2016七年级数学期中必考题_题型归纳
2016初一数学上册期中必考题

2016初一数学上册期中必考题2016初一数学上册期中必考题1.点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)2.若三角形的三边长分别为3,4,x,则x的值可能是()A.1B.6C.7D.103.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.下列函数中,y是x的一次函数的是()①y=x﹣6;②y=;③y=;④y=7﹣x.A.①②③B.①③④C.①②③④D.②③④5.若直线y=mx+2m﹣3经过二、三、四象限,则m的取值范围是()A.m0C.m>D.m 6.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个8.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.BCD.9.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.则∠C 的度数是()9题10题【七年级数学期中试卷及答案】A.30°B.45°C.55°D.60°10.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题(本大题共8小题,每小题3分,共24分)11.函数y=中,自变量x的取值范围是.12.已知一次函数y=(k﹣1)x|k|+3,则k=.13.直线y=kx+b与直线y=﹣2x+1平行,且经过点(﹣2,3),则kb=.14.如图,一次函数y=x+6的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.14题15题17题15如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组的解.16.y+2与x+1成正比例,且当x=1时,y=4,则当x=2时,y=_________.17.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF的面积:cm2.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.精心整理,仅供学习参考。
2016年人教版七年级上册数学期中考试试卷(含答案)

一、填得圆圆满满(每小题3分,共30分)1. -1- (-3)= _______ 。
2. ___________________ -0.5的绝对值是___ ,相反数是 ____ ,倒数是______________________ 。
2xy3. 单项式____________ 2的系数是______ ,次数是。
4 .若逆时针旋转90°记作+ 1,则-2表示____________ 。
5. 如果a、b互为相反数,x、y互为倒数,那么(a+b)xy+a2-b2二_6. 在数轴上,点A表示数-1,距A点2.5个单位长度的点表示的数7. 灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。
将这个数字用科学计数法表示并保留三个有效数字为___________ 元。
8. 长方形的长是a米,宽比长的2倍少b米,则宽为 ____ 米。
9. 若m n满足m-2 + (n + 3)2=0,则n m = __________ .10. 某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x万元,则可列出的方程为______________二、做出你的选择(每小题3分,共30分)11. 如果向东走2km记作+2km那么—3km表示().A.向东走3kmB.向南走3kmC.向西走3kmD.向北走3km12. 下列说法正确的是(1A.x的系数为0B.—是一项式C.1是单项式D.-4X系数是4a13. 下列各组数中是同类项的是()A.4x和4yB.4 xy2和4xyC.4 xy2和-8 x2yD.-4 xy2和4y2x14. 下列各组数中,互为相反数的有()①-(-2)和十2②(_1)2和一12③ 23和32④C2)3和-23A.④B. ①②C. ①②③D. ①②④15. 若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a 、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能16. 下列计算正确的是()A.4x-9x+6x=-xB.xy-2xy=3xy3 2 1 [C.x -x =xD. 2 a- 2 a=017. 数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度, 此时点M表示的数是()A. - 6B. 2C. —6或2D. 都不正确18. 若x的相反数是3, y = 5,则x+y的值为().A. —8B. 2C. 8 或—2D. —8 或219. 若3x=6,2y=4 则5x+4y 的值为()A.18B.15C.9D. 6三、用心解答(共60分)21. (20分)计算(1) -26-(-15) (2) (+7)+(-4)-(-3)-141 1(3) (-3) x 3 宁(-2 )X( - 2) (4) -(3-5)+3 2x (-3)22. 解方程(本题10分)(1) x+3x= —12 (2) 3x+7=32- 2x23. (6分)将下列各数用“ <”连接:-2 2, - (-1 ), 0 , -2.524. (6分)若a是绝对值最小的数,b是最大的负整数。
2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
人教版2016七年级(上)期中数学试卷(解析版)

人教版2015-2016学年七年级(上)期中数学试卷(解析版)一.选择题:1.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是( )A.a<﹣a<b<﹣b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<a<b<﹣a 2.据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( )A.4.7×1013元B.4.7×1012元C.4.71×1013元D.4.72×1013元3.用四舍五入法把0.06097精确到千分位的近似值的有效数字是( )A.0,6,0 B.0,6,1,0 C.0,6,1 D.6,14.下列结论中,正确的是( )A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式5.当k取何值时,多项式x2﹣3kxy﹣3y2+xy﹣8中,不含xy项( )A.0 B.C.D.﹣6.如图,钟表8时30分时,时针与分针所成的角的度数为( )A.30° B.60° C.75° D.90°7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是( )A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.9.博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.A.2075 B.1575 C.2000 D.150010.下列图形中,不是正方体的展开图的是( )A.B.C.D.11.下列四个角中,最有可能与70°角互补的角是( )A.B.C.D.12.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有( )BP=AB...解方程:.21.(2015秋•文安县期末)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF 平分∠BOC,求∠AOC和∠COB的度数.22.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么? 人教版七年级(上)期中数学试卷参考答案与试题解析一.选择题:1.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是( )A.a<﹣a<b<﹣b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<a<b<﹣a 【考点】有理数大小比较;数轴.【分析】根据a、b在数轴上的位置,可对a、b赋值,然后即可用“<”连接.【解答】解:令a=﹣0.8,b=1.5,则﹣a=0.8,﹣b=﹣1.5,则可得:﹣b<a<﹣a<b.故选B.【点评】本题考查了有理数的大小比较及数轴的知识,同学们注意赋值法的运用,这可以给我们解题带来很大的方便.2.据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( )A.4.7×1013元B.4.7×1012元C.4.71×1013元D.4.72×1013元【考点】科学记数法与有效数字.【分析】首先用科学记数法的表示成a×10n的形式,其中1≤|a|<10,n为整数.再保留有效数字,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:471564亿=47 1564 0000 0000=4.71564×1013≈4.72×1013,故选:D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.用四舍五入法把0.06097精确到千分位的近似值的有效数字是( )A.0,6,0 B.0,6,1,0 C.0,6,1 D.6,1【考点】近似数和有效数字.【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:用四舍五入法把0.060 97精确到千分位的近似值是0.061.其有效数字是从左边第一个不为零的数字6开始,至精确到的数位1结束,共有6、1两位.故选D.【点评】本题旨在考查对基本概念的应用能力,需要同学们熟记有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.4.下列结论中,正确的是( )A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式【考点】单项式;多项式.【分析】根据单项式的次数与系数定义分别判断得出即可.【解答】解:A、单项式的系数是,次数是3,故此选项错误;B、单项式m的次数是1,系数是1,故此选项错误;C、单项式﹣xy2z的系数是﹣1,次数是4,故此选项正确;D、多项式2x2+xy+3是三次二项式,故此选项错误.故选:C.【点评】此题主要考查了单项式的次数与系数的定义,熟练掌握相关的定义是解题关键. 5.当k取何值时,多项式x2﹣3kxy﹣3y2+xy﹣8中,不含xy项( )A.0 B.C.D.﹣【考点】多项式.【分析】由于多项式中含xy的项有﹣3kxy+xy,若不含xy项,则它们的系数为0,由此即可求出k的值.【解答】解:∵多项式x2﹣3kxy﹣3y2+xy﹣8中不含xy项,∴﹣3k+=0,∴k=.故选C.【点评】在多项式中不含哪项,即哪项的系数为0,所以几项的系数和为0,即合并同类项时为0.6.如图,钟表8时30分时,时针与分针所成的角的度数为( )A.30° B.60° C.75° D.90°【考点】钟面角.【分析】本题考查了钟表里的旋转角的问题,钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动()度,逆过来同理.【解答】解:∵8时30分时,时针指向8与9之间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30°,∴8时30分时分针与时针的夹角是2×30°+15°=75度.故选:C.【点评】本题考查的是钟表表盘与角度相关的特征.能更好地认识角,感受角的大小.7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A.1800元B.1700元C.1710元D.1750元【考点】一元一次方程的应用.【分析】设手机的原售价为x元,根据原价的八折出售可获利14%,可得出方程,解出即可.【解答】解:设手机的原售价为x元,由题意得,0.8x﹣1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选C.【点评】本题考查了一元一次方程的应用,解答本题的关键是正确表示出手机的利润,根据利润得出方程,难度一般.8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是( )A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.【考点】由实际问题抽象出一元一次方程.【分析】根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.【解答】解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选C.【点评】考查列一元一次方程;得到乙的羊数的关系式是解决本题的难点.9.博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.A.2075 B.1575 C.2000 D.1500【考点】一元一次方程的应用.【分析】先要参考火车和学生的相对速度,确定火车一分钟能跑多少米:(120000m/h+4500m/h))/60=2075米,然后用其减去队伍的长就是火车的长.【解答】解:设火车的长为x米,∵学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来∴火车相对于学生一分钟能跑多少米:=2075米,一分钟火车能跑2075 米而火车头与队伍头相遇到火车尾与队伍尾离开共60s,也就是一分钟,∴500+x=,解得x=1575,∴火车的长度应该是2075m﹣500m=1575m,故选B.【点评】此题主要考查一元一次方程的应用,解题的关键是找到相对速度和等式关系.10.下列图形中,不是正方体的展开图的是( )A.B.C.D.【考点】几何体的展开图.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.下列四个角中,最有可能与70°角互补的角是( )A.B.C.D.【考点】余角和补角.【分析】根据互补的性质,与70°角互补的角等于180°﹣70°=110°,是个钝角;看下4个答案,哪个符合即可;【解答】解:根据互补的性质得,70°角的补角为:180°﹣70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.【点评】本题考查了角互补的性质,明确互补的两角和是180°,并能熟练求已知一个角的补角.12.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有( )BP=AB【分析】分类讨论:当OC在∠AOB外部,则∠BOC=∠AOB+∠AOC;当OC在∠AOB内部,则∠BOC=∠AOB﹣∠AOC,然后根据度分秒的换算进行计算.【解答】解:当OC在∠AOB外部,则∠BOC=∠AOB+∠AOC=75°18′+27°53′=102°71′=103°11′;当OC在∠AOB内部,则∠BOC=∠AOB﹣∠AOC=75°18′﹣27°53′=74°78′﹣27°53′=47°25′.故答案为103°11′或47°25′.【点评】本题考查了度分秒的换算:1度=60分,即1°=60′,1分=60秒,即1′=60″.三、解答题17..【考点】有理数的混合运算.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:=﹣4×+(﹣27)×(﹣)=﹣9+8=﹣1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.18.化简求值已知:(a+2b)2+|2b﹣1|=0,求ab﹣[2ab﹣3(ab﹣1)]的值.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方;整式的加减—化简求值.【分析】根据(a+2b)2+|2b﹣1|=0,可以求得a、b的值,从而可以求得ab﹣[2ab﹣3(ab ﹣1)]的值.【解答】解:∵(a+2b)2+|2b﹣1|=0,∴a+2b=0 2b﹣1=0解得,a=﹣1,b=0.5∴ab﹣[2ab﹣3(ab﹣1)]=ab﹣2ab+3ab﹣3=2ab﹣3=2×(﹣1)×0.5﹣3=﹣1﹣3=﹣4.【点评】根据解二元一次方程组、非负数的性质,解题的关键是明确整式化简求值的方法. 19.解方程:.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,将y系数化为1,即可求出解.