≤x4. ……5分19. 证明:∵∠CAB=∠CBA ,∴CA=CB .……2分∵AD ⊥BC 于点D ,BE ⊥AC 于点E ,S △ABC =1122BC AD AC BE =,∴AD=BE .……5分20. 解:(1)∵一元二次方程x 2 -4x +2m-2= 0有两个不相等的实数根,∴24b ac =-……1分()16422m =--0.解得m 3. ……2分(2)当m=1时,x 2 -4x = 0.……3分解得x 1=0,x 2=4. (答案不唯一) (5)分21. 解:(1)令x=0,∴y=4. ∴A (0,4). ……2分(2)∵S △AOM =2,AO=4,122M AOx =,∴M x =1.……3分①当M x =1时,M y =5.如下图=k y x过点(1,5),∴k=5.……4分②当M x =-1时,M y =3.如下图=k y x过点(-1,3),∴k=-3.……5分综上所述,k=5或-3.MAyxO-1-2-3-1-2-3123-4-6-5465123-4-6-5465MA yxO-1-2-3-1-2-3123-4465123-4-5465-11234222. (1)证明:∵□ABCD ,∴AC =2 AO ,BD =2BO.……1分∵AO=BO ,∴AC=BD.∴□ABCD 为矩形. …2分(2)解:过点E 作EG ⊥BD 于点G ,∵DE 为∠ADB 的角平分线,且∠DAB =90∴EG=EA . ……3分∵AO=BO ,∴∠CAB=∠ABD.∵AD = 3,tan ∠CAB=34,∴tan ∠CAB= tan ∠ABD =34.∴AB=4.∴sin ∠CAB= sin ∠ABD =35.设AE=x ,则BE=4-x ,在△BEG 中,∠BGE =90,∴345x x=-. ……4分解得AE =x=32.……5分23. (1)28.3%;……1分(2)2.1;……3分(3)①②.……5分24. 解:(1)直线DA 与图形W 的公共点的个数为1个. ……1分∵点P 到点A ,B 的距离都等于a ,∴点P 为AB 的中垂线与BC 的交点.∵到点P 的距离等于a 的所有点组成图形W .∴图形W 是以点P 为圆心,a 为半径的圆.根据题意补全图形:DCBAEPF……2分连接AP ∵∠B=22.5°,∴APD =45°.∵点D 到点A 的距离也等于a ,∴DA=AP=a . ∴∠D =APD =45°.∴∠P AD = 90°. ∴D A ⊥P A.∴DA 为☉P 的切线.∴直线DA 与图形W 的公共点的个数为1个.……3分(2)∵AP=BP ,∴∠BAP=∠B =22.5°. ∵∠BAC=90°. ∴∠PAC=∠PCA=67.5°. ∴PA= PC=a. ∴点C 在☉P 上. ……4分∵AE ⊥BD 交图形W 于点E ,∴AC=CE .∴∠DPE =∠APD =45°. ∴∠APE = 90°. ∵EP=AP=a=2,∴AE=22,45E =. …5分∵∠B=22.5°,AE ⊥BD ,∴∠BAE=67.5°.∴∠AFE =∠BAE=67.5°.∴EF=AE=22.……6分GO ABCDE325.解:(1)AC ,CD ,FD. …….…...…...…….…….…...…...……….…...….….....………2分(2)正确画出函数图象:….......….….....………4分(3)3.5cmx5cm. ....….......…...….......…...….......…...…........….........….....………6分26.解:(1)对称轴是直线x=1. …………………………………………………………………1分(2)当a 0时,∵对称轴为x=1,当x=1时,y 有最小值为-a ;当x=3时,y 有最大值为3a. .…........…...……2分∴3a -(-a )=4. ∴a=1.....…......…......….............................…...….......….........….....………3分∴二次函数的表达式为:22y x x =-..…........…...….......….........….....………4分当a0时,同理可得y 有最大值为-a ;y 有最小值为3a. ∴-a-3a=4. ∴a=-1.∴二次函数的表达式为:22y x x =-+. .…........…...….......….........….....………5分综上所述,二次函数的表达式为22y x x =-或22y x x =-+.(3)-1≤t ≤2.....….....................…........…...….......….........….....………7分27. 解:(1)正确补全图1:…………………………………………………………………………2分(2)∠CQO+∠CPO=180°.……………………………………………………………3分理由如下:∵四边形内角和360°,且∠AOB=120°,∠PCQ=60°,∴∠CQO +∠CPO=∠1+∠2=180°.…………………………………………4分654321ODPC BAQ FDCD y/cm54321O12345x/cm4(3)OC=4时,对于任意点P ,总有OP+OQ =4.…………………………………5分证明:连接OC ,在射线OA 上取点D ,使得DP=OQ ,连接CD.∴OP+OQ =OP+DP =OD.∵∠1+∠2=180°,∵∠2+∠3=180°,∴∠1=∠3. ∵CP=CQ∴△COQ ≌△CDP (SAS ). ………………………………………………………6分∴∠4=∠6,OC=CD. ∵∠4+∠5=60°,∴∠5+∠6=60°. 即∠OCD =60°. ∴△COD 是等边三角形.∴OC=OD=OP+OQ =4. ……………………………………………………………………7分28.解:(1)☉B ,☉C. …………………………………………………………………………………………………………2分(2)解:如图,当☉D 1与y 轴相切时,t 1=1. …………………………………………………3分当☉D 2与y=x 相切时,t 2=2+2.……………………………………………4分∴t 的取值范围是1≤t ≤2+2. …………………………………………………5分(3)60°≤∠EOM90°. ……………………………………………………………7分t 1t 2D 2D 1yxO -1-11234512345。
新2020届初三中考数学一模联考真题试题含参考答案 (12)

(2)分别以点 D、E 为圆心,以大于 1 DE 为半径作弧,两弧交于△AOB 内的一 2
点 C;
(3)作射线 OC 交 AB 边于点 P.
那么小明所求作的线段 OP 是△AOB 的( )
A.一条中线
B.一条高
C.一条角平分线 D.不确定
9.如图,已知正方形 ABCD,点 M 是边 BA 延长线上的动点(不与点 A 重合),
C.20°
D.25°
2.如图,在△ABC 中,AB=AC=10,BC=12,点 D 是 BC 上一点,DE∥AC,
DF∥AB,则△BED 与△DFC 的周长的和为( )
A.34
B.32
C.22
D.20
3.如图:二次函数 y=ax2+bx+c 的图象所示,下列结论中:①abc>0;
②2a+b=0;③当 m≠1 时,a+b>am2+bm;④a﹣b+c>0;⑤若 ax12+bx1=
且 AM<AB,△CBE 由△DAM 平移得到.若过点 E 作 EH⊥AC,H 为垂足,则
有以下结论:
①点 M 位置变化,使得∠DHC=60°时,2BE=DM;
②无论点 M 运动到何处,都有 DM= 2 HM;
③无论点 M 运动到何处,∠CHM 一定大于 135°.其中正确结论的序号为
()
A.①③
B.①②
m
(2)某成人在玩秋千时,摆绳 OC 与 OB 的最大夹角为 55°,问此人是否安全?
(参考数据: ≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
17.已知抛物线 y=a(x﹣1)2 过点(3,4),D 为抛物线的顶点. (1)求抛物线的解析式; (2)若点 B、C 均在抛物线上,其中点 B(0,1),且∠BDC=90°,求点 C 的 坐标: (3)如图,直线 y=kx+1﹣k 与抛物线交于 P、Q 两点,∠PDQ=90°,求△PDQ 面积的最小值.