【解答】解:去分母,得3(y+1)=24﹣4(2y﹣1),去括号,得9y+3=24﹣8y+4,移项,得9y+8y=24+4﹣3,合并同类项,得17y=25,系数化为1,得y=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.20.(2006•海南)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?【考点】二元一次方程组的应用.【分析】由图片的信息可知:一盒玩具的价钱+两枚徽章的价钱=145元,两盒玩具的价钱+三枚徽章的价钱=280元.据此可列出方程组求解.【解答】解:设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元.依题意得解这个方程组得答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.【点评】解题关键是弄清题意,合适的等量关系:一盒玩具的价钱+两枚徽章的价钱=145元,两盒玩具的价钱+三枚徽章的价钱=280元.列出方程组.21.(2015秋•文安县期末)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF 平分∠BOC,求∠AOC和∠COB的度数.【考点】角平分线的定义.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.22.(2015秋•盘锦期末)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?【考点】一元一次方程的应用.【分析】(1)设该班购买乒乓球x盒,根据乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.(2)根据各商店优惠条件计算出所需款数确定去哪家商店购买合算.【解答】解:(1)设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,答:购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时,甲店需付款30×5+(15﹣5)×5=200元.乙店需付款(30×5+15×5)×0.9=202.5元.因为200<202.5,所以去甲店合算.(3)当购买30盒时,甲店需付款30×5+(30﹣5)×5=275元.乙店需付款(30×5+30×5)×0.9=270元.因为275>270,去乙店合算.【点评】乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.。
2016七级数学上学期中试卷解析

2016年七年级数学上学期中试卷解析2016年七年级数学上学期中试卷解析一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是()A.﹣3B.﹣2C.0D.12.下列各式中不是整式的是()A.3xB.C.D.x﹣3y3.下列各组数中,互为相反数的是()A.﹣(﹣2)与2B.(﹣2)2与4C.|﹣2|与2D.﹣22与44.若﹣3x2my3与2x4yn是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【七年级数学期中试卷及答案】5.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边6.下列根据等式基本性质变形正确的是()A.由﹣x=y,得x=2yB.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3D.由3x﹣5=7,得3x=7﹣57.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是()A.ab+(c﹣a)aB.ac+(b﹣a)aC.ab+ac﹣a2D.bc+ac﹣a28.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣2二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作__________.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:__________.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为__________.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为__________.13.若关于x的方程(2a+1)x2+5xb﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是__________.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为__________.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是__________.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=__________.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.19.解方程:=3x﹣.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作【七年级数学期中试卷及答案】正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重__________千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2ny5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?答案解析一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是()A.﹣3B.﹣2C.0D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.【点评】本题考查了绝对值,绝对值是实数轴上的点到原点的距【七年级数学期中试卷及答案】离.2.下列各式中不是整式的是()A.3xB.C.D.x﹣3y【考点】整式.【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3x是单项式,是整式,故A不符合题意;B、既不是单项式,又不是多项式,不是整式,故B符合题意;C、是单项式,是整式,故C不符合题意;D、x﹣3y是多项式,是整式,故D不符合题意.故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义.3.下列各组数中,互为相反数的是()A.﹣(﹣2)与2B.(﹣2)2与4C.|﹣2|与2D.﹣22与4【考点】相反数;有理数的乘方.【分析】利用化简符号法则,绝对值的性质,有理数的乘方,以及只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、﹣(﹣2)=2,不是互为相反数,故本选项错误;B、(﹣2)2=4,不是互为相反数,故本选项错误;C、|﹣2|=2,不是互为相反数,故本选项错误;D、﹣22=﹣4,﹣4与4互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,绝对值的性质,有理数的乘方,是基础题,熟记概念是解题的关键.4.若﹣3x2my3与2x4yn是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【考点】同类项.【分析】根据同类项的定义得出2m=4,n=3,求出后代入,即可得出答案.【解答】解:∵﹣3x2my3与2x4yn是同类项,∴2m=4,n=3,∴m=2,∴|m﹣n|=|2﹣3|=1,故选B.【点评】本题考查了同类项的定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,是同类项.5.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【考点】实数与数轴.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,【七年级数学期中试卷及答案】又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.6.下列根据等式基本性质变形正确的是()A.由﹣x=y,得x=2yB.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3D.由3x﹣5=7,得3x=7﹣5【考点】等式的性质.【分析】根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质2,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【解答】解:A、等是左边乘以﹣﹣3,右边乘以3,故A错误;B、等式的两边都加(2﹣2x),得x=4,故B正确;C、等式的两边都减2x,得x=﹣﹣3,故C错误;D、等式的两边都加5,得3x=7+5,故D错误;故选:B.【点评】本题考查了等式的性质,利用了等式的性质1,等式的性质2.7.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是()A.ab+(c﹣a)aB.ac+(b﹣a)aC.ab+ac﹣a2D.bc+ac﹣a2【考点】列代数式.【专题】计算题;整式.【分析】根据图形表示出阴影部分面积,化简得到结果,即可作出判断.【解答】解:根据题意得:阴影部分面积S=ab+a(c﹣a)=ac+a(b ﹣a)=ab+ac﹣a2.故选D.【点评】此题考查了列代数式,正确表示出阴影部分面积是解本题的关键.8.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣2【考点】由实际问题抽象出一元一次方程.【专题】几何图形问题.【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,【七年级数学期中试卷及答案】故选B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作﹣10m.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动10m应记作﹣10m.故答案为:﹣10m.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a 元(答案不唯一).【考点】代数式.【专题】开放型.【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为3×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值【解答】解:将300000用科学记数法表示为:3×105.故答案为:3×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a| 12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为0.【考点】代数式求值.【分析】首先根据已知列出方程x2+3x+5=7,通过移项推出x2+3x=2,通过代入式子即可推出结果为0.【解答】解:∵x2+3x+5=7,∴x2+3x=2,∴x2+3x﹣2=2﹣2=0.故答案为0.【点评】本题主要考查代数式的求值,关键在于根据已知推出x2+3x=2.13.若关于x的方程(2a+1)x2+5xb﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是x=6.【考点】一元一次方程的定义.【七年级数学期中试卷及答案】【分析】根据一元一次方程的定义可知2a+1=0,b﹣2=1,从而得到a、b的值,然后将a、b的值代入方程ax+b=0求解即可.【解答】解:∵关于x的方程(2a+1)x2+5xb﹣2﹣7=0是一元一次方程,∴2a+1=0,b﹣2=1.解得:a=﹣,b=3.将a=﹣,b=3代入ax+b=0得:﹣x+3=0.解得x=6.故答案为:x=6.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到2a+1=0,b﹣2=1是解题的关键.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为4.【考点】整式的加减.【分析】先把两式相加,合并同类项得5x3﹣8x2+2mx2﹣4x+2,不含二次项,即2m﹣8=0,即可得m的值.【解答】解:据题意两多项式相加得:5x3﹣8x2+2mx2﹣4x+2,∵相加后结果不含二次项,∴当2m﹣8=0时不含二次项,即m=4.【点评】本题主要考查整式的加法运算,涉及到二次项的定义知识点.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是8.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题意得:原式=2×(﹣5)﹣3×(﹣6)=﹣10+18=8.故答案为:8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=1﹣.【考点】规律型:图形的变化类.【专题】规律型.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].【考点】有理数的混合运算.【专题】计算题.【七年级数学期中试卷及答案】【分析】(1)原式先计算乘方运算,再利用乘法分配律计算即可;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)原式=16×(﹣﹣)=﹣12﹣10=﹣22;(2)原式=﹣4﹣××(﹣14)=﹣4+=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b=ab2+5a2b﹣1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,即a=﹣2,b=3,则原式=﹣42+60﹣1=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:=3x﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得2(2x﹣1)﹣2×6=18x﹣3(x+4),去括号得4x﹣2﹣12=18x﹣3x﹣12,移项得4x﹣18x+3x=2+12﹣12,合并同类项得﹣11x=2,系数化成1得x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).【七年级数学期中试卷及答案】答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了正数和负数,利用了绝对值的意义,有理数的加法运算.21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2ny5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.【考点】多项式;单项式.【分析】利用多项式与单项式的次数与系数的确定方法得出关于m与n的等式进而得出答案.【解答】解:由于多项式是六次四项式,所以m+1+2=6,解得:m=3,单项式26x2ny5﹣m应为26x2ny2,由题意可知:2n+2=6,解得:n=2,所以(﹣m)3+2n=(﹣3)3+2×2=﹣23.【点评】此题主要考查了多项式与单项式的次数,正确得出m,n的值是解题关键.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.【考点】一元一次方程的解.【专题】计算题.【分析】将m看做已知数分别表示出两方程的解,根据互为相反数两数之和为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:x﹣2m=﹣3x+4,移项合并得:4x=2m+4,解得:x=m+1,根据题意得:m+1+2﹣m=0,解得:m=6.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【考点】有理数的除法.【分析】(1)根据倒数的定义可知:()与()互为倒数;(2)利用乘法的分配律可求得()的值;(3)根据倒数的定义求解即可;【七年级数学期中试卷及答案】(4)最后利用加法法则求解即可.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.【点评】本题主要考查的是有理数的乘除运算,发现()与()互为倒数是解题的关键.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?【考点】一元一次方程的应用.【专题】应用题.【分析】(1)计算出小车需要的时间,然后可得出可以晚出发的时间;(2)设大车速度为每小时x千米,则小车速度为每小时(x+30)千米,根据小车要提前30分钟到达,可得出方程,解出即可.(3)设原速度为a,小车提速到原来的m倍,根据仍按时到达可得出方程,解出即可.【解答】解:(1)总路程=80×2=160km,小车需要的时间为:=1.6(小时),故小车可以晚出发0.4小时,即24分钟,(2)设大车速度为每小时x千米,则2x=1.5(x+30),解得x=90,即大车速度为每小时90千米,小车速度为每小时120千米.(3)设原速度为a,小车提速到原来的m倍,根据题意得:a+2a=(2﹣)ma,解得:m=1.4,答:应提速到原来的1.4倍.精心整理,仅供学习参考。
2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。
1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。
9.如果将盈利2万元记作2万元,那么-4万元表示_________________。
10. 绝对值等于6的数是___________。
11. 2ab+b 2+( )=3ab-b 2。
12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。
(必考题)初中数学七年级上期中经典练习题(含答案解析)

一、选择题1.有理数 a,b 在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>0 2.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8673.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定4.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°5.下列图形经过折叠不能围成棱柱的是().A.B.C.D.6.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为()A.6B.8C.-6D.47.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°8.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A .27B .51C .69D .729.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( ) A .﹣1 B .0 C .1 D .210.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元) 每次收费(元) A 类 1500 100 B 类 3000 60 C 类400040例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡D .不购买会员年卡11.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( ) A .23bB .26bC .29bD .236b12.代数式:216x y x +,25xy x +,215y xy -+,2y ,-3中,不是整式的有( )A .4个B .3个C .2个D .1个 13.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤14.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c 15.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯二、填空题16.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___17.若代数式5x -5与2x -9的值互为相反数,则x =________.18.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.19.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.20.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.21.若方程423x m x +=-与方程1(16)62x -=-的解相同,则m 的值为______.22.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃23.用黑白两色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:则第n 个图案中有白色纸片________张.24.若a 与b 互为相反数,c 与d 互为倒数,则a+b+3cd=_____.25.23-的相反数是______.三、解答题26.读句画图:如图所示,A ,B ,C ,D 在同一平面内. (1)过点A 和点D 画直线; (2)画射线CD ; (3)连接AB ; (4)连接BC ,并反向延长BC .(5)已知AB=9,直线AB 上有一点F ,并且BF=3,则AF=_________27.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -; ()2已知x 22a b --与y1ab 3的同类项,求2B A -的值. 28.问题情境:在平面直角坐标系xOy 中有不重合的两点()11,A x y 和点()22,B x y ,小明在学习中发现,若12x x =,则//AB y 轴,且线段AB 的长度为12y y -;若12y y =,则//AB x 轴,且线段AB 的长度为12x x -; (应用):(1)若点()1,1A -、()2,1B ,则//AB x 轴,AB 的长度为__________. (2)若点()1,0C ,且//CD y 轴,且2CD =,则点D 的坐标为__________. (拓展):我们规定:平面直角坐标系中任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212,d M N x x y y =-+-;例如:图1中,点()1,1M -与点()1,2N -之间的折线距离为()(),1112235d M N =--+--=+=. 解决下列问题:(1)如图1,已知()2,0E ,若()1,2F --,则(),d E F __________; (2)如图2,已知()2,0E ,()1H t ,,若(),3d E H =,则t =__________. (3)如图3,已知()3,3P 的,点Q 在x 轴上,且三角形OPQ 的面积为3,则(),d P Q =__________.29.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.30.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题题1 2 3 4 5 6 7 8 9 10 11 12 13 14 15号答C C C C B C CD A C C C D C B案二、填空题16.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的17.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x=14系数化为1得x=2【点睛】本题考查了18.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从19.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣120.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有11221.【解析】【分析】首先求出方程的解然后进一步将解代入方程由此即可求出答案【详解】由可得:∴根据题意将代入方程可得:∴故答案为:【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用熟练掌握相22.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答23.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第24.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值25.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数三、解答题26.27.28.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的解析:-5【解析】分析:点A表示的数是-1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,-1-x=4,解出即可解答;解答:解:如图,点A表示的数是-1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,-1-x=4,故答案为-5.17.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x=14系数化为1得x=2【点睛】本题考查了解析:2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.18.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从解析:-29,A.【解析】【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【详解】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是-29,(2017-1)÷5=2016÷5=403…1,∴2017应排在A、B、C、D、E中A的位置,故答案为:-29;A【点睛】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.19.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣1解析:-1+2π【解析】试题解析:由圆的周长计算公式得:AB 的长度为:C=2πd=2π,点B 对应的数是2π﹣1.20.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星∴第10个图形有112解析:【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星. ∴第10个图形有112-1=120个小五角星.21.【解析】【分析】首先求出方程的解然后进一步将解代入方程由此即可求出答案【详解】由可得:∴根据题意将代入方程可得:∴故答案为:【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用熟练掌握相 解析:6-【解析】 【分析】 首先求出方程1(16)62x -=-的解,然后进一步将解代入方程423x m x +=-,由此即可求出答案. 【详解】由1(16)62x -=-可得:1612x -=-, ∴4x =,根据题意,将4x =代入方程423x m x +=-可得:203m+=,∴6m =-, 故答案为:6-. 【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用,熟练掌握相关概念是解题关键.22.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8 【解析】 【分析】根据有理数的减法解答即可. 【详解】 -1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.23.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第解析:3n+1【解析】【分析】试题分析:观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,…第n个图案中有白色纸片=3n+1张.故答案为3n+1.【点睛】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.24.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值解析:【解析】【分析】【详解】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为3.【点睛】本题考查代数式求值.25.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】解:由相反数的定义可知,23-的相反数是()23--,即32-. 故答案为:32-.【点睛】 本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.三、解答题26.(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)6或9【解析】【分析】(1)根据直线向两方无限延伸得出即可;(2)根据射线向一方无限延伸画出图形;(3)根据线段有两个端点画出图形;(4)利用反向延长线段的作法得出即可;(5)利用得出即可.【详解】(1)如图所示,直线AD 为所求;(2)如图所示,射线CD 为所求;(3)如图所示,线段AB 为所求;(4)如图所示,射线CB 为所求;(5)①若点F 在线段AB 上,则AF=AB-BF=9-3=6;②若点F 在线段AB 的延长线上,则AF=AB+BF=9+3=12,故答案为:6或9.【点睛】本题考查的是直线、射线、线段的定义及性质等知识,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可. 27.(1)225x 9xy 9y +-(2)63或-13【解析】【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项, ∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.28.【应用】:(1)3;(2)(1,2)或(1,−2);【拓展】:(1)=5;(2)2或−2;(3)4或8【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1−x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD =2即可得出|0−m|=2,解之即可得出结论;(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|−1−2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD =2,∴|0−m|=2,解得:m =±2, ∴点D 的坐标为(1,2)或(1,−2).故答案为:(1,2)或(1,−2).【拓展】:(1)d (E ,F )=|2−(−1)|+|0−(−2)|=5.故答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2−1|+|0−t|=3,解得:t=±2.故答案为:2或−2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1||332x⨯=,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3−2|+|3−0|=4;当点Q的坐标为(−2,0)时,d(P,Q)=|3−(−2)|+|3−0|=8.故答案为:4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.29.-x2+y2,3.【解析】【分析】先将原式去括号,合并同类项化简成2x2﹣2y2﹣3x+3y,再将x,y的值代入计算即可.【详解】原式=2x2﹣2y2﹣3x2y2﹣3x+3x2y2+3y=2x2﹣2y2﹣3x+3y,当x=﹣1,y=2时,原式=2﹣8+3+6=3.30.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.。