2020届九年级一模数学试题(含答案)

九年级数学模拟试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案涂黑.) 1.-2的倒数是(▲)A .-12B .12C .±2D .2 2.函数y =x -2中自变量x 的取值范围是(▲)A .x >2B .x ≥2C .x ≤2D .x ≠2 3.cos 60°的值是(▲)A .12B .22C .32D .14.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 (▲)5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为(▲)A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2 6.六多边形的外角和为(▲)A .180°B .720°C .360°D .1080°7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是(▲) A .主视图的面积为4 B .左视图的面积为4A .D .B .C .C .俯视图的面积为3D .三种视图的面积都是48.某区新教师招聘中,九位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是 (▲) A .方差B .众数C .中位数D .平均数9.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数y=(x >0)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,若△OAB 的面积为3,则k 的值为 (▲)A .13 B .1 C .2 D .310.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是 (▲)A .16B .15C .12D .11二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.) 11.分解因式:x y 2―x = ▲ .12.去年无锡GDP (国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 ▲ 元.13.分式方程 4x = 2x +1 的解是 ▲ .14.命题“内错角相等”的逆命题...是 ▲ 命题.(填“真”或“假”) 15.如图,AB 是半圆O 的直径,点P 在AB 的延长线上,PC 切半圆O 于点C ,连接AC .若∠CPA =20°,(第9题)FDEGAB(第10题)(第7题)则∠A 的度数为 ▲ °.16.如图,点G 是△ABC 的重心,AG 的延长线交BC 于点D ,过点G 作GE ∥BC 交AC 于点E ,如果BC =12,那么线段GE 的长为 ▲ .17.如图,在△ABC 中,CA =3, CB =4,AB = 5,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为 ▲ .18.在Rt △ABC 中,∠ABC =90°,AB =8,BC =4.如图,将直角顶点B 放在原点,点A 放在y 轴正半轴上,当点B 在x 轴上向右移动时,点A 也随之在y 轴上向下移动,当点A 到达原点时,点B 停止移动,在移动过程中,点C到原点的最大距离为 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)9- (-3)2+(-0.2)0; (2)(x ―3)2―(x +2)(x ―2).20.(本题8分)解不等式组与方程:(第16题)ABCDE G(第17题)(第15题)(1)解不等式组⎩⎨⎧3x +1<2(x +2),-x 3≤5x 3+2. (2)解方程x 2-6x +1=021.(本题满分6分)如图,BD 为□ABCD 的对角线,AE ∥CF ,点E 、F 在BD 上.求证:BE =DF .22.(本题满分8分) 《歌手—当打之年》是湖南卫视最受欢迎的娱乐节目,奇袭挑战赛在每周五晚准时进行,7名主打歌手进行比赛的同时还要接受1名奇袭歌手挑战.近期即将进行终极奇袭战,奇袭歌手艾热将挑战徐佳莹(女)、米希亚(女)、萧敬腾、华晨宇、周深、声入人心男团、旅行团乐队.(1)当主持人询问艾热准备奇袭哪位歌手时,艾热透露“希望和男性嗓音去比试”,那周深被奇袭的概率是 ▲ ;(2)7名主打歌手比赛的上场顺序是通过抽签方式进行,若已经知道前4位歌手的上场顺序,还有华晨宇、米希亚、周深不知道,那么华晨宇和周深两位是相邻出场的概率是多少.(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)无锡有丰富的旅游产品.一天某校九年级(1)班的同学就部分旅游产品的喜爱情况随机抽取了的2%来锡游客进行问卷调查,要求游客在列举的旅游产品中选出最喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:ABCDEF根据以上信息完成下列问题: (1)请将条形统计图补充完整.(2)在扇形统计图中,A 部分所占的圆心角是 ▲ 度.(3)根据调查结果估计这天在所有的游客中最喜爱惠山泥人的约有多少人.24.(本题满分8分)如图,△AOB 中,A (-8,0),B (0,332),AC 平分∠OAB ,交y 轴于点C ,点P 是x 轴上一点,⊙P 经过点A 、C ,与x 轴交于点D ,过点C 作CE ⊥AB ,垂足为E ,EC 的延长线交x 轴于点F .(1)求证:EF 为⊙P 的切线;(2)求⊙P 的半径.25.(本题满分8分)如图,已知△ABC ,请用直尺(不带刻度),和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹).(1)作菱形AMNP ,使点M ,N 、P 在边AB 、BC 、CA 上; (2)当∠A =60°,AB =8,AC =6时,求菱形AMNP 的面积.26.(本题满分10分)全民健身的今天,散步运动是大众喜欢的活动项目。
2020密云九年级一模数学(答案)

∴ A(1,0) ∵△BPA 的面积不小于 6
∴ 1 AB 2 6 ,AB=6 2
∴B(-5,0)或 B(7,0)
………………………………3 分
当 y=kx+b 经过 P(-1,2)和点 B(-5,0)时,
k b 2 5k b 0 ,
k1 2
当 y=kx+b 经过 P(-1,2)和点 B(7,0)时,
=5
………………………………5 分
18.解: 由①得: x 4 , 由②得: x 2 , ∴不等式组的解集为: 2 x 4
∴整数解有:3、4
………………………1 分 ………………………2 分 ………………………4 分 ………………………5 分
19.(1)
………………………………3 分
(2) BD; 一条弧所对的圆周角是它所对的圆心角的一半
∴ 6 xp 7
综上所述: 0 xp 1 或 6 xp 7
………………………………5 分
23.(1)证明:连接 OC ∵OC=OA ∴∠OCA =∠OAC ∴∠COB =2∠OAC ∵∠BDC =∠OAC,∠ABD=2∠BDC ∴∠COB =∠ABD ∴OC // DE ∵CE⊥DB,∠CED =90° ∴∠OCE =90°,OC⊥CE ∴CE 是⊙O 的切线
② CD CF 2AC
………………………………4 分
解:过点 A 作 AC 边的垂线交 CB 延长线于点 P ∴△APC 是等腰直角三角形,∠PAC=90°,AP=AC ∵∠PAF+∠FAC=∠DAC+∠FAC =90° ∴∠PAF=∠DAC ∵∠AFB =∠ADC
∴ APF ACD
∴ PF=CD
∴ RtACF RtAGF
2020年北京市海淀区初三数学一模试卷及参考答案

2020年北京市海淀区初三一模试卷数学 2020.5学校姓名准考证号第1-8题均有四个选项,符合题意的选项只有一个.1.−2的相反数是A. 2B. −2C. 12D. −122.下列几何体中,主视图为矩形的是3.北京故宫有着近六百年的历史,是最受中外游客喜爱的景点之一,其年接待量在2019年首次突破19000 000人次大关.将19 000 000用科学记数法可表示为A.0.19×108B. 0.19×107C. 1.9×107D. 19×1064.北京大兴国际机场于2019年6月30日完美竣工,下图是世界著名建筑设计大师扎哈设计的机场成体俯视图的示意图.下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C.这个图形既是轴对称图形,又是中心对称图形D.这个图形既不是轴对称图形,也不是中心对称图形5.将抛物线y=2x2向下平移3个单位长度,所得抛物线的解析式是A. y=2x2+3B. y=2x2−3C. y=2(x−3)2D.y=2(x+3)26. 如图,AB与⊙O相切于点B,连接AO并延长,交⊙O于点C,OA,则∠C等于连接BC,若OC=12A. 15°B. 30°C. 45°D. 60°7. 若实数m,n,p,q在数轴上的对应点的位置如图所示,且n与q互为相反数,则绝对值最大的数对应的点是A. 点MB. 点NC. 点PD. 点Q8. 如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是A. AB和CDB. AB和EFC. CD和GHD. EF和GH二、填空题(本题共16分,每小题2分)9.若√x−1在实数范围内有意义,则实数x的取值范围是.10. 