2016年初一数学期中必考题大全

2016年初一数学期中必考题大全
2016年初一数学期中必考题大全
》》》2016年初一上册数学期中必考题
》》》2016七年级数学期中必考题
》》》初一期中必考数学题型2016七年级数学期中试卷及答案
》》》2016年初一期中必考数学题
》》》2016初一数学上册期中必考题
精品小编为大家提供的初一数学期中必考题,大家仔细阅读了吗?最后祝同学们学习进步。
更多精彩内容请关注七年级期中试卷及答案。
官方公众平台--精品初中生正式上线啦,大家可扫描下方的二维码关注,也可搜索微信号“zk51edu”或者直接输入“精品初中生”进行关注!!我们每天会为大家推送最新的内容哦~。
初一上册数学期中考试试卷及答案2016

三一文库()/初中一年级〔初一上册数学期中考试试卷及答案2016[1]〕一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m 时水位变化记作( )A.﹣3m B.3m C.6m D.﹣6m2.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.43.在数轴上表示﹣2的点与表示3的点之间的距离是( ) A.5 B .﹣5 C.1 D.﹣14.﹣的相反数是( )A. B.﹣ C.3 D.﹣35.地球绕太阳每小时转动经过的路程约为1 10000米,将110000用科学记数法表示为( )A.11×104 B.0.11×107 C.1.1×106 D.1.1×105 6.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000 7.下列说法中,正确的是( )A.不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1二、填空题(每小题3分,共21分)9.有理数中,最大的负整数是__________.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是__________.11.在数1,0,﹣1,﹣2中,最小的数是__________.12.已知a+2与(b﹣3)2互为相反数,则ab=__________.13.在式子,﹣1,x2﹣3x,,中,是整式的有__________个.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为__________.15.多项式 x+7是关于x的二次三项式,则m=__________.三、解答题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.﹣3,﹣5,,0,﹣2.5,﹣22,﹣(﹣1).17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?19.将多项式按字母X的降幂排列.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).21.已知ab2<0,a+b>0,且a=1,b=2,求的值.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!23.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作( )A.﹣3m B.3m C.6m D.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.4【考点】正数和负数.【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.3.在数轴上表示﹣2的点与表示3的点之间的距离是( ) A.5 B.﹣5 C.1 D.﹣1【考点】数轴.【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选A【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.﹣的相反数是( )A. B.﹣ C.3 D.﹣3【考点】绝对值;相反数.【专题】常规题型.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵﹣ = ,∴的相反数是﹣.故选:B.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.5.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为( )A.11×104 B.0.11×107 C.1.1×106 D.1.1×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤a<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.【解答】解:110000=1.1×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤a<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000 【考点】近似数和有效数字;科学记数法—原数.【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】解:A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C 选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D选项的说法正确.故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.7.下列说法中,正确的是( )A.不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】整式;单项式;多项式.【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣的系数是﹣,次数是3,错误;C、3是单项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C【点评】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.二、填空题(每小题3分,共21分)9.有理数中,最大的负整数是﹣1.【考点】有理数.【分析】根据小于零的整数是负整数,再根据最大的负整数,可得答案.【解答】解:有理数中,最大的负整数是﹣1,故答案为:﹣1.【点评】本题考查了有理数,根据定义解题是解题关键.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是P,Q.【考点】相反数;数轴.【分析】首先根据R表示的数是﹣1,求出P、Q、T三点表示的数各是多少;然后根据相反数的含义,判断出数轴上表示相反数的两点是多少即可.【解答】解:∵R表示的数是﹣1,∴P点表示的数是(﹣3,0),Q点表示的数是(3,0),T点表示的数是(4,0),∵﹣3和3互为相反数,∴数轴上表示相反数的两点是:P,Q.故答案为:P,Q.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”,并能求出P、Q、T三点表示的数各是多少.11.在数1,0,﹣1,﹣2中,最小的数是﹣1.【考点】有理数大小比较.【专题】计算题.【分析】利用绝对值的代数意义化简后,找出最小的数即可.【解答】解:在数1,0,﹣1,﹣2=2中,最小的数是﹣1.故答案为:﹣ 1.【点评】此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.已知a+2与(b﹣3)2互为相反数,则ab=﹣8.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【分析】根据非负数的性质解答.有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,an为非负数,且a1+a2+…+an=0,则必有a1=a2=…=an=0.【解答】解:∵a+2与(b﹣3)2互为相反数,∴a+2+(b﹣3)2=0,则a+2=0,a=﹣2;b﹣3=0,b=3.故ab=(﹣2)3=﹣8.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.13.在式子,﹣1,x2﹣3x,,中,是整式的有3个.【考点】整式.【分析】单项式和多项式统称整式,准确理解其含义再去判断是否为整式,式子,中,分母中含有字母,故不是整式.问题可求.【解答】解:式子,和x2﹣3x是多项式,﹣1是单项式,三个都是整式;,中,分母有字母,故不是整式.因此整式有3个.【点评】判断是否为整式,关键是看分母是否含有字母,有则不是;圆周率π或另有说明的除外,如就是整式.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为﹣13x8.【考点】单项式.【专题】规律型.【分析】根据规律,系数是从1开始的连续奇数且第奇数个是负数,第偶数个是正数,x的指数是从2开始的连续自然数,然后求解即可.【解答】解:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x的指数为8,所以,第7个单项式为﹣13x8.故答案为:﹣13x8.【点评】本题考查了单项式,此类题目,难点在于根据单项式的定义从多个方面考虑求解.15.多项式 x+7是关于x的二次三项式,则m=2.【考点】多项式.【分析】由于多项式是关于x的二次三项式,所以m=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴m=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.三、解答题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.﹣3,﹣5,,0,﹣2.5,﹣22,﹣(﹣1).【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【解答】解:如图所示,,由图可知,﹣3>﹣(﹣1)>>0>﹣2.5>﹣22>﹣5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.【考点】多项式;单项式.【分析】利用多项式及单项式的次数列出方程求解即可.【解答】解:∵单项式 x2ym与多项式x2y2+ y4+ 的次数相同,∴2+m=7,解得m=5.故m的值是5.【点评】本题主要考查了多项式及单项式,解题的关键是熟记多项式及单项式的次数.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.【点评】本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.19.将多项式按字母X的降幂排列.【考点】多项式.【专题】计算题.【分析】按x的降幂排列就是看x的指数从大到小的顺序把多项式的各个项排列即可,【解答】解:将多项式按字母x的降幂排列为:﹣7x4y2+3x2y﹣ xy3+ .【点评】本题考查了对多项式的有关知识的理解和运用,注意按字母排列是要带着各个项的符号.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).【考点】有理数的混合运算.【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;=﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.21.已知ab2<0,a+b>0,且a=1,b=2,求的值.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下1组.a=﹣1,b=2,所以原式=﹣1﹣ +(2﹣1)2= .【解答】解:∵ab2<0,a+b>0,∴a<0,b>0,且b的绝对值大于a的绝对值,∵a=1,b=2,∴a=﹣1,b=2,∴原式=﹣1﹣ +(2﹣1)2= .【点评】本题是绝对值性质的逆向运用,此类题要注意两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下1组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!【考点】规律型:数字的变化类.【分析】(1)仔细观察后直接写出答案即可;(2)将124×126写成12×(12+1)×100+24后计算即可;(3)分别表示出两个因数后即可写出这一规律.【解答】解:(1)末尾都是24;(2)124×126=12×(12+1)×100+24=15600+24=15624;(3)(10a+4)(10a+6)=100a2+100a+24=100a(a+1)+24.【点评】本题考查了数字的变化类问题,仔细观察算式发现规律是解答本题的关键.23.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.。
人教版七年级数学上册期中复习题重点题型(含答案)

人教版七年级数学上册期中复习题重点题型一.选择题(共5小题)1.代数式3x 2﹣4x +6的值为3,则x 2−43x +6的值为( )A .7B .18C .5D .9 2.如果a ﹣b =3,m +n =﹣4,那么代数式(a ﹣2m )﹣(b +2n )的值为( )A .﹣5B .11C .5D .﹣10 3.如果2x 3n y m +4与−23x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m =﹣2,n =3B .m =2,n =3C .m =﹣3,n =2D .m =3,n =2 4.已知12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为( )A .2019B .﹣2019C .1D .﹣1 5.代数式x 2﹣3kxy ﹣3y 2+13xy ﹣8中不含xy 项,则k 的值是( )A .13B .16C .19D .0二.填空题(共7小题)6.已知23x 3m y 2与−14x 6y 2n 是同类项,则5m +3n = . 7.若−35x m y 2与2x 4y 2n 是同类项,那么m = ,n = .8.若12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为 .9.已知单项式﹣3a m ﹣1b 6与15ab 2n 是同类项,则m +n 的值是 . 10.若关于x ,y 的多项式x 2﹣4kxy ﹣3y 2−13xy ﹣8中不含xy 项,则k 的值是 .11.若单项式−12a 2b x +1与13a x b y﹣1的和仍是单项式,则这两个单项式的和为 .12.有理数a ,b ,c 在数轴上的位置如图所示,则|a +c |﹣|a ﹣b |+|b ﹣c |= .三.解答题(共14小题)13.计算:(1)25−|−125|−(+214)−(−2.25);(2)−12021−223×|(−12)2−1|+3÷2×12.14.求多项式2x 2﹣5x +x 2+4x ﹣3x 2﹣2的值,其中x =12.15.(1)计算:2(x 2﹣2xy )﹣3(y 2﹣3xy );(2)先化简,再求值:12x ﹣2(x −13y 2)+(−32x +13y 2),其中x =﹣2,y =23. 16.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a =﹣2,b =2017时,求(3a 2b ﹣2ab 2+4a )﹣2(2a 2b ﹣3a )+2(ab 2+12a 2b )﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b =2017是多余的,这道题不给b 的值,照样可以求出结果来.”同桌不相信她的话.亲爱的同学们,你相信盈盈的说法吗?说说你的理由.17.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题化简求值:3a 2b ﹣★(2a 2b ﹣3a )﹣1.其中★为不等于零的任意数,a =﹣1,b =2019.(1)令★=1,求原式的值.(2)老师补充说:“若给的条件b =2019是多余的,这道题不给b 的值,照样可以求出结果来.”亲爱的同学,你们能算出★值吗?说明你的理由.18.化简并求值:2(x 2﹣2xy )+[(y 2﹣3xy )﹣(x 2+y 2)],其中x 、y 的取值如图所示.19.如图,数轴上有点a ,b ,c 三点(1)用“<”将a ,b ,c 连接起来.