如图,在Rt∆ABC中,∠C=90°,BC=2,且tanA=1,则AC=.311.分解因式:ab2−ac2=.12.若一个多边形的每个外角都是40°,则该多边形的边数为.13.某校初三年级在“停课不停学”期间,积极开展网上答疑活动,在某时间段共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室.为了解初三年级学生的答疑情况,学校教学管理人员随机进人一个网络教室,则该教室是数学答疑教室的概率为.14.如图,在□ABCD中,延长CD至点E,使DE=DC,连接BE的值是.又AC于点F,则BFFE15.为了丰富同学们的课余生活,某年级买了3个篮球和2个足球,共花费了474元,其中篮球的单价比足球的单价多8元,求篮球和足球的单价,如果设篮球的单价为x元,足球的单价为y元,依题意可列方程组为.16.如果四边形有一组对边平行,且另一组对边不平行,那么称这样的四边形为梯形,若梯形中有一个角是直角,则称其为直角梯形.下面四个结论中,①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上;②存在无数个直角梯形,其四个顶点在同一条抛物线上;③存在无数个直角梯形,其四个顶点在同一个反比例函数的图象上;④至少存在一个直角梯形,其四个顶点在同一个圆上.所有正确结论的序号是.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:(−2)0+√12−2sin30°+|−√3|18. 解不等式组:{3(x−1)<2x 2x+1>x−1219.如图,已知等边三角形ABC,延长BA至点D,延长AC至点E,使AD=CE,连接CD,BE.求证:△ACD ≌△CBE.20.已知关于x的一元二次方程x2−2x+2m−1=0.(1)当m=−1时,求此方程的根;(2)若此方程有两个实数根,求m的取值范围21.如图,在□ABCD中,∠ABC=60°,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接DF.(1)求证:△ABF是等边三角形;(2)若∠CDF=45°,CF=2,求AB的长度22.致敬,最美逆行者!病毒虽无情,人间有大爱,2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省抗击疫情,据国家卫健委的统计数据,截至3月1日,这30个省(区、市)累计派出医务人员总数多达38478人,其中派往湖北省除武汉外的其他地区的医务人员总数为7381人.a.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x< 2100,2100≤x<2500):b.全国30个省(区、市)各派出支援武汉的医务人员人数在900≤x<1300这一组的是:919,997,1045,1068,1101,1159,1179,1194,1195,1262根据以上信息回答问题:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数( )A.不到3万人B.在3万人到3.5万人之间C.超过3.5万人(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是,其中医务人员人数超过1000人的省(区、市)共有个.(3)据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁。
2020年海淀区初三一模数学试题及答案(WORD版)

2020年海淀区初三一模数学试题及答案(WORD版)海淀区九年级第二学期期中数学考试学校考生须知姓名:准考证号:1.本试卷共8页,共三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B铅笔作答,其他题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)1.-2的相反数是A.2B.-2C.1/2D.-1/22.下列几何体中,主视图为矩形的是3.北京故宫有着近六百年的历史,是最受中外游客喜爱的景点之一,其年接待量在2019年首次突破xxxxxxxx人次大关。
将xxxxxxxx用科学记数法可表示为A.0.19×10^8B.0.19×10^7C.1.9×10^7D.19×10^64.北京大兴国际机场于2019年6月30日完美竣工,下图是世界著名建筑设计大师XXX设计的机场成体俯视图的示意图。
下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C.这个图形既是轴对称图形,又是中心对称图形D.这个图形既不是轴对称图形,也不是中心对称图形5.将抛物线y=2x^2向下平移3个单位长度,所得抛物线的解析式是A。
y=2x^2+3 B。
y=2x^2-3 C。
y=2(x-3)^2 D。
y=2(x+3)^26.如图,AB与⊙O相切于点B,连接AO并延长,交⊙O 于点C,连接BC,若OC=OA,则∠C等于A.15°B.30°C.45°D.60°7.若实数m,n,p,q在数轴上的对应点的位置如图所示,且n 与q互为相反数,则绝对值最大的数对应的点是A.点MB.点NC.点PD.点Q8.如图,在平面直角坐标系xy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是A.AB和CDB.AB和XXX和XXX和GH二、填空题(本题共16分,每小题2分)9.若√(x-1)在实数范围内有意义,则实数x的取值范围是__<x<__。
2020年北京市石景山区初三数学一模试卷及参考答案

2020年北京市石景山区初三数学一模试卷及参考答案2020年北京市石景山区初三一模试卷数学学校:__________ 姓名:__________ 准考证号:__________考生须知:1.本试卷共8页,共三道大题,28道小题。
满分100分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。
在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,将本试卷和答题卡一并交回。
一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个。
1.2019年5月7日,我国自主创新研发的“东方红3号科学考察船”通过挪威DNV-XXX权威认证,成为全球最大静音科考船。
“东方红3”是一艘5000吨级深远海科考船,具有全球无限航区航行能力,可持续航行海里。
将用科学记数法表示应为A。
0.15×10^5B。
1.5×10^4C。
15×10^4D。
15×10^32.下列图形中,既是轴对称图形,又是中心对称图形的是A。
B。
C。
D。
3.实数a,b,c在数轴上的对应点的位置如图所示,则不正确的结论是A。
a>3B。
b-c<0C。
ab<0D。
a>-c4.如图,AD平分∠BAC,点E在AB上,EF∥AC交AD 于点G,若∠DGF=40°,则∠BAD的度数为A。
20°B。
40°C。
50°D。
80°5.若一个多边形的内角和为540°,则该多边形的边数是A。
4B。
5C。
6D。
76.在下列几何体中,其三视图中没有矩形的是A。
B。
C。
D。
7.如图,点A,B,C,D在⊙O上,弦AD的延长线与弦BC的延长线相交于点E。
用①AB是⊙O的直径,②CB=CE,③AB=AE中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为A。
2020年 顺义区初三一模数学试题及答案(WORD版)

顺义区2020届初三第一次统一练习数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为 (A )45.510⨯(B )45510⨯ (C )55.510⨯(D )60.5510⨯2.下列有关医疗和倡导卫生的图标中,是轴对称图形的是(A )(B )(C )(D )3.将一副三角板和一个直尺按如图所示的位置摆放,则1∠的度数为 (A )60︒(B )65︒ (C )75︒(D )85︒4.在数轴上,点A 表示数a ,将点A 向右平移4个单位长度得到点B ,点B 表示数b .若a b =,则a 的值为 (A )3-(B )2-(C )1-(D )15.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以毎次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是 (A )12(B )114 (C )115(D )12716.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接P A;(2)作P A的垂直平分线MN,分别交直线l,P A于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是(A)△OPQ≌△OAB(B)PQ∥AB(C)12AP BQ=(D)若PQ=P A,则60APQ∠=︒7.用三个不等式a b>,c d>,a c b d+>+中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A)0 (B)1 (C)2 (D)38.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.图1 图2根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是(A)①③(B)②④(C)②③(D)①④NMBQOA lP二、填空题(本题共16分,每小题2分) 9.