(2)b ﹣a 1(填“<”“>”,“=”)(3)化简|c ﹣b |﹣|c ﹣a +1|+|a ﹣1|(4)用含a ,b 的式子表示下列的最小值:①|x ﹣a |+|x ﹣b |的最小值为 ;②|x ﹣a |+|x ﹣b |+|x +1|的最小值为 ;③|x ﹣a |+|x ﹣b |+|x ﹣c |的最小值为 .20.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最大的负整数,且a 、c 满足|a +3|+(c﹣4)2=0(1)a=;b=;c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB=,AC=,BC=,(用含t的代数式表示)(4)在(3)的条件下,请问:5BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.21.贵州省某服装厂生产一种外衣和领带,外衣每套定价500元,领带每条定价40元,厂方在开展促销活动中,向客户提供两种优惠方案:方案一:买一套外衣送一条领带:方案二:外衣和领带都按定价的8折付款.现某客户要到该服装厂购买外衣30套,领带x条(x>30)(1)若该客户按方案一购买,需付款元(用含x的代数式表示),若该客户按方案二购买,需付款元(用含x的代数式表示);(2)若x=50,通过计算说明此时按哪种方案购买较为合算.22.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.23.将连续的偶数2,4,6,8…排列成如下的数表用十字框框出5个数(如图).(1)十字框框出5个数的和与框子正中间的数20有什么关系?(2)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;(3)十字框框住的5个数之和能等于2000吗?能等于2020吗?能等于2055吗?若能,分别写出十字框框住的5个数,并填入框图中;若不能,请说明理由.24.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=﹣2,b=2018,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.小明做完后对同桌说:“老师给的条件b=2018是多余的,这道题不给b的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?25.观察等式找规律:a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;…(1)写出表示a4,a5的等式;(2)写出表示a n的等式(用含有n的式子表示)(3)求1a1+1a2+1a3+⋯+1a2014的值.26.观察下面三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣4,2,﹣10,14,﹣34,62,…;②3,﹣3,9,﹣15,33,﹣63,…③(1)第①行数的第7个数是;(2)第②行数的第n个数是,第③行数的第n个数是;(3)取每行的第k个数,若三个数的和等于255,求k的值.期中复习题参考答案与试题解析一.选择题(共5小题)1.代数式3x2﹣4x+6的值为3,则x2−43x+6的值为()A.7B.18C.5D.9【分析】由代数式3x2﹣4x+6的值为3,变形得出x2−43x=﹣1,再整体代入x2−43x+6计算即可.【解答】解:∵代数式3x2﹣4x+6的值为3,∴3x2﹣4x+6=3,∴3x2﹣4x=﹣3,∴x2−43x=﹣1,∴x2−43x+6=﹣1+6=5.故选:C.【点评】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键.2.如果a﹣b=3,m+n=﹣4,那么代数式(a﹣2m)﹣(b+2n)的值为()A.﹣5B.11C.5D.﹣10【分析】所求式子去括号整理后,将a﹣b与m+n的值代入计算即可求出值.【解答】解:∵a﹣b=3,m+n=﹣4,∴(a﹣2m)﹣(b+2n)=a﹣2m﹣b﹣2n=(a﹣b)﹣2(m+n)=3+8=11.故选:B.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.3.如果2x3n y m+4与−23x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=2【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵2x 3n y m +4与−23x 9y 2n 是同类项,∴3n =9,m +4=2n ,解得n =3,m =2.故选:B .【点评】本题考查了同类项,熟记同类项的定义是解答本题的关键.4.已知12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为( )A .2019B .﹣2019C .1D .﹣1 【分析】根据同类项的定义求出m 、n 的值,代入计算即可.【解答】解:根据同类项的定义可得:n ﹣2m =3,2n =4,解得m =﹣0.5,n =2,所以(﹣0.5×2)2019=(﹣1)2019=﹣1.故选:D .【点评】本题考查了同类项的定义,解决本题的关键是熟记同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.5.代数式x 2﹣3kxy ﹣3y 2+13xy ﹣8中不含xy 项,则k 的值是( )A .13B .16C .19D .0【分析】先合并同类项,然后再依据含xy 的项的系数为0求解即可.【解答】解:x 2﹣3kxy ﹣3y 2+13xy ﹣8=x 2﹣3y 2+(13−3k )xy ﹣8. ∵代数式x 2﹣3kxy ﹣3y 2+13xy ﹣8中不含xy 项,∴13−3k =0. 解得:k =19.故选:C .【点评】本题主要考查的是多项式,明确多项式中不含xy 的项是解题的关键.二.填空题(共7小题)6.已知23x 3m y 2与−14x 6y 2n 是同类项,则5m +3n = 13 . 【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m 和n 的值,代入即可得出5m +3n 的值.【解答】解:∵23x 3m y 2与−14x 6y 2n 是同类项, ∴3m =6,2n =2,∴m =2,n =1,∴5m +3n =5×2+3×1=13,故答案为:13.【点评】此题考查了同类项的定义,解答本题的关键是掌握同类项两个“相同”的含义,属于基础题,难度一般.7.若−35x m y 2与2x 4y 2n 是同类项,那么m = 4 ,n = 2 .【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵−35x m y 2与2x 4y 2n 是同类项,∴m =4,2n =2,解得m =4,n =2.故答案为:4;2.【点评】本题考查了同类项,熟记同类项的定义是解答本题的关键.8.若12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为 ﹣1 .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2n =4,n ﹣2m =3,求出n ,m 的值,再代入代数式计算即可.【解答】解:∵单项式12x n ﹣2m y 4与﹣x 3y 2n 是同类项, ∴{2n =4n −2m =3, 解得{m =−12n =2, ∴(mn )2019=(−12×2)2019=﹣1,故答案为:﹣1.【点评】本题考查同类项的定义.同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.已知单项式﹣3a m ﹣1b 6与15ab 2n 是同类项,则m +n 的值是 5 . 【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m 、n 的值,再代入所求式子计算即可.【解答】解:∵单项式﹣3a m ﹣1b 6与15ab 2n 是同类项, ∴m ﹣1=1,2n =6,解得m =2,n =3,∴m +n =2+3=5.故答案为:5.【点评】本题考查了同类项,同类项是字母相同,且相同的字母的指数也相同.10.若关于x ,y 的多项式x 2﹣4kxy ﹣3y 2−13xy ﹣8中不含xy 项,则k 的值是 −112 .【分析】直接合并同类项,进而得出xy 项的系数为零,进而得出答案.【解答】解:∵关于x ,y 的多项式x 2﹣4kxy ﹣3y 2−13xy ﹣8中不含xy 项,∴x 2﹣4kxy ﹣3y 2−13xy ﹣8=x 2+(﹣4k −13)xy ﹣3y 2﹣8,﹣4k −13=0,解得:k =−112.故答案为:−112. 【点评】此题主要考查了合并同类项以及多项式,正确合并同类项是解题关键.11.若单项式−12a 2b x +1与13a x b y﹣1的和仍是单项式,则这两个单项式的和为 −16a 2b 3 . 【分析】直接利用合并同类项法则结合二元一次方程组的解法得出x ,y 的值,进而得出答案.【解答】解:∵单项式−12a 2b x +1与13a x b y﹣1的和仍是单项式,∴两单项式是同类项,∴{2=x x +1=y −1, 解得:{x =2y =4, ∴单项式−12a 2b x +1与13a xb y﹣1的和为:−16a 2b 3.故答案为:−16a 2b 3.【点评】此题主要考查了合并同类项,正确得出各对应字母次数相等是解题关键.12.有理数a ,b ,c 在数轴上的位置如图所示,则|a +c |﹣|a ﹣b |+|b ﹣c |= ﹣2c .【分析】根据数轴可确定a 、b 、c 的符号与绝对值的大小,从而可以去掉绝对值符号进行化简.【解答】解:由题意得,c <a <0<b ,且|c |>|a |>|b |,∴a +c <0,a ﹣b <0,b ﹣c >0,∴|a +c |﹣|a ﹣b |+|b ﹣c |=﹣(a +c )﹣[﹣(a ﹣b )]+b ﹣c=﹣a ﹣c +a ﹣b +b ﹣c=﹣2c ,故答案为:﹣2c .【点评】此题考查了利用数轴解决绝对值化简能力的问题,关键是能数形结合,判断出绝对值符号里面式子的符号,并进行正确化简.三.解答题(共14小题)13.计算:(1)25−|−125|−(+214)−(−2.25); (2)−12021−223×|(−12)2−1|+3÷2×12. 【分析】(1)原式利用绝对值的代数意义及减法法则变形,计算即可得到结果;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【解答】解:(1)原式=25−75−94+94=﹣1;(2)原式=﹣1−43×|14−1|+3×12×12 =﹣1−43×34+34=﹣1﹣1+34=−54.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.求多项式2x 2﹣5x +x 2+4x ﹣3x 2﹣2的值,其中x =12.【分析】原式合并同类项进行化简,然后代入求值.【解答】解:原式=2x 2+x 2﹣3x 2﹣5x +4x ﹣2=﹣x ﹣2,当x =12时,原式=−12−2=−52.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.15.(1)计算:2(x 2﹣2xy )﹣3(y 2﹣3xy );(2)先化简,再求值:12x ﹣2(x −13y 2)+(−32x +13y 2),其中x =﹣2,y =23. 【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:(1)原式=2x 2﹣4xy ﹣3y 2+9xy=2x 2﹣3y 2+5xy ;(2)原式=12x ﹣2x +23y 2−32x +13y 2=﹣3x +y 2,当x =﹣2,y =23时,原式=﹣3×(﹣2)+(23)2 =6+49=649. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.16.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a =﹣2,b =2017时,求(3a 2b ﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话.亲爱的同学们,你相信盈盈的说法吗?说说你的理由.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:盈盈的说法是正确的,理由如下:原式=3a2b﹣2ab2+4a﹣4a2b+6a+2ab2+a2b﹣1=10a﹣1,当a=﹣2时,原式=﹣21,化简结果中不含字母b,故最后的结果与b的取值无关,b=2017这个条件是多余的,则盈盈的说法是正确的.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题化简求值:3a2b﹣★(2a2b﹣3a)﹣1.其中★为不等于零的任意数,a=﹣1,b=2019.(1)令★=1,求原式的值.(2)老师补充说:“若给的条件b=2019是多余的,这道题不给b的值,照样可以求出结果来.”亲爱的同学,你们能算出★值吗?说明你的理由.【分析】(1)把★=1代入原式化简,求出值即可;(2)原式去括号合并后,根据题意得到结果与b无关,确定出m的值即可.【解答】解:(1)根据题意得:原式=3a2b﹣(2a2b﹣3a)﹣1=3a2b﹣2a2b+3a﹣1=a2b+3a﹣1,当a=﹣1,b=2019时,原式=2019﹣3﹣1=2015;(2)设★=m,则有原式=3a2b﹣m(2a2b﹣3a)﹣1=(3﹣2m)a2b+3am﹣1,由结果与b的值无关,得到3﹣2m=0,解得:m=3 2.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.18.化简并求值:2(x2﹣2xy)+[(y2﹣3xy)﹣(x2+y2)],其中x、y的取值如图所示.【分析】根据数轴可得x=2,y=﹣1,把整式去括号、合并同类项化简后,再代入计算即可.【解答】解:根据数轴可得x=2,y=﹣1,∴2(x2﹣2xy)+[(y2﹣3xy)﹣(x2+y2)]=2(x2﹣2xy)+(y2﹣3xy)﹣(x2+y2)=2x2﹣4xy+y2﹣3xy﹣x2﹣y2=x2﹣7xy,当x=2,y=﹣1时,x2﹣7xy=22﹣7×2×(﹣1)=4+14=18.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解题的关键.19.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a<1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为b﹣a;②|x﹣a|+|x﹣b|+|x+1|的最小值为b+1;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为b﹣c.【分析】(1)比较有理数的大小可以利用数轴,它们从左到右的顺序,即从小到大的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);(2)先求出b﹣a的范围,再比较大小即可求解;(3)先计算绝对值,再合并同类项即可求解;(4)根据绝对值的性质以及题意即可求出答案.【解答】解:(1)根据数轴上的点得:c<a<b;(2)由题意得:b﹣a<1;(3)|c﹣b|﹣|c﹣a+1|+|a﹣1|=b﹣c﹣(a﹣c﹣1)+a﹣1=b﹣c﹣a+c+1+a﹣1=b;(4)①当x在a和b之间时,|x﹣a|+|x﹣b|有最小值,∴|x﹣a|+|x﹣b|的最小值为:x﹣a+b﹣x=b﹣a;②当x=a时,|x﹣a|+|x﹣b|+|x+1|=0+b﹣a+a﹣(﹣1)=b+1为最小值;③当x=a时,|x﹣a|+|x﹣b|+|x﹣c|=0+b﹣a+a﹣c=b﹣c为最小值.故答案为:<;b﹣a;b+1;b﹣c.【点评】考查了数轴,通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.20.