若式子26x -有意义,则x 的取值范围是.10.如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪,从量角器的点A处观测,当量角器的0刻度线AB 对准旗杆顶端时,铅垂线对应的度数是50°,则此时观测旗杆顶端的仰角度数是________________.10题图 11题图11.在如图所示的几何体中,主视图、左视图和俯视图完全相同的几何体是.(写出所有正确答案的序号) 12.化简分式22231x y x y x y x y⎛⎫--÷⎪+--⎝⎭的结果为. 13.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等..的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是.14.已知点(2,3)A -关于x 轴的对称点A '在反比例函数ky x=的图象上,则实数k 的值为. 15.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是打乱顺序的统计步骤: ①从扇形图中分析出最受学生欢迎的种类 ②去图书馆收集学生借阅图书的记录 ③绘制扇形图来表示各个种类所占的百分比 ④整理借阅图书记录并绘制频数分布表 正确统计步骤的顺序是.16.如图,在正方形ABCD 中,4AB =,E 、F 是对角线AC 上的两个动点,且2EF =,P 是正方形四边上的任意一点.若PEF ∆是等边三角形,符合条件的P 点共有个,此时AE 的长为 .三、解答题(本题共68分,第17-21题,每小题5分,第22-23题6分,第24题5分,第25-26题,每小题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:1tan 30-︒-.18.解方程组:2313x y x y +=⎧⎨-=⎩19.已知:关于x 的方程()2220xm x m +--=.(1)求证:方程总有实数根;(2)若方程有一根小于2,求m 的取值范围.20.如图,AM ∥BC ,且AC 平分∠BAM .(1)用尺规作∠ABC 的平分线BD 交AM 于点D ,连接CD .(只保留作图痕迹,不写作法) (2)求证:四边形ABCD 是菱形.21.小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了份A 套餐,份B 套餐,份C 套餐(均用含x 或y 的代数式表示);(2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有种点餐方案.22.如图,在□ABCD 中,∠B =45°,点C 恰好在以AB 为直径的⊙O 上.(1)求证:CD 是⊙O 的切线; (2)连接BD ,若AB =8,求BD 的长.MCBAD23.2019年11月,胡润研究院携手知识产权与科创云平台汇桔,联合发布《IP助燃AI新纪元—2019中国人工智能产业知识产权发展白皮书》,白皮书公布了2019中国人工智能企业知识产权竞争力百强榜,对500余家中国人工智能主流企业进行定量评估(满分100分),前三名分别为:华为、腾讯、百度.对得分由高到低的前41家企业的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.得分的频数分布直方图(数据分成8组:60≤x<65,65≤x<70,70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100,);b.知识产权竞争力得分在70≤x<75这一组的是:70.3 71.6 72.1 72.5 74.1c.41家企业注册所在城市分布图(不完整)如下:(结果保留一位小数)北京53.7%深圳7家上海m家杭州2家广州2家苏州1家合肥1家南京1家d.汉王科技股份有限公司的知识产权竞争力得分是70.3 .(以上数据来源于《IP助燃AI新纪元—2019中国人工智能产业知识产权发展白皮书》)根据以上信息,回答下列问题:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第;(2)百度在人工智能领域取得诸多成果,尤其在智能家居、自动驾驶与服务于企业的智能云领域,百度都已进行前瞻布局,请你估计百度在本次排行榜中的得分大概是;(3)在41家企业注册所在城市分布图中,m=,请用阴影标出代表上海的区域;(4)下列推断合理的是.(只填序号)①前41家企业的知识产权竞争力得分的中位数应在65≤x<70这一组中,众数在65≤x<70这一组的可能性最大;②前41家企业分布于我国8个城市. 人工智能产业的发展聚集于经济、科技、教育相对发达的城市,一线城市中,北京的优势尤其突出,贡献榜单过半的企业,充分体现北京在人工智能领域的产业集群优势.24.如图,D 是直径AB 上一定点,E ,F 分别是AD ,BD 的中点, P 是»AB 上一动点,连接P A ,PE ,PF .已知AB =6cm ,设A ,P 两点间的距离为x cm ,P ,E 两点间的距离为y 1cm ,P ,F 两点间的距离为y 2cm .小腾根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:当△PEF 为等腰三角形时,AP 的长度约为cm .B A25. 已知:在平面直角坐标系xOy 中,函数ny x=(n ≠ 0,x>0) 的图象过点A (3,2),与直线l :y kx b =+交于点C ,直线l 与y 轴交于点B (0,-1).(1)求n 、b 的值;(2)横、纵坐标都是整数的点叫做整点.记函数ny x=(n ≠ 0,x>0) 的图象在点A ,C 之间的部分与线段BA ,BC 围成的区域(不含边界)为W .①当直线l 过点(2,0)时,直接写出区域W 内的整点个数,并写出区域W 内的整点的坐标;②若区域W 内的整点不少于...5.个,结合函数图象,求k 的取值范围.26.在平面直角坐标系x O y 中,二次函数y =ax 2+bx +c 的图象经过点A (0,-4)和B (-2,2). (1)求c 的值,并用含a 的式子表示b ;(2)当-2<x <0时,若二次函数满足y 随x 的增大而减小,求a 的取值范围; (3)直线AB 上有一点C (m ,5),将点C 向右平移4个单位长度,得到点D ,若抛物线与线段CD 只有一个公共点,求a 的取值范围.27.已知,如图,△ABC 是等边三角形.(1)如图1,将线段AC 绕点A 逆时针旋转90°,得到AD ,连接BD ,∠BAC 的平分线交BD 于点E ,连接CE . ①求∠AED 的度数;②用等式表示线段AE 、CE 、BD 之间的数量关系(直接写出结果). (2)如图2,将线段AC 绕点A 顺时针旋转90°,得到AD ,连接BD ,∠BAC 的平分线交DB 的延长线于点E ,连接CE . ①依题意补全图2;②用等式表示线段AE 、CE 、BD 之间的数量关系,并证明.图2图1ABCEDCBA28.已知:点P 为图形M 上任意一点,点Q 为图形N 上任意一点,若点P 与点Q 之间的距离PQ始终满足PQ >0,则称图形M 与图形N 相离.(1)已知点A (1,2)、B (0,-5)、C (2,-1)、D (3,4).①与直线y =3x -5相离的点是;②若直线y =3x +b 与△ABC 相离,求b 的取值范围; (2)设直线33+=x y 、直线33+-=x y 及直线y =-2围成的图形为W ,⊙T 的半径为1,圆心T 的坐标为(t ,0),直接写出⊙T 与图形W 相离的t 的取值范围.顺义区2020届初三数学第一次统一练习参考答案9.x≥3;10.40°;11.①③;12.1;13.3;14.6;15.②④③①;16.4,1或1.三、解答题(共12道小题,共68分)17.解:原式33-……………………………………4分= …………………………………………………………5分18.解一:233x yx y+⎧⎨-=⎩②×3得339x y-=③………………………………………1分①+③得510x=………………………………………2分∴2x=.……………………………………………………3分把2x=代入②得1y=-………………………………………4分∴原方程组的解是21xy=⎧⎨=-⎩……………………………………5分解二:由②得:3x y=+③………………………………………1分把③代入①得2(3)31y y++=……………………………2分解得1y=-……………………………………………3分把1y=-代入②得2x=…………………………………4分∴原方程组的解是21xy=⎧⎨=-⎩……………………………………5分19.解:(1)证明:()22224(2)41244(2)b ac m m m m m-=--⨯⋅-=++=+, (1)分∵2(2)0m+≥,∴方程总有实数根.……………………………………………………2分(2)解:∵2(2)2m m x -±+==,∴12222m m x -++==,2222m m x m ---==-.………4分∵方程有一根小于2, ∴-m <2.∴m >-2.…………………………………………………………5分20.解:(1)作图如图1所示.………… 1分(2)证明:∵AC 平分∠BAM ,∴∠1=∠2.……………2分∵AM ∥BC ,∴∠2=∠3. ∴∠1=∠3.∴AB =BC .……………… 3分 同理可证:AB =AD . ∴AD =BC . 又∵AD ∥BC ,∴四边形ABCD 是平行四边形. (4)分∵AB =BC ,∴□ABCD 是菱形.