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最大的负整数,且a、c满足|a+3|+(c ﹣4)2=0(1)a=﹣3;b=﹣1;c=4;(2)若将数轴折叠,使得A点与C点重合,则点B与数2表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB=5t+2,AC=7t+7,BC=2t+5,(用含t的代数式表示)(4)在(3)的条件下,请问:5BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据题意直接求值;(2)由于数轴对折后,对折的点是两个点的中点,即可求解;(3)点A以每秒2个单位长度的速度向左运动,运动后对于的点为﹣3﹣2t;点B以每秒3个单位长度速度向右运动,运动后对于的点为﹣1+3t;点C以每秒5个单位长度速度向右运动,运动后对于的点为4+5t;AB=2+5t,AC|=7+7t,BC=2t+5;(4)5BC﹣2AB=5(2t+5)﹣2(2+5t)=21;【解答】解:(1)∵|a+3|+(c﹣4)2=0∴a=﹣3,c=4,∵b是最大的负整数,∴b=﹣1,故答案为﹣3,﹣1,4;(2)由(1)可知,A点表示﹣3,B点表示﹣1,C点表示4,∵A点与C点重合,∴对折的点为0.5,∴B对折后的点为2;故答案为2;(3)点A以每秒2个单位长度的速度向左运动,∴运动后对于的点为﹣3﹣2t,点B以每秒3个单位长度速度向右运动,∴运动后对于的点为﹣1+3t,点C以每秒5个单位长度速度向右运动,∴运动后对于的点为4+5t,∴AB=|﹣3﹣2t+1﹣3t|=2+5t,AC=|﹣3﹣2t﹣4﹣5t|=7+7t,BC=|﹣1+3t﹣4﹣5t|=2t+5,故答案为2+5t,7+7t,2t+5;(4)5BC﹣2AB=5(2t+5)﹣2(2+5t)=21,∴5BC﹣2AB的值不会随着时间t的变化而改变,该值是21;【点评】本题考查数轴上点的特点;理解数轴对折后点的特点,数轴上两点间的距离求法,绝对值的意义是解题的关键.21.贵州省某服装厂生产一种外衣和领带,外衣每套定价500元,领带每条定价40元,厂方在开展促销活动中,向客户提供两种优惠方案:方案一:买一套外衣送一条领带:方案二:外衣和领带都按定价的8折付款.现某客户要到该服装厂购买外衣30套,领带x条(x>30)(1)若该客户按方案一购买,需付款(13800+40x)元(用含x的代数式表示),若该客户按方案二购买,需付款(12000+32x)元(用含x的代数式表示);(2)若x=50,通过计算说明此时按哪种方案购买较为合算.【分析】(1)按方案一购买,需付款为30×500+40(x﹣30);若按方案二购买,需付款为30×500×0.8+x •40•0.8,然后整理即可;(2)把x=50时代入(1)中的两个代数式中计算出两代数式的值,然后比较代数式值的大小即可判断按哪种方案购买较为合算.【解答】解:(1)若该客户按方案一购买,需付款30×500+40(x﹣30)=(13800+40x)元,若该客户按方案二购买,需付款30×500×0.8+x•40•0.8=(12000+32x)元;故答案为(13800+40x),(12000+40x);(2)当x=50时,13800+40x=13800+40×50=15800(元)12000+32x=12000+32×50=13600(元),所以按方案二购买较为合算.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.22.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.【分析】(1)依据阴影部分的面积等于两个正方形的面积之和减去空白部分的面积,即可用含a、b的代数式阴影部分的面积S;(2)把a=6,b=4,代入代数式,即可求阴影部分的面积.【解答】解:(1)大小两个正方形的边长分别为a、b,∴阴影部分的面积为:S=a2+b2−12a2−12(a+b)b=12a2+12b2−12ab;(2)∵a=6,b=4,∴S=12a2+12b2−12ab=12×62+12×42−12×6×4=18+8﹣12=14.所以阴影部分的面积是14.【点评】本题考查了列代数式和求代数式的值,解题的关键是利用面积的和差关系求出阴影部分的面积.23.将连续的偶数2,4,6,8…排列成如下的数表用十字框框出5个数(如图).(1)十字框框出5个数的和与框子正中间的数20有什么关系?(2)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;(3)十字框框住的5个数之和能等于2000吗?能等于2020吗?能等于2055吗?若能,分别写出十字框框住的5个数,并填入框图中;若不能,请说明理由.【分析】(1)计算5个数的和,看与正中间的数20的关系即可;(2)根据上下相邻的数相隔12,左右相邻的相隔2,得到其余四个数的代数式,相加即可.(3)根据题意,分别列方程分析求解.【解答】解:(1)8+20+32+18+22=100=20×5,十字框框出5个数的和是框子正中间的数20的5倍.(2)a的上一个数为a﹣12,下一个数为a+12,前一个数为a﹣2,后一个数为a+2,.则a﹣12+a+a+12+a﹣2+a+2=5a.(3)①十字框框住的5个数之和能等于2000,5个数填入表如图.②十字框框住的5个数之和能等于2020,5个数填入表如图.③十字框框住的5个数之和不能等于2055,因为由(2)知,此时中间的数为411,显然不成立.【点评】本题考查了列代数式的知识,有一定难度,判断出其余4个数与正中间的数的关系是解决本题的难点.24.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=﹣2,b=2018,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.小明做完后对同桌说:“老师给的条件b=2018是多余的,这道题不给b的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:(3a2b−2ab2+4a)−2(2a2b−3a)+2(ab2+12a2b)−1=3a2b﹣2ab2+4a﹣4a2b+6a+2ab2+a2b﹣1=10a﹣1,当a=﹣2时,原式=10×(﹣2)﹣1=﹣21.【点评】本题考查整式的化简求值、去括号法则、合并同类项法则等知识,解题的关键是熟练掌握整式是加减法则,属于中考常考题型.25.观察等式找规律:a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;…(1)写出表示a4,a5的等式;(2)写出表示a n的等式(用含有n的式子表示)(3)求1a1+1a2+1a3+⋯+1a2014的值.【分析】(1)根据a1,a2,a3的值,可直接得出a4和a5的值;(2)根据a1=(2×1)2﹣1=(2﹣1)×(2+1),a2=(2×2)2﹣1=(4﹣1)×(4+1),找出规律,可得出a n=(2×n)2﹣1=4n2﹣1=(2n﹣1)(2n+1);(3)根据(2)得出的规律,再找出1a1,1a2,1a3⋯的式子规律,分子不变,为1,分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1,根据这规律把数代入计算即可.【解答】解:(1)∵a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;∴a4=82﹣1=7×9;a5=102﹣1=9×11;(2)∵a1=(2×1)2﹣1=(2﹣1)×(2+1),a2=(2×2)2﹣1=(4﹣1)×(4+1),a3=(2×3)2﹣1=(6﹣1)×(6+1),…,a n=(2×n)2﹣1=4n2﹣1=(2n﹣1)(2n+1);(3)∵a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;∴1a1=1−13,1a2=13−15,1a3=15−17,∴1a1+1a2+1a3+⋯+1a2014=1−13+13−15+15−17+⋯+14027−14029=1−1 4029=40284029.【点评】此题考查了数字的变化规律,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.26.观察下面三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣4,2,﹣10,14,﹣34,62,…;②3,﹣3,9,﹣15,33,﹣63,…③(1)第①行数的第7个数是﹣128;(2)第②行数的第n个数是(﹣1)n•2n﹣2,第③行数的第n个数是(﹣1)n+1•2n+1;(3)取每行的第k个数,若三个数的和等于255,求k的值.【分析】(1)根据题目中数字的特点,可以写出第①行数的第7个数;(2)根据题目中的数字,可以写出第②行数的第n个数和第③行数的第n个数;(3)根据题意,可以列出相应的方程,从而可以求得k的值.【解答】解:(1)∵﹣2,4,﹣8,16,﹣32,64,…;①∴这行数的第n个数为:(﹣1)n•2n,∴当n=7时,这个数为:(﹣1)7•27=﹣128,故答案为:﹣128;(2)∵﹣2,4,﹣8,16,﹣32,64,…;①﹣4,2,﹣10,14,﹣34,62,…;②3,﹣3,9,﹣15,33,﹣63,…③∴第②行中的每个数都是对应的第①行的数字减2得到的,第③的数字都是对应的第②行数字的相反数减1得到的,∴第②行数的第n个数是:(﹣1)n•2n﹣2,第③行数的第n个数是﹣[(﹣1)n•2n﹣2]﹣1=(﹣1)n+1•2n+1,故答案为:(﹣1)n•2n﹣2,(﹣1)n+1•2n+1;(3)设这三个数为:(﹣1)k•2k,(﹣1)k•2k﹣2,(﹣1)k+1•2k+1,由题意可得,(﹣1)k•2k+(﹣1)k•2k﹣2+(﹣1)k+1•2k+1=255,解得k=8,即k的值是8.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数据.。
完整版广州市2016七年级数学下册期中考试卷解析版

2016七年级数学下册期中考试卷(解析版)广州市324分)分,满分一、选择题(每小题163x=0的解是(.方程 +)Ax=2 Bx=6Cx=2 Dx=6....﹣﹣2).不等式的解集在数轴上表示正确的是(BA..D C..3).下列长度的各组线段首尾相接能构成的三角形的是(5cm3cm2cm4cm DCB2cmA3cm5cm 3cm5cm6cm 2cm、、、、...、.、、、10cm 4).下面图形中,既是轴对称图形,又是中心对称图形的是(D C BA ....m5xx2x4=m)﹣的取值范围是(的解为负数,则.已知关于的方程 +mCDm 4AmBm4<>.<.>..xxx65ax=13,得方程的解为看作+(为未知数)时,误将﹣.小李在解方程﹣2x=)﹣,那么原方程的解为(x=1Ax=2 x=0 CDx=3B.﹣...FGBEFDCD7AB1=58°FG)的度数等于(.如图,∥,∠,平分∠,则∠97°BA122°151°D116°C....xyx80y0m的取值范围是,则<且、.已知关于的方程组<满足)(1第21页(共页)m AmBm CDm <.><<.<..213分)分,共二、填空题(每小题9.为解的二元一次方程:.请写出一个以AOB=70°1=10BOCAOC≌△,则∠.如图,已知△度.,∠1110ABCBC2DEF,则四边形的△方向平移沿个单位得到△.如图,将周长为ABFD 的周长为.12ABCDBCB=50°BAD=30°ABD,将△.如图,在△边上的一点,∠中,点,是∠ADAEDAEBCFEDF的度数是交于点.则∠沿折叠得到△.,与137倍,则这个多边形的边数为.一个多边形的内角和等于它外角和的.14n个图.如图所示,观察下列图形它们是按一定规律构造的,依照此规律,第形中共有个三角形.第2页(共21页)yx15xy、.若关于的解是、,那么关于的二元一次方程组.的解是的二元一次方程组1075分)三、解答题(本题共个小题,共162=.﹣.解方程117这个.并判断﹣解不等式组把它的解集在数轴上表示出来,数是否为该不等式组的解.18y=kxbx=2y=1x=1y=4.时,﹣.已知;当+,当时,1kb的值;)求(、2xy的值是非负数.(取何值时,)当191010abOABC的顶点均在、.如图,×,△的方格纸的两条对称轴相交于点格点上.1ABC分别作下列变换:)对△(ABCaABC;①画出△对称的△关于直线111ABC6ABC;向右平移②将△个单位长度,画出平移后的△222ABCO180°ABC;,画出旋转后的△绕点③将△旋转3332ABCABCABC中,)在△,△(,△311232123①△与△成轴对称,对称轴是直线;D.成中心对称,并在图中标出对称中心与△②△第3页(共21页)BED=65°EABCBEABCAD20ADBC,中,交∠于点.如图,是,边上的高,平分∠在△BACABCC=60°的度数.,求∠∠和∠175521米的过江隧道施工任务,甲、乙两个班组.某工程队承包了某标段全长50.6天分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进米,经过45米.施工,两组共掘进了1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能(0.30.2米.按此施工进度,能米,乙组平均每天能比原来多掘进比原来多掘进够比原来少用多少天完成任务?200022只进行饲养,已知甲种小鸡苗.某养鸡厂计划购买甲、乙两种小鸡苗共32元.相关资料表示,甲、乙两种小鸡苗的成活率分每只元,乙种小鸡苗每只95.5%94%99%且小鸡苗的总费用最少,别是要使这两种小鸡苗成活率不低于和,应购买甲、乙两种小鸡各多少只?总费用最少是多少元?223.某电脑经销商计划购进一批电脑机箱和液晶显示器,已知:购进电脑机箱81054120台和液晶显示器台,共需要资金台和液晶显示器元;购进电脑机箱7000元.台,共需要资金1)每台电脑机箱、液晶显示器的进价各是多少元?(24502台.根据市场行)该经销商购进这两种商品台,其中电脑机箱不少于(第4页(共21页)10160元.该经销商希望元和情,销售电脑机箱、液晶显示器一台分别可获利4100元.试问:该经销商有几种进货方案?销售完这两种商品,所获利润不少于2431AaBb型车型车.某物流公司现有吨货物运往某地,计划同时租用辆,辆,使每辆车都装满货物恰好一次运完.已知每种型号车的载重量和租金如表:AB车型43/辆)载重量(吨12001000/辆)租金(元1)请你帮该物流公司设计租车方案;(2)请选出最省钱的租车方案,并求出最少租车费.(25ABCD5EDCADE经顺时针旋转,点.如图,已知正方形在的边长是上,将△ABF 重合.后与△1)指出旋转的中心和旋转角度;(2EFAEF是怎样的三角形?请说明理由;,那么△()如果连接3ABFDCH位置,平移的距离是多少?()△向右平移后与△4AEDH的数量关系和位置关系,并说明理由.和()试猜想线段第5页(共21页)2015-2016学年河南省新乡市七年级(下)期末数学试卷参考答案与试题解析324分)一、选择题(每小题分,满分163x=0的解是(.方程 +)Ax=2Bx=6Cx=2 Dx=6....﹣﹣【考点】一元一次方程的解.1,即可求得答案.【分析】首先移项,然后系数化3x=6,【解答】解:移项得:﹣1x=2.得:﹣系数化A.故选2)的解集在数轴上表示正确的是(.不等式BA ..D C..在数轴上表示不等式的解集;解一元一次不等式组.【考点】并在数轴上表示出来即再求出其公共解集,【分析】分别求出各不等式的解集,可.,解:【解答】2x,由①得,>﹣3x,由②得,≤32x.≤故此不等式组的解集为:﹣<在数轴上表示为:B.故选第6页(共21页)3.下列长度的各组线段首尾相接能构成的三角形的是()A2cm3cm5cm B3cm5cm6cm C2cm2cm4cm D3cm5cm、、.、、、、...、、10cm三角形三边关系.【考点】三角形三边关系:三角形任意两边之和大于第三边,据此判断即可.【分析】5cm3cmA23=52cm首尾相接不能构成的三角形;)∵+、,∴、【解答】解:(6cm3cm5cm5B36首尾相接能构成的三角形;、,∴()∵、+>4cm2=4C22cm2cm首尾相接不能构成的三角形;(、)∵、+,∴10cm3cm5cm103D5首尾相接不能构成的三角形.、<(,∴)∵+、B)故选(4).下面图形中,既是轴对称图形,又是中心对称图形的是(DA CB....中心对称图形;轴对称图形.【考点】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【分析】A、是轴对称图形,不是中心对称图形,故本选项错误;【解答】解:B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.D.故选m5x2x4=mx)的方程 +.已知关于的取值范围是(﹣的解为负数,则mmD 4CmBmA4<<....>>解一元一次不等式;一元一次方程的解.【考点】mxm的取的值,再根据方程的解为负数求出先把当作已知条件求出【分析】值范围即可.x=2x4=mx,【解答】解:解方程+﹣得,页)21页(共7第∵方程的解为负数,40m.,即<∴<B.故选xx5ax=13x6,得方程的解为﹣看作(+为未知数)时,误将﹣.小李在解方程2x=),那么原方程的解为(﹣x=1DCx=2 x=A3Bx=0 ...﹣.一元一次方程的解.【考点】那么把这个数代入一个数是方程的解,【分析】本题主要考查方程的解的定义,xx=135a为未知方程左右两边,所得到的式子一定成立.本题中,在解方程(﹣x=1325axxx=2x=+,得方程的解为是方程﹣﹣,实际就是说明数)时,误将﹣+看作a的值,从而原方程就可求出,然后解方程可得原方程的解.的解.