…………………………………………… 5分21.解:(1)他们点了(10-y )份A 套餐,(10-x )份B 套餐,(x+y -10)份C 套餐(均用含x 或y 的代数式表示);…………………………3分(2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有 5种点餐方案. (5)分22.(1)证明:连接OC ,∵OB=OC ,∠B=45°, ∴∠BCO =∠B=45°.∴∠BOC =90°.……………………1分∵四边形ABCD 是平行四边形, ∴AB ∥DC .MB上海∴∠OCD=∠BOC =90°.…………2分 ∵OC 是,∴CD 是⊙O 的切线.……………… 3分(2)解:连接AC ,交BD 于点E .∵AB 是直径,AB =8, ∴∠ACB =90°.∴42BC AC ==4分 ∵四边形ABCD 是平行四边形,∴1222CE AC ==∴2240210BE BC CE +=5分 ∴2410BD BE ==6分23.解:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第16;…… 1分(2)估计百度在本次排行榜中的得分大概是94;(在90≤x <95范围内都对)…………………………………………………………………………2分(3)在41家企业注册所在城市分布图中,m = 5 , (3)分在下图中用阴影标出代表上海的区域:………………4分(4)推断合理的是①②. (6)分24.解:(1)表中的所填数值是1.9; (1)分 (2)E ODCBA…………………………2分(3)结合函数图象,解决问题:当△PEF为等腰三角形时,AP的长度约为3.5,3.8,4.6 cm.………………………………………………………………………………5分25.解:(1)∵点A(3,2)在函数nyx=的图象上,∴n=6. (1)分∵点B(0,-1)在直线l:y kx b=+上,∴b=-1.………………………………………………………………2分(2)①区域W内的整点个数为 1 , (3)分区域W内的整点的坐标为(3,1); (4)分②(ⅰ)当直线l在BA下方时,若直线l与x轴交于点(3,0),结合图象,区域W内有4个整点,此时:3k-1=0,∴13k=.当直线l与x轴的交点在(3,0)右侧时,区域W内整点个数不少于5个,∴0<k<13.(ⅱ)当直线l在BA上方时,若直线l过点(1,4),结合图象,区域W内有4 个整点,此时k-1= 4,解得k= 5.结合图象,可得k>5时,区域W内整点个数不少于5个,综上,k的取值范围是0<k<13或k>5.…………………………………6分26.解:(1)把点A(0,-4)和B(-2,2)分别代入y=ax2+bx+c中,得c=-4, (1)分图1图14a -2b +c =2.∴b=2a -3. (2)分(2)当a <0时,依题意抛物线的对称轴需满足232a a --≤-2. 解得32-≤a<0. 当a >0时,依题意抛物线的对称轴需满足 232a a --≥0. 解得 0< a ≤32. ∴a 的取值范围是32-≤a<0或0< a ≤32.………………………………4分 (3)可求直线AB 表达式为y =-3x -4,把C (m ,5 ∴C (-3,5),由平移得D (1,5).①当a >0时,若抛物线与线段CD (如图1),则抛物线上的点(1,a +2a -3-4)在D 的下方.∴a +2a -3-4<5. 解得a <4. ∴0<a <4.②当a <0∴2454ac b a -=解得3a =-+综上,a27.(1)解:①∵△ABC ∴AB=AC ,∠∵AE 平分∠∴∠BAE =12∠由旋转可知:654321F CB A图3E D ∴AB=AD ,∠BAD =150°. ∴∠ABD =∠D =15°.∴∠AED =∠ABD +∠BAE =45°. (2)分②用等式表示线段AE 、CE 、BD (3)分(2)解:①依题意补全图2.……………………………………………………4分②用等式表示线段AE 、CE 、BD 之间的数量关系为2BD CE =-.………………………………………………………………………5分 证明:过点A 作AF ⊥AE ,交ED 的延长线于点F (如图3).∵△ABC 是等边三角形, ∴AB=AC ,∠BAC =60°. ∵AE 平分∠BAC , ∴∠1=12∠BAC = 30°.由旋转可知:AD=AC ,∠CAD =90°.∴AB=AD ,∠2=∠CAD -∠BAC =30°. ∴∠3=∠4=75°. ∴∠5=∠4-∠1=45°. ∵AF ⊥AE ,∴∠F =45°=∠5.∴AF=AE .∴AE .∵∠6=∠EAF -∠1-∠2=30°, ∴∠6=∠1=30°.DE图2ABC又∵∠F =∠5=45°,AD=AB , ∴△ADF ≌△ABE . ∴DF=BE .∵AB=AC ,AE 平分∠BAC , ∴AE 垂直平分BC . ∴CE=BE .∵BD =EF -DF -BE ,∴BD -2CE .……………………………………………7分28.解:(1)①与直线y =3x -5相离的点是A 、C ; …………………………… 2分②当直线y =3x +b 过点A (1,2)时, 3+ b =2. ∴b =-1.当直线y =3x +b 过点C (2,-1)时, 6+ b =-1. ∴b =-7.∴b 的取值范围是b >-1或b <-7.……………………………………4分(2)t 的取值范围是:t <3-或t >3或3-t <3. …………………… 7分。
2020年度中考初三数学一模试卷(含答案解析)

2020年初三数学一模试卷、选择题(本大题共10小题,每小题3分,共30分) 1 . —3的绝对值是1A.—-3x2.函数中y=三自变量%的取值范围是7.已知a —b = 2,贝U a2—b2—4b的值为C . 6D . 88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形13名参加决赛,其中一名同学已经知道自己A.最高分B.方差C.中位数 D .平均数C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形B. x <24 .下列运算正确的是A . 2a2+ a2= 3 a4B . (—2a2)3= 8a5 6C . a3+a2= aD . (a —b)2= a2—b2B.对角线互相垂直平分的四边形是菱形A. x >2是中心对称图形的是C.k9 .如图,平面直角坐标系中, A (- 8 , 0), B (- 8 , 4), C (0, 4),反比例函数 y = 一的图象分别X与线段AB , BC 交于点D , E ,连接DE .若点B 关于DE 的对称点恰好在 OA 上,则k = A . - 20B . - 16C . - 12D . - 810 .如图,等边三角形 ABC 边长是定值,点 0是它的外心,过点 0任意作一条直线分别交 AB , BC 于 点D , E .将ABDE 沿直线DE 折叠,得到△ BDE ,若B'D , B'E 分别交AC 于点F , G ,连接OF , 0G , 则下列判断错误的是 B.A B FG 的周长是一个定值11 . 16的平方根是 ____________12 .某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为表示应为 ___________ .13 .若 3m = 5 , 3n = 8,贝H 32m + n = _________________14 .用一个圆心角为120 °,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 ___________________ . 15 .如图,四边形 ABCD 内接于O O , OC //AD ,/DAB = 60 °,A DC = 106 °,^UQCB = __________________ 16 .如图,A ABC 中,/C = 90 °,AC = 3, AB = 5 , D 为BC 边的中点,以 AD 上一点O 为圆心的 O 和AB , BC 均相切,则O O 的半径为A . △ADF 也/CGEC •四边形FOEC 的面积是一个定值D •四边形OGB 'F 的面积是一个定值(第6题图①)、填空题(本大题共8小题,每小题2分,共16分)12400,将12400用科学记数法17.如图,二次函数y= (x+ 2)1 2+ m的图象与y轴交于点C,与x轴的一个交点为A (- 1, 0),点B在抛物线上,且与点C关于抛物线的对称轴对称•已知一次函数y= kx + b的图象经过A, B两点,根据图象,则满足不等式(x + 2)2+ m <kx + b的x的取值范围是______________ .18 .如图,正方形ABCD和Rt△AEF, AB = 5 , AE= AF= 4,连接BF, DE.若△AEF绕点A旋转,当/ABF 最大时,S ZADE = ____________1求证:AB = DF;2若AB = BD,求证:四边形ABDF是菱形.三、解答题(共84分)19 .(本题满分8分)1(1 )计算:(n—3)°+ 2sin45 °-一81 - 2x v 3(2)解不等式组:x + 1v 2320 .(本题满分8分)解方程:(1) x2- 8x + 1 = 0(2)3x-221 .(本题满分8分)如图, □ABCD中,E为AD的中点,直线BE, CD相交于点F.连接AF, BD.22 .