就可求出2xx=x,,得方程的解为【解答】解:如果误将﹣﹣看作+2=135a,那么原方程是﹣a=3,则x=1315a=3,代入原方程得到:将﹣x=2;解得C.故选:FGBFGEFDCD7AB1=58°).如图,,则∠∥,∠,的度数等于(平分∠97°C116°D122°A B151°....平行线的性质.【考点】EFD,再根据角平分线的定义求出【分析】根据两直线平行,同位角相等求出∠GFD,然后根据两直线平行,同旁内角互补解答.∠1=58°ABCD,【解答】解:∵∥,∠1=58°EFD=,∴∠∠第8页(共21页)EFDFG,∵平分∠=29°58°GFD=EFD=,∴∠×∠CDAB,∵∥GFD=151°FGB=180°.﹣∠∴∠B.故选m0x0yx8y的取值范围是满足<<.已知关于、且的方程组,则)(m CmD mAm B<.<..<<.>解一元一次不等式组;二元一次方程组的解.【考点】mxxmy0y0的取值<且【分析】先把当作已知条件求出得出、的值,再由<范围即可.y=m2x=m2,﹣②得,,﹣①﹣②×【解答】解:﹣得,,①×0x0y,<且<∵m.<∴,解得D.故选213分)二、填空题(每小题分,共y=19x..请写出一个以+为解的二元一次方程:二元一次方程的解.【考点】xy1xy=1+与,即【分析】根据二元一次方程的解的定义,比如把的值相加得是一个符合条件的方程.【解答】解:本题答案不唯一,只要写出的二元一次方程的解为即可,219第页(共页)y=1x.如+y=1x.故答案是:+35AOCBOCAOB=70°1=10≌△,∠.如图,已知△度.,则∠【考点】全等三角形的性质.1=2,结合题意即可得出答案.∠【分析】根据全等的性质可得∠AOCBOC,≌△【解答】解:∵△1=2,∠∴∠AOB=70°,又∵∠1=2=35°.∴∠∠35°.故答案为:1110ABCBC2DEF,则四边形的△方向平移沿个单位得到△.如图,将周长为ABFD14的周长为.【考点】平移的性质.ADCF都等于平移距离,再根据四边、【分析】根据平移的性质,对应点的连线ABFD=ABCADCF代入数据计算即可得解.的周长形的周长+△+ABCBC2DEF,解:∵△个单位得到△沿方向平移【解答】AD=CF=2,∴ABFD的周长,∴四边形=ABBCDFCFAD,++++第10页(共21页)CFAD=ABC,+△+的周长22=10,++=14.14.故答案为:ABDBC12ABCDB=50°BAD=30°,将△.如图,在△,中,点∠是边上的一点,∠20°AEDAEBCFEDFAD,.与折叠得到△交于点.则∠沿的度数是【考点】翻折变换(折叠问题).BAD=EAD=30°E=B=50°,再根据外角定∠∠,∠【分析】先根据折叠性质得:∠AFC=110°EDF20°.理求∠为,由三角形内角和可以得出∠BAD=EAD=30°E=B=50°,∠∠【解答】解:由折叠得:∠,∠B=50°,∵∠AFC=BBAE=50°60°=110°,∴∠∠∠++DFE=AFC=110°,∴∠∠EDF=180°EDFE=180°50°110°=20°,﹣∠﹣﹣∴∠﹣∠20°.故答案为:13716.一个多边形的内角和等于它外角和的.倍,则这个多边形的边数为【考点】多边形内角与外角.nn2?180°360°,根据题意【分析】边形的内角和可以表示成()﹣,外角和为列方程求解.n,依题意,得:【解答】解:设多边形的边数为n2?180°=7360°,)(×﹣n=16,解得16.故答案为:第11页(共21页)n14个图.如图所示,观察下列图形它们是按一定规律构造的,依照此规律,第4n1个三角形.形中共有﹣【考点】规律型:图形的变化类.1个图形中三角形的个数,易得第进而得到其余图形中三角形的个数在【分析】14即可.个图形中三角形的个数的基础上增加了几个第13个三角形;个图形中有【解答】解:第234=7个三角形;第个图形中有+3324=11个三角形;+第×个图形中有…n3n14=4n1,+()×第﹣个图形中有﹣4n1.﹣故答案为15xyxy、的解是的二元一次方程组.若关于,那么关于、的二元一次方程组的解是.解二元一次方程组.【考点】2xyxy看做整体,求出解即可.根据题中方程组的解,把+﹣与【分析】【解答】解:根据题意得:,,解得:故答案为:7510分)个小题,共三、解答题(本题共第2112页(共页)2=16..解方程﹣解一元一次方程.【考点】1x,即可求出解.系数化为【分析】方程去分母,去括号,移项合并,把212=33x122x,()﹣【解答】解:去分母得:)(+﹣6212=9x4x,﹣﹣+去括号得:205x=,移项合并得:﹣4x=.解得:﹣117这个并判断﹣解不等式组把它的解集在数轴上表示出来,.数是否为该不等式组的解.解一元一次不等式组;在数轴上表示不等式的解集.【考点】并在数轴上表示出来即分别求出各不等式的解集,【分析】再求出其公共解集,可.1xx2,,由①得,,由②得,>﹣≤【解答】解:12x.故不等式组的解集为:﹣≤<在数轴上表示为:,1是该不等式组的解.由图可知,﹣y=4x=1x=218y=kxby=1.﹣+,当;当时,.已知时,bk1的值;)求(、y2x的值是非负数.(取何值时,)当解二元一次方程组;解一元一次不等式.【考点】bkby1xy=kx的值;中计算,即可求出)将与与的两对值代入+(【分析】xxy2y的范围即可.()与的关系式,以及为非负数,求出第13页(共21页)1,【解答】解:()由题意得:b=31k=;解得:,﹣3y=x21,﹣()得:)由(+0x3y,+根据≥为非负数,得到﹣3x,解得:≤y3x的值为非负数.≤则时,ABCOb191010a的顶点均在相交于点的方格纸的两条对称轴.如图,,△×、格点上.ABC1分别作下列变换:()对△CaABCAB;关于直线对称的△①画出△111CABC6BA;②将△个单位长度,画出平移后的△向右平移222CBO180°AABC;旋转绕点,画出旋转后的△③将△333CBABCBCA2A中,,△,△()在△321321312BCABCbA;成轴对称,对称轴是直线①△与△△△331311ABCABCD.与△△②△△成中心对称,并在图中标出对称中心233232---平移变换.作图【考点】轴对称变换;作图旋转变换;作图1)先根据轴对称、平移和旋转变换的性质,找出对应点,然后顺次连【分析】(接得出图形;2ABCABCbABC△,()根据图形可得,△成轴对称图形,和△对称轴为直线333113331ABC成中心对称图形.和△2221)所作图形如图所示:(【解答】解:第14页(共21页);bCAB21ABC,)由(成轴对称图形,对称轴为直线)得:△和△(313131DBCCABA 如图所示.△和△成中心对称图形,点223233BED=65°EABCBEABCADAD20BC,在△交中,于点.∠是,边上的高,如图,平分∠BACABCC=60°的度数.,求∠∠和∠三角形内角和定理.【考点】ABC=2DBE=25°,再由角平分线定义得出∠【分析】由直角三角形的性质求出∠BACDBE=50°的度数即可.∠,然后由三角形内角和定理求出∠BCAD边上的高,【解答】解:∵是ADB=90°,∴∠BED=90°DBE,+∴∠∠BED=65°,∵∠DBE=25°,∴∠ABCBE,平分∠∵DBE=50°ABC=2,∴∠∠C=180°ABCBAC,+∠∵∠∠+=70°60°C=180°BAC=180°ABC50°.﹣﹣∴∠﹣∠﹣∠第15页(共21页)211755米的过江隧道施工任务,甲、乙两个班组.某工程队承包了某标段全长0.65天分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进米,经过45米.施工,两组共掘进了1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能(0.20.3米.按此施工进度,能米,乙组平均每天能比原来多掘进比原来多掘进够比原来少用多少天完成任务?【考点】二元一次方程组的应用.1xy米,根据已知甲组比乙组平均(米,)设甲、乙班组平均每天掘进【分析】0.6545米两个关系列方程组求解.每天多掘进天施工,两组共掘进了米,经过210.2米,乙组平)由()和在剩余的工程中,甲组平均每天能比原来多掘进(0.3米分别求出按原来进度和现在进度的天数,即求出少均每天能比原来多掘进用天数.1xy米,)设甲、乙班组平均每天掘进米,【解答】解:(,得.解得4.24.8米.∴甲班组平均每天掘进米,乙班组平均每天掘进ba2天完成任天,)设按原来的施工进度和改进施工技术后的进度分别还需(务,则=1904.2a=4.8(天))÷(+=1804.20.34.8b=0.2(天)++)÷(+b=10a(天)﹣∴10天完成任务.∴少用200022只进行饲养,已知甲种小鸡苗.某养鸡厂计划购买甲、乙两种小鸡苗共32元.相关资料表示,甲、乙两种小鸡苗的成活率分每只元,乙种小鸡苗每只第16页(共21页)94%99%95.5%且小鸡苗的总费用最少,和要使这两种小鸡苗成活率不低于别是,应购买甲、乙两种小鸡各多少只?总费用最少是多少元?【考点】一元一次不等式的应用.xx的范围即可.列出不等式求出只,购买乙种小鸡只,【分析】设购买甲种小鸡x只,购买乙种小鸡只,解:设购买甲种小鸡【解答】94%x99%200095.5%,≥由题意+×x1400,解得≤因为甲种小鸡便宜,所以购买甲种小鸡越多费用越少,x=1400时,总费用最小,所以214003600=4600(元),××+费用为14006004600只时,费用最小,最小费用为答:购买甲种小鸡只,乙种小鸡元.232.某电脑经销商计划购进一批电脑机箱和液晶显示器,已知:购进电脑机箱54120108台和液晶显示器台,共需要资金台和液晶显示器元;购进电脑机箱7000元.台,共需要资金1)每台电脑机箱、液晶显示器的进价各是多少元?(25024台.根据市场行(台,其中电脑机箱不少于)该经销商购进这两种商品10160元.该经销商希望情,销售电脑机箱、液晶显示器一台分别可获利元和4100元.试问:销售完这两种商品,所获利润不少于该经销商有几种进货方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.1xy“购根据)设每台电脑机箱的进价是元,元,【分析】(液晶显示器的进价是25412010台和元;台,共需要资金进电脑机箱购进电脑机箱台和液晶显示器87000”xy的二元一次方程组,元液晶显示器,即可得出关于台,共需要资金、解方程组即可得出结论;2a50a“电脑机箱不)设购进电脑机箱﹣台,则购进液晶显示器()台,根据(244100”,即可少于元台,该经销商希望销售完这两种商品,所获利润不少于aa取整数即可得出结论.得出关于的一元一次不等式组,解不等式组再根据1xy元,解:()设每台电脑机箱的进价是元,液晶显示器的进价是【解答】第17页(共21页).根据题意得:,解得:80060元.元,液晶显示器的进价是答:每台电脑机箱的进价是a2a50)台,)设购进电脑机箱(﹣台,则购进液晶显示器(,根据题意得:26a24.≤≤解得:a为整数,又2625a=24.,∴,3种进货方案.故该经销商有bBAa2431型车型车吨货物运往某地,计划同时租用.某物流公司现有辆,辆,使每辆车都装满货物恰好一次运完.已知每种型号车的载重量和租金如表:BA车型43/辆)载重量(吨12001000/辆)租金(元1)请你帮该物流公司设计租车方案;(2)请选出最省钱的租车方案,并求出最少租车费.(二元一次方程的应用.【考点】bab1a为正整数即可得出、、【分析】(的方程,再根据)先根据题意得出关于结论;2)分别求出各方案的租金,再比较大小即可.(4b=3113a,)∵根据题意得,+【解答】解:(a=.∴ba为正整数,∵、,或∴或AABA3915B4辆;③型车型车辆,∴有种方案:①型车辆,型车辆;②71B辆.型车辆,型车第18页(共21页)2910001200=10200(元);×(+)方案①需租金:5100041200=9800(元)+方案②需租金:;××1100071200=9400(元)+方案③需租金:;××1020098009400,>>∵A1B79400元.型车型车辆,辆,最少租车费为∴最省钱的方案是25ABCD5EDCADE经顺时针旋转的边长是在,点.如图,已知正方形上,将△ABF 重合.后与△1)指出旋转的中心和旋转角度;(2EFAEF是怎样的三角形?请说明理由;(,那么△)如果连接3ABFDCH位置,平移的距离是多少?(向右平移后与△)△4AEDH的数量关系和位置关系,并说明理由.(和)试猜想线段四边形综合题.【考点】1)根据旋转的定义,直接得出旋转的中心和旋转的角度;【分析】(ABF90°1ADEA2重合,根据旋转的)得到△逆时针旋转绕着点后与△()由(AEFAF=AEFAE=90°是等腰直角三角形;性质得∠,由此可判断△,270°90°3,逆时针旋转)利用旋转中心为正方形对角线的交点,)((或逆时针旋转即可得出平移距离等于正方形边长;DHAEAFDH2AE4AF,进而得出,由()得,所以⊥(⊥)根据平移的性质得∥AE=DH.90°A1;解:()旋转的中心是点,旋转的角度是【解答】AEF2是等腰直角三角形.()△理由如下:ABFA90°ADE重合,顺时针旋转绕点后与△∵△第19页(共21页)FAE=BAD=90°AF=AE,∠,∴∠AEF是等腰直角三角形.∴△3ABCD5,)∵正方形的边长是(ABFDCH5;向右平移后与△∴△位置,平移的距离是4AE=DHAEDH,)⊥,(ABFDCH重合,向右平移后与△理由:∵△DHAFDH=AF,∥,∴ADEA90°ABF重合,又∵△顺时针旋转绕着点后与△FAE=BAD=90°AF=AE,∴∠,∠AEAF,∴⊥AE=DHAEDH.∴⊥,第20页(共21页)2017223日年月第21页(共21页)。
(必考题)初中数学七年级上期中知识点总结(答案解析)

一、选择题1.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2015,则m的值是()A.43B.44C.45D.462.81x>0.8x,所以在乙超市购买合算.故选B.【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.3.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里4.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8675.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定6.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=52b B.a=3b C.a=72b D.a=4b7.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D .8.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .9.-2的倒数是( ) A .-2B .12-C .12D .210.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012 B .8×1013 C .8×1014 D .0.8×1013 11.下列各个运算中,结果为负数的是( )A .2-B .()2--C .2(2)-D .22-12.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯13.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元) 每次收费(元) A 类 1500 100 B 类300060C 类 4000 40例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡 D .不购买会员年卡 14.我县人口约为530060人,用科学记数法可表示为( ) A .53006×10人 B .5.3006×105人 C .53×104人 D .0.53×106人 15.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++二、填空题16.若计算(x ﹣2)(3x+m )的结果中不含关于字母x 的一次项,则m 的值为_____. 17.当a =________时,关于x 的方程+23=136x x a+-的解是x =-1. 18.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.19.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D 得82分,则他答对了__________道题. 参赛者答对题数答错题数 得分A20 0100 B191 94 C 1466420.小华在计算14a -时,误把“-”看成“+”,求得结果为5-,则14a -=____________.21.观察下列运算并填空. 1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2. 22.下列哪个图形是正方体的展开图( )A .B .C .D .23.