(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学 生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90 <x <100 ;B 组:80 <x v 90 ;C 组:70 <x v 80 ;D 组:60 V 70 ;E 组:x V 60 ),通过对测试成绩的分析, 得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1 )抽取的学生共有 _________ ,请将两幅统计图补充完整; (2 )抽取的测试成绩的中位数落在 __________ 内;(3 )本次测试成绩在 80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?23 .(本题满分8分)有甲,乙两把不同的锁和 A , B , C 三把不同的钥匙•其中两把钥匙分别能打开这两把锁,第三把钥匙 不能打开这两把锁•随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或 “列表”等方法给出分析过程)B C调查测试成绩扇形统计图调查测试成绩条形统计图(分)24.(本题满分8分)如图,△ ABC中,O O经过A, B两点,且交AC于点D,连接BD,/DBC = /BAC .(1)证明BC与O O相切;25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1 )商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p》1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.26.(本题满分8分)如图,线段0B放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA,使tan ZAOB的值分别为1,2,3.27 .(本题满分10分)已知,二次函数y = ax2+ 2ax —3a (a> 0)图象的顶点为C,与x轴交于A, B两点(点A在点B的左侧),点C, B关于过点A的直线I对称,直线l与y轴交于D .(1 )求A, B两点坐标及直线I的解析式;(2)求二次函数解析式;EF(3)在第三象限抛物线上有一个动点E,连接OE交直线I于点F,求OF的最大值.28 .(本题满分10 分)如图,矩形ABCD , AB = 2 , BC = 10 ,点E 为AD 上一点,且AE = AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰 Rt 壬FG ,以BG , BF 为邻边作CBFHG ,连接AG •设点F 的运动时间为t 秒,(1)试说明:△ ABG S /EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出 HC 的最小值.图1图29 .如图,平面直角坐标系中, A (- 8 , 0), B (- 8 , 4), C (0, 4),反比例函数y =鱼的图象分别与线段AB,BC交于点D,E,连接DE •若点B关于DE的对称点恰好在OA上,贝U k =( )形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG丄OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则ABDE^zFDE,•••BD = FD, BE= FE,Z DFE=Z DBE= 90A . - 20 B. - 16 C.- 12 D . - 8【分析】根据A (- 8 , 0), B (- 8 , 4 ), C (0 , 4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角易证△ADF S £FE•丄厂•丽五,•••AF : EG = BD : BE ,••A (- 8 , 0), B (- 8 , 4), C (0 , 4), .•.AB = 0C = EG = 4 , OA = BC = 8 , •••D 、E 在反比例函数y =上的图象上,x•••E 出,4)、D (- 8,上)4 8•••OG = EC = , AD =-—,48•••BD = 4+二,BE = 8+-84•••AF =丄二二在Rt A ADF 中,由勾股定理: AD 2+AF 2 = DF 2 即:(-丄)2+2 2=( 4+丄)2解得:k =- 12 故选:C .10 •如图,等边三角形 ABC 边长是定值,点 O 是它的外心,过点 O 任意作一条直线分别交 AB , BC 于点D ,巳将厶BDE 沿直线DE 折叠,得到△ B'DE ,若B'D , B'E 分别交AC 于点F , G ,连接OF , OG , 则下列判断错误的是(* *” ----- —*甘 E 〜A .△ADF 也zCGEB .△B'FG的周长是一个定值C •四边形FOEC的面积是一个定值D •四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分/BAC,根据角平分线的定理和逆定理得:FO平分Z DFG,由外角的性质可证明/ DOF = 60。
2020年中考初三数学一模试卷(含答案)

2020年初三数学一模试卷、选择题(本大题共10小题,每小题3分,共30 分)1. —3的绝对值是1B . —3C. 32.函数中y = 自变量x的取值范围是2 —Xk9.如图,平面直角坐标系中, A (—8, 0), B (—8, 4), C (0, 4),反比例函数y= x的图象分别与线段AB, BC交于点D, E,连接DE .若点B关于DE的对称点恰好在OA上,贝U k=A . —20B . —16C . —12D . —810 .如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB, BC于点D , E .将厶BDE沿直线DE折叠,得到△ B DE,若B'D, B E分别交AC于点F , G,连接OF , OG , 则下列判断错误的是D . x> 24.下列运算正确的是22^4 2 3 (6)A . 2a + a = 3aB . (—2a ) = 8a2 2 2D . (a—b) = a —5.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的A.最高分 B .方差C.中位数 D .平均数A . 2&下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形C .对角线相等的四边形是矩形C . 6D . 8B .对角线互相垂直平分的四边形是菱形D .对角线互相平分的四边形是平行四边形A . △ ADF CGEC .四边形FOEC的面积是一个定值B. △ B E G的周长是一个定值D.四边形OGB E的面积是一个定值A . x>2B . x<26.下列图形中,主视图为①的是B . 417. 如图,二次函数y = (x + 2)2+ m 的图象与y 轴交于点C ,与x 轴的一个交点为 A (- 1, 0),点B 在抛物线上,且与点 C 关于抛物线的对称轴对称•已知一次函数y = kx + b 的图象经过A , B 两点,根据图象,则满足不等式(x + 2)2+ m < kx + b 的x 的取值范围是 __________ .18. 如图,正方形 ABCD 和Rt △ AEF , AB = 5, AE = AF = 4,连接BF , DE .若厶AEF 绕点A 旋转,当/ABF 最大时,S ^ADE = ____________三、解答题(共84分) 19. (本题满分8分)(第6题图①)、填空题(本大题共8小题,每小题2分,共16 分) 11. ______________________ 16的平方根是 .12. 某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 __________ . 13.若 3m= 5, 3n= 8,则 32m+n = ____________________14. 用一个圆心角为120°半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 ____________________ . 15. 如图,四边形 ABCD 内接于O O , OC // AD ,/ DAB = 60° / ADC = 106° 则/ OCB = _____________ 16. 如图,△ ABC 中,/ C = 90°, AC = 3, AB = 5, D 为BC 边的中点,以AD 上一点 O 为圆心的 O 和AB ,BC 均相切,则O O 的半径为B'21. (本题满分8分)如图,口ABCD 中,E 为AD 的中点,直线 BE , CD 相交于点F .连接AF , BD . (1) 求证:AB = DF ;(2) 若AB = BD ,求证:四边形 ABDF 是菱形.22. (本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学 生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90W x < 100;B 组:80W x v 90;C 组:70W x v 80;D 组:60< x v 70;E 组:x v 60),通过对测试成绩的分析,得 到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1 )抽取的学生共有 _________ 人,请将两幅统计图补充完整; (2 )抽取的测试成绩的中位数落在 ___________ 组内;(3)本次测试成绩在 80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?c 1 — 1(1)计算:n 3)°+ 2sin45°—-820.