比较大小:123-________ 2.3.(“>”“<”或“=”)24.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为_____米. 25.若一个角的余角是其补角的13,则这个角的度数为______. 三、解答题26.某班原分成两个小组进行课外体育活动,第一组28人,第二组20人,根据学校活动器材的数量,要将第一组的人数调整为第二组的一半,应从第一组调多少人到第二组去? 27.计算: (1)−4÷23−(−23)×(−30) (2)(-1)4-(1-0.5)÷3×22(3)⎡⎤--⎣⎦(3)19×(34-)−(−19)×32+19×14(4)−24÷[1−(−3)2]+(23−35)×(−15). 28.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元? 29.先化简,再求值:2222(22)[2(1)32]a b ab a b ab +--++,其中a=2 , b=-230.如图是某种产品展开图,高为3cm.(1)求这个产品的体积.(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此长方体的表面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案 C C C C B D B B B D B C B B二、填空题16.6【解析】试题解析:原式由结果不含x的一次项得到解得:故答案为617.-1【解析】由题意得:解得:a=-1故答案为-118.【解析】【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得第n组的第一个数为4n(n≥2)又因为所以第2020个智慧数是第674组中的第19.17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分再由参赛者BC可知答错一题扣1分;设答对的题有x题则答错的有(20-x)题根据答对的得分-答错题的得分=82分建立方程求出其解即可;【详20.33【解析】【分析】先根据错解求出a的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法21.n2+5n+5【解析】【分析】观察几个算式可知结果都是完全平方式且5=1×4+111=2×5+1 19=3×6+1…由此可知最后一个式子为完全平方式且底数=(n+1)(n+4)+1=n2+5n+5【详22.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B 是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛23.<【解析】【分析】直接根据负数比较大小的法则进行比较即可【详解】∵||=≈233|−23|=23233>23∴−233<−23∴<−23故答案为:<【点睛】本题考查有理数的大小比较解题突破口是根据负24.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为:25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.6【解析】试题解析:原式由结果不含x 的一次项得到解得:故答案为6 解析:6 【解析】试题解析:原式()2362.x m x m =+--由结果不含x 的一次项,得到60m -=, 解得: 6.m = 故答案为6.17.-1【解析】由题意得:解得:a=-1故答案为-1解析:-1 【解析】由题意得:123136a-+-+-=, 解得:a=-1, 故答案为-1.18.【解析】【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得第n 组的第一个数为4n (n≥2)又因为所以第2020个智慧数是第674组中的第解析:【解析】 【分析】根据题意观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得第n 组的第一个数为4n (n≥2),又因为202036731,所以第2020个智慧数是第674组中的第1个数,从而得到4×674=2696【详解】解:观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n(n≥2).∵202036731,∴第2020个智慧数是第674组中的第1个数,即为4×674=2696.故答案为:2696.【点睛】本题考查了探索规律的问题,解题的关键是根据题意找出规律,从而得出答案.19.17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分再由参赛者BC可知答错一题扣1分;设答对的题有x题则答错的有(20-x)题根据答对的得分-答错题的得分=82分建立方程求出其解即可;【详解析:17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分,再由参赛者B,C可知,答错一题扣1分;设答对的题有x题,则答错的有(20-x)题,根据答对的得分-答错题的得分=82分,建立方程求出其解即可;【详解】由参赛者A的得分就可以得出答对一题的得5分,再由参赛者B,C可知,答错一题扣1分;设答对的题有x题,则答错的有(20-x)题,所以5x-(20-x)=82解得x=17故答案为:17.【点睛】考核知识点:一元一次方程的与比赛问题.理解题意,求出积分规则是关键.20.33【解析】【分析】先根据错解求出a的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.21.n2+5n+5【解析】【分析】观察几个算式可知结果都是完全平方式且5=1×4+111=2×5+119=3×6+1…由此可知最后一个式子为完全平方式且底数=(n+1)(n+4)+1=n2+5n+5【详解析:n2+5n+5【解析】【分析】观察几个算式可知,结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,…,由此可知,最后一个式子为完全平方式,且底数=(n+1)(n+4)+1=n2+5n+5.【详解】根据算式的规律可得:(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2.故答案为n2+5n+5.【点睛】本题考查了整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.22.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.23.<【解析】【分析】直接根据负数比较大小的法则进行比较即可【详解】∵||=≈233|−23|=23233>23∴−233<−23∴<−23故答案为:<【点睛】本题考查有理数的大小比较解题突破口是根据负解析:<【解析】【分析】直接根据负数比较大小的法则进行比较即可.【详解】∵|123-|=123≈2.33,|−2.3|=2.3,2.33>2.3,∴−2.33<−2.3,∴123-<−2.3.故答案为:<.【点睛】本题考查有理数的大小比较,解题突破口是根据负数比较大小的法则进行比较. 24.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为:解析:164【解析】【分析】【详解】解:第一次截后剩下12米;第二次截后剩下212⎛⎫⎪⎝⎭米;第三次截后剩下312⎛⎫⎪⎝⎭米;则第六次截后剩下612⎛⎫⎪⎝⎭=164米.故答案为:1 64.25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1解析:45︒【解析】【分析】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,再根据题意列出方程,求出x的值即可.【详解】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,依题意得:90°-x=13(180°-x),解得x=45°.故答案为:45°.【点睛】本题考查的是余角及补角的定义,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,能根据题意列出关于x 的方程是解答此题的关键.三、解答题26.应从第一组调12人到第二组去【解析】【分析】设应从第一组调x 人到第二组去,根据第一组28人,第二组20人打扫包干区,要使第一组人数是第二组人数的一半,从而可列方程求解.【详解】解:设应从第一组调x 人到第二组去,根据题意,得()12820.2x x -=+ 解得:12.x =经检验,符合题意答:应从第一组调12人到第二组去,【点睛】本题考查的是调配问题,关键知道调配后的数量关系从而可列方程求解.27.(1)-26;(2)136;(3)19;(4)1 【解析】【分析】(1)根据有理数混合运算法则即可解答;(2)根据有理数混合运算法则即可解答;(3)根据乘法分配率的逆用以及有理数混合运算法则即可解答;(4)根据乘法的分配率以及有理数混合运算法则即可解答.【详解】解:(1)−4÷23−(−23)×(−30) =34202-⨯- =620--=-26 (2)(-1)4-(1-0.5)÷3×22(3)⎡⎤--⎣⎦=111(29) 23-⨯⨯-=7 1()6 --=13 6(3)19×(34-)−(−19)×32+19×14=331 19()424⨯-++=191⨯=19(4)−24÷[1−(−3)2]+(23−35)×(−15)=2316(19)(15)(15)35-÷-+⨯--⨯-=2109-+=1【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.28.这件商品的进价是150元.【解析】【分析】设这件商品的进价是x元,根据题意可得等量关系:(1+40%)×进价×打折=进价+利润,根据等量关系代入相应数据可得方程,再解方程即可.【详解】解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150答:这件商品的进价是150元.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.29.-ab2,8【解析】【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a,b的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】解:原式=2a2b+2ab2−(2a2b−2+3ab2+2)=2a2b+2ab2−2a2b−3ab2=−ab2,当a=2,b=−2时,原式=−2×(−2)2=−830.(1)长方形的体积为144cm3;(2)纸箱的表面积为516cm2.【解析】【分析】(1)根据已知图形得出长方体的高进而得出答案;(2)设计的包装纸箱为15×6×8规格.【详解】(1)长方体的高为3cm,则长方形的宽为(12-2×3)cm,长为12(25-3-6)cm,根据题意可得:长方形的体积为:8×6×3=144(cm3);(2)因为长方体的高为3cm,宽为6cm,长为8cm,所以装5件这种产品,应该尽量使得6×8的面重叠在一起,纸箱所用材料就尽可能少,这样的话,5件这种产品可以用15×6×8的包装纸箱,再考虑15×8的面积最大,所以15×8的面重叠在一起,纸箱所用材料就尽可能少,所以设计的包装纸箱为15×6×8规格,该产品的侧面积分别为:8×6=48(cm2),8×15=120(cm2),6×15=90(cm2)纸箱的表面积为:2(120+48+90)=516(cm2).【点睛】本题考查几何体的展开图、几何体的表面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
2016-2017学年苏科新版七年级下期中数学常考60题

2016-2017学年苏科新版七年级(下)期中数学常考60题本资源针对不同的教材版本及各地区出题方向的差异,依托菁优大数据,凝聚数十位一线教师,通过对考点和解题方法的归纳总结,对常出现的重要考点进行分析,让学生在训练中有效掌握各种类型题目的解题思路和解题要点,达到举一反三、触类旁通、高效复习的目的。
选题具有较强的针对性,且道道典型,量少而精,帮助考生高效备考。
本套试卷专供使用苏科新版教材的初一下学期的学生使用,集中各市、各年的常考题型以及中考热点试题于一体的试卷,在以二级考点为前提下进行分类汇编,更好的罗列出在每一个考点下试题的特点,让你更清晰的掌握期中考试的出题动态,为同学们的期中考试打下夯实的基础。
一、有理数(共2小题)这部分的主要任务是:了解有理数的概念,会用科学记数法表示有理数。
1.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g2.用科学记数法表示的数7.21×10n(n是正整数),它原来是位整数.二、整式(共15小题)这部分内容是初中数学各类计算的基础,一般是对知识点进行单纯性考查,出题的形式多以选择题、填空题为主,难度较低,也出现一些简单的计算题。
对于这部分知识解题要认真,一般不存在思维障碍,失误往往是由于不认真造成的。
3.下列计算正确的是()A.4x﹣3x=1 B.x2+x2=2x4C.(x2)3=x6D.2x2•x3=2x64.定义三角表示3abc,方框表示xz+wy,则×的结果为()A.72m2n﹣45mn2B.72m2n+45mn2C.24m2n﹣15mn2D.24m2n+15mn25.已知的乘积中不含x项,则q的值为()A.B.﹣5 C.D.56.对于算式的计算结果,有以下六种说法:①是一个16位整数;②是一个15位整数;③0的个数是14;④0的个数是13;⑤只有两个非0数字;⑥至多有一个非0数字.其中正确的说法是()A.①、③、⑤B.②、③、⑥C.②、④、⑥D.①、④、⑤7.若x+3y=0,则2x•8y=.8.若x2﹣y2=12,x+y=6,则x﹣y=.(本题已被至少7套试卷使用)9.若多项式x2+mx+9恰好是另一个多项式的平方,则m=.(本题已被至少15套试卷使用)10.如图(1)的面积可以用来解释(2a)2=4a2,那么根据图(2),可以用来解释(写出一个符合要求的代数恒等式).11.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b)7的展开式共有项,第二项的系数是,(a+b)n的展开式共有项,各项的系数和是.12.用简便方法计算下列各题:(1)()2016×(﹣1.25)2017(2)(2)10×(﹣)10×()11.13.先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=,b=.14.已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.15.观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.16.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.17.计算:(1)(3ab3)2•ab;(2)(2x3y2﹣4x2y)÷2xy.三、因式分解(共6小题)这部分内容一般是利用分式性质化简后求值或与乘法公式综合进行化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016七年级数学期中必考题_题型归纳
当今尖端科学的研究需要数学,大规模的社会化生产倚重于数学,新世纪许多重要的开展研究都需要通过数学模型进行探索……接下来我们大家一起练习七年级数学期中必考题。
2016七年级数学期中必考题
1、-2的倒数是( )
A.2
B.-2
C.
D.
2、在实数-2,0,2,3中,最小的实数是( )
A.-2
B.0
C.2
D.3
3、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )
A.1℃~3℃
B.3℃~5℃
C.5℃~8℃
D.1℃~8℃
4、在数0.25,﹣,7,0,﹣3,100中,正数的个数是( )
A.1个
B.2个
C.3个
D.4个
5、实数a在数轴上的位置如图所示,则下列说法不正确的是( )
A.a的相反数大于2
B.a的相反数【七年级数学期中试卷及答案】是2
C.|a|>2
D.2a6、多项式2x2y3﹣5xy2﹣3的次数和项数分别是( )
A.5,3
B.5,2
C.8,3
D.3,3
7、若单项式﹣3 b与b是同类项,则常数m的值为( )
A.﹣3
B.4
C.3
D.2
8、若代数式2 +3x的值是5,则代数式4 +6x﹣9的值是( )
A.10
B.1
C.﹣4
D.﹣8
9、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为( )
A.( )元
B.( )元
C.( )元
D.( )元。