(本题满分8分)解方程:2(1) x — 8x + 1 = 01 — 2x v 3(2)解不等式组:X±J v 23(2)3 1—xx — 2—2—调查测试成绩扇形统计图调查测试成绩条形统计图23. (本题满分8分)有甲,乙两把不同的锁和A, B, C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24. (本题满分8分)如图,△ ABC中,O O经过A, B两点,且交AC于点D,连接BD,/ DBC = Z BAC .(1)证明BC与O O相切;25. (本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1 )商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y (千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p> 1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.26. (本题满分8分) 如图,线段0B 放置在正方形网格中, 现请你分别在图 1图2,图3添画(工具只能用直尺)射线OA , 使tan / AOB 的值分别为1, 2, 3.27. (本题满分10分)已知,二次函数 y = ax 2 + 2ax — 3a (a > 0)图象的顶点为 C ,与x 轴交于A , B 两点(点A 在点B 的左 侧),点C , B 关于过点A 的直线I 对称,直线I 与y 轴交于D . (1 )求A , B 两点坐标及直线I 的解析式; (2) 求二次函数解析式;(3) 在第三象限抛物线上有一个动点 E ,连接OE 交直线I 于点F ,求OF 的最大值.j o [II 1 j :丨\B图1【=:0\ iy |ll Al ■■■ J J 1IB ■ ■Ii I \...i图228. (本题满分10 分)如图,矩形ABCD , AB= 2, BC = 10,点E为AD上一点,且AE = AB,点F从点E出发,向终点 D 运动,速度为1 cm/s,以BF为斜边在BF上方作等腰Rt△ BFG,以BG,BF为邻边作口BFHG,连接AG .设点F的运动时间为t秒,(1) 试说明:△ ABGEBF ;(2) 当点H落在直线CD上时,求t的值;(3) 点F从E运动到D的过程中,直接写出HC的最小值.1-图1图2C ( 0, 4),可得矩形的长和宽,易知点D 的横坐标,E 的纵 k 的代数式表示出点 D 的纵坐标和点E 的横坐标,由三角形相似和对称,可求出 AF 的长,然后把问题转化到三角形 A DF 中,由勾股定理建立方程求出k 的值.【解答】 解:过点E 作EG 丄0A ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图 所示:则厶 BDEFDE ,••• BD = FD , BE = FE ,/ DFE = Z DBE = 90°易证△ ADF GFE• AF DF•丽冠,AF : EG = BD : BE ,A (- 8, C),B (-8, 4), C ( 0, 4),AB = OC = EG= =4 , OA =BC = 8 ,D 、E 在反 比例函数y = 上■的图象上, E 哼 ,4) 、D(-8 ,A) s 'OG = EC = k ,AD =- _ k_T8BD = 4+— BE = 8+—s44屮BD 「81 DF AF•三.•-AF = ,9.如图,平面直角坐标系中, A (- 8, 0), B (- 8, 4), C (0, 4),反比例函数y 亠的图象分别与线 B 关于DE 的对称点恰好在0A 上,则k =()B . - 16C .— 12D .- 8【分析】根据A (- 8, 0), B (- 8, 4), 坐标,由反比例函数的关系式,可用含有 A . - 20E ,连接DE .若点2 2 2在Rt △ ADF 中,由勾股定理: AD +AF = DF 即:(-丄)2+22=( 4+二)2 解得:k =- 12 故选:C .10.如图,等边三角形 ABC 边长是定值,点 O 是它的外心,过点 O 任意作一条直线分别交 AB , BC 于点 D ,E -将厶BDE 沿直线DE 折叠,得到△ B ' DE ,若B ' D , B ' E 分别交AC 于点F , G ,连接OF , OG ,则下列判断错误的是()A . △ ADF CGEB . △ B ' FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB'F 的面积是一个定值【分析】A 、根据等边三角形 ABC 的内心的性质可知:AO 平分/ BAC ,根据角平分线的定理和逆定理得:FO 平分/ DFG ,由外角的性质可证明/ DOF = 60°,同理可得/ EOG = 60°,/ FOG = 60°=/DOF = / EOG ,可证明厶 DOF ◎△ GOF ◎△ GOE ,^ OAD ◎△ OCG , △ OAF ◎△ OCE ,可得 AD = CG , AF = CE ,从而得厶 ADF ◎△ CGE ;B 、 根据△ DOF 也厶 GOFGOE ,得 DF = GF = GE ,所以△ ADFB'GFCGE ,可得结论;C 、 根据S 四边形FOEC = S ^OCF + S ^ OCE ,依次换成面积相等的三角形,可得结论为: S A A OC =丄二,.「一(定 值),可作判断;变化,从而四边形 OGB'F 的面积也变化,可作判断. 【解答】解:A 、连接OA 、OC ,•••点0是等边三角形 ABC 的内心, ••• A0 平分/ BAC ,=(4+二)8D 、方法同 C ,将 S 四边形 OGB'F = S\OAC - S A OF G ,根据 S A OFG?FG?OH , FG 变化,故△ OFG 的面积•••点0到AB、AC的距离相等,由折叠得:DO平分/ BDB',•••点0到AB、DB'的距离相等,•••点0到DB'、AC的距离相等,• F0 平分/ DFG ,/ DF0 = Z 0FG = — (/ FAD + Z ADF ),2由折叠得:Z BDE = Z 0DF =_ (Z DAF+Z AFD ),•Z 0FD + Z 0DF =—(Z FAD + Z ADF+Z DAF+Z AFD )= 120°,2•Z D0F = 60°,同理可得Z EOG = 60 ° ,•Z F0G = 60°=Z D0F = Z E0G ,•••△ D0F 也厶G0F ◎△ G0E ,• 0D = 0G , 0E= 0F,Z 0GF = Z 0DF = Z 0DB , Z 0FG =Z 0EG = Z 0EB,•△ 0AD◎△ 0CG , △ 0AF◎△ 0CE ,• AD = CG , AF = CE ,•△ ADF ◎△ CGE ,故选项A正确;B、•••△ D0F 也厶G0FG0E ,• DF = GF = GE ,•△ ADF ◎△ B'GF◎△ CGE ,• B'G = AD ,•△ B'FG 的周长=FG + B'F+B'G = FG +AF +CG = AC (定值),故选项B正确;故选项C正确;D、S 四边形OGB'F = S A OFG+S A B'GF = S A OFD+S A ADF= S 四边形OFAD = S\OAD+S A OAF= S A OCG+S A OAF=S A OAC-SC 、S 四边形 FOEC =也OCF &OCE ’ S GF +S A OAF= S A A 。
最新2020届初三中考数学一模联考真题试题含参考答案 (10)

17.某校九年级有 1200 名学生,在体育考试前随机抽取部分学生进行跳绳测 试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
(Ⅰ)本次参加跳绳测试的学生人数为___________,图①中 m 的值为 ___________; (Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数; (Ⅲ)根据样本数据,估计该校九年级跳绳测试中得 3 分的学生约有多少人? 18.如图,菱形 ABCD 中,E 是对角线 BD 上的一点,连接 EA、EC,求证:∠ BAE=∠BCE.
又∵4a+2b+c>0 4a+2(a+c)+c>0 即 2a+c>0① ∵a<0, ∴c>0 则 c﹣2a>0② 由①②知(c+2a)(c﹣2a)>0, 所以 b2﹣2ac﹣5a2>0, 即 b2﹣5a2>2ac,所以④正确. 故选:B. 【小结】 本题考查了二次函数图象与系数的关系,掌握二次函数的性质、一元二次方程 根的个数和图象的位置之间的关系、不等式的性质是解题的关键. 2.C 解析:C 【解析】 【详解】 A、圆锥的俯视图是圆和圆心,故此选项错误; B、圆柱的俯视图是圆,故此选项错误; C、三棱柱的俯视图是三角形,故此选项正确; D、正方形的俯视图是正方形,故此选项错误. 故选:C
A.50°
B.60°
C.65°
D.70°
8.如图,矩形 ABCD 中, AB = 2 , BC = 2 ,以 B 为圆心, BC 为半径画弧,
交 AD 于 E ,则图中阴影部分的周长是( ).
A. 2 + 2
B. 2 + 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届初三数学一模参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11. 6; 12. 1y x =-、y x =- (答案不唯一); 13.7500; 14. 511或4599; 15.SSS ; 16. 110;三、解答题(本题共72分,) 17. 解:原式=121482+-⨯+;………………… 4分; =9. ………………… 5分.18.解不等式组: 3415122, ①②x x x x .≥-⎧⎪⎨->-⎪⎩解:解不等式①,得1x ≤; ………………… 2分;解不等式②,得1x >-; ………………… 4分;………………… 5分.所以这个不等式组的解集是11x -<≤.19. 已知2210a a --=,求代数式()()()222a a b a b b -++-+的值.解:原式=222244a a a b b -++-+, ………………… 2分;=2244a a -+, ………………… 3分;∵2210a a --=,∴221a a -=, ………………… 4分;∴2242a a -=∴原式=246+=. ………………… 5分. 20.解:∵BD ⊥AC ,CE ⊥AE ,∴90BDC E ∠=∠=︒,∵∠CAE =∠CBD ,∴△BDC ∽△AEC , ………………… 2分; ∴∠BCD =∠ACE , ∵∠BCE =140︒,∴∠BCD =∠ACE =70︒, ………………… 4分; ∵AC =BC ,∴∠ABC =∠BAC=55︒. ………………… 5分.21.解:设杨师傅健步走的平均速度是每小时x 公里. ………… 1分;根据题意得:166012460x x -=. ………… 3分; 解得:5x =, ………… 4分; 经检验:5x =是原方程的根且符合实际问题的意义,答:杨师傅健步走的平均速度是每小时5公里. ………… 5分. 22. 解:(1)∵反比例函数(0)my m x=≠的图象过点A (3,1), ∴31m =∴3m =.∴反比例函数的表达式为3y x=. ………………… 1分; ∵一次函数y kx b =+的图象过点A (3,1)和B (0,-2). ∴312k b b +=⎧⎨=-⎩,解得:12k b =⎧⎨=-⎩,∴一次函数的表达式为2y x =-. ………………… 3分; (2)令0y =,∴20x -=,2x =,∴一次函数2y x =-的图象与x 轴的交点C 的坐标为(2,0). ∵S △ABP = 3,1112322PC PC ⋅+⋅=. ∴2PC =,∴点P 的坐标为(0,0)、(4,0). ………………… 5分; 23.(1)证明: ∵AB ∥CD ,CE ∥AD ,∴四边形AECD 是平行四边形, ………………… 1分; ∵AC 平分∠BAD , ∴EAC DAC ∠=∠,∵AB ∥CD ,∴EAC ACD ∠=∠, ∴DAC ACD ∠=∠,∴AD =CD , ………………… 2分; ∴四边形AECD 是菱形. (2)∵四边形AECD 是菱形,∴AE =CE ,∴EAC ACE ∠=∠, ∵点E 是AB 的中点, ∴AE =BE , ∴B ECB ∠=∠,∴90ACE ECB ∠+∠=︒,即90ACB ∠=︒ ………………… 3分;∵点E 是AB 的中点,EC =2.5, ∴AB =2EC=5,∴BC =3. ………………… 4分; ∴S △ABC =162BC AC ⋅=. ∵点E 是AB 的中点,四边形AECD 是菱形, ∴S △AEC =S △EBC =S △ACD =3.∴四边形ABCD 的面积=S △AEC +S △EBC +S △ACD =9. ………………… 5分; 24. (1)证明:△=()()22214k k k -+-+⎡⎤⎣⎦=2244144k k k k ++-- =10>∴方程有两个不相等的实数根; ………………… 2分; (2)∵方程有一个根为5,∴2255(21)0k k k -+++=, 29200k k -+=∴14k =,25k = ………………… 5分. 25.(1)30m =; ………………… 1分;(2)画图正确 ………………… 4分; (3)积极的建议 ………………… 5分.26.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B作BE ⊥PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ;截至2016(2)连结OC ,如果PD=ABC=60︒,求OC 的长. (1)证明:连结OD . ∵OA =OD ,∴DAO ADO ∠=∠,∵PD 切⊙O 于点D ,∴PD ⊥OD ,∵BE ⊥PD ,∴OD ∥BE , …………………∴E ADO ∠=∠,∴E DAO ∠=∠,………………… 2分;∴AB =BE .(2)解:∵OD ∥BE ,∠ABC=60︒, ∴60DOP ABC ∠=∠=︒,∵ PD ⊥OD ,∴tan DPDOP OD∠=,= ∴2OD =, ∴4OP =, ∴6PB =, ∴sin PCABC PB∠=, ∴26PC =, ∴PC =∴DC = ………………… 4分; ∴222DC OD OC +=, ∴22227OC =+=,∴OC =. ………………… 5分;27. 解:(1)根据题意得: 1413m n m n +=-⎧⎨+=-⎩解得:43m n =-⎧⎨=⎩二次函数的表达式为243y x x =-+. ………………… 2分; 顶点坐标为(2,-1) ………………… 3分; (2)39b <<. ………………… 5分; (3)∵()1,P x c 和点()2,Q x c 在函数243y x x =-+的图象上,∴PQ ∥x 轴,∵二次函数243y x x =-+的对称轴是直线2x =, 又∵12x x <,2PQ a =.∴12x a =-,22x a =+. ………………… 6分; ∴()()2212612261x ax a a a a a -++=--+++=5. ………………… 7分. 28.证明:(1)∵AD BC ⊥,45ABC ∠=︒∴45BAD ∠=︒∴AD BD =,………………… 1分; ∵DF 平分ADB ∠ ∴12∠=∠, 在△ADF 和△BDF 中 ∵=,1=2,=,AD BD DF DF ⎧⎪∠∠⎨⎪⎩, ∴△ADF ≌△BDF . ∴AF BF =.∴FAB FBA ∠=∠. ………………… 2分; 或用“三线合一”(2) 补全图形 ………………… 3分;图1数量关系是:GD AE BE +=. ………………… 4分;过点D 作DH DE ⊥交BE 于点H ∴90ADE ADH ∠+∠=︒, ∵AD BC ⊥,∴90BDH ADH ∠+∠=︒, ∴ADE BDH ∠=∠,∵AD BC ⊥,BE AC ⊥,AKE BKD ∠=∠, ∴DAE DBH ∠=∠, 在△ADE 和△BDH 中∵=,=,DAE DBH AD BD ADE BDH ∠=∠⎧⎪⎨⎪∠∠⎩, ∴△ADE ≌△BDH .∴DE DH =,AE BH =, ………………… 5分; ∵DH DE ⊥,∴45DEH DHE ∠=∠=︒, ∵BE AC ⊥, ∴45DEC ∠=︒,∵点G 与点D 关于直线AC 对称, ∴AC 垂直平分GD ,∴GD ∥BE ,45GEC DEC ∠=∠=︒, ∴90GED EDH ∠=∠=︒,∴GE ∥DH ,………………… 6分;∴四边形GEHD 是平行四边形∴GD EH =,………………… 7分. ∴GD AE BE +=.或过点D 作DH DE ⊥交AC 的延长线于点H. 29. (1)当⊙P 的半径为4时,①P 1(0,3-),P 2(3); ………………… 2分; ②如果点P在直线1y x =+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标;解:由题意可知:B(,2)、D0)图2图2发现直线1y x =+经过点B 、D. ………………… 3分;∴直线13y x =-+与y 轴的交点E 为(0,1), ∵矩形ABCD 且OC =OD.∴点E 到矩形ABCD∴PE =4,△BFE ≌△DOE∴BF =OD OE =EF =1, ∴222221ED EO OD =+=+∴2ED =,………………… 4分;∴EB =ED =2,当点P 在x 轴下方时,可证△DNP ≌△DOE , ∴DN =OD ,OE =PN =1,∴点P 的坐标为(-1);………………… 5分; 当点P 在x 轴上方时,可证△EPM ∽△EBF , ∴PM =2BF =ME =2EF =2,∴点P 的坐标为(-,3). ………………… 6分; (2)11m -<<+m ≠1. ………………… 8分.。