清华大学微积分高等数学课件第7讲定积分二

合集下载

高等数学 定积分

高等数学 定积分

第五章 定积分第一节 定积分的概念第二节 定积分的性质和中值定理第三节 微积分基本公式第四节 定积分的换元法第五节 定积分的分部积分法第六节 定积分的近似计算第七节 广义积分问题的提出定积分的定义 几何意义定积分存在定理第一节 定积分的概念abxyo?=A 曲边梯形由连续曲线实例1 (求曲边梯形的面积))(x f y =)0)((≥x f 、x 轴与两条直线a x =、b x =所围成.一、问题的提出)(x f y =ab xyoab x yo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.曲边梯形如图所示,,],[1210b x x x x x a b a n n =<<<<<=- 个分点,内插入若干在区间a bxyoi ξi x 1x 1-i x 1-n x ;],[],[11---=∆i i i i i x x x x x n b a 长度为,个小区间分成把区间形面积,曲边梯形面积用小矩上任取一点在每个小区间i i i x x ξ-],[1ii i x f A ∆ξ≈)(:))(],[(1近似为高为底,以i i i f x x ξ-(1)分割(2)近似ini i x f A ∆≈∑=)(1ξ曲边梯形面积的近似值为ini i x f A ∆=∑=→)(lim 10ξλ时,趋近于零即小区间的最大长度当分割无限加细)0(},,max{,21→∆∆∆=λλn x x x 曲边梯形面积为(3)求和(4)取极限实例2 (求变速直线运动的路程)设某物体作直线运动,已知速度)(t v v =是时间间隔],[21T T 上t 的一个连续函数,且0)(≥t v ,求物体在这段时间内所经过的路程.思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值.(1)分割212101T t t t t t T n n =<<<<<=- 1--=∆i i i t t t ii i t v s ∆≈∆)(τ部分路程值某时刻的速度(3)求和ii ni t v s ∆≈∑=)(1τ(4)取极限},,,max{21n t t t ∆∆∆= λini i t v s ∆=∑=→)(lim 10τλ路程的精确值(2)近似设函数)(x f 在],[b a 上有界,记},,,max{21n x x x ∆∆∆= λ,如果不论对],[b a 在],[b a 中任意插入若干个分点bx xx x x a nn =<<<<<=-121把区间],[b a 分成n 个小区间,各小区间的长度依次为1--=∆i i i x x x ,),2,1( =i ,在各小区间上任取一点i ξ(i i x ∆∈ξ),作乘积i i x f ∆)(ξ ),2,1( =i 并作和i i ni x f S∆=∑=)(1ξ,二、定积分的定义定义怎样的分法,⎰==ba I dx x f )(ii ni x f ∆∑=→)(lim 10ξλ被积函数被积表达式积分变量积分区间],[b a 也不论在小区间],[1i i x x -上点i ξ怎样的取法,只要当0→λ时,和S 总趋于确定的极限I ,我们称这个极限I 为函数)(x f 在区间],[b a 上的定积分,记为积分上限积分下限积分和几点说明:(1) 定积分是一个数值,它仅与被积函数及积分区间有关,⎰b a dx x f )(⎰=b a dt t f )(⎰=ba duu f )(而与积分变量的字母无关.)( ,)()( 2⎰⎰⎰=-=aaabbadx x f dx x f dx x f 规定:)(.],[)(],[)( 3的取法无关的分法及的和式的极限与所表示上可积,则在区间若)(i bab a dx x f b a x f ξ⎰,0)(≥x f ⎰=ba Adx x f )(曲边梯形的面积,0)(≤x f ⎰-=ba Adx x f )(曲边梯形的面积的负值a b xyo)(x f y =AxyoabA -)(x f y =三、定积分的几何意义1A 2A 3A 4A 4321)(A A A A dx x f ba ⎰=-+-,],[)(变号时在区间b a x f 三、定积分的几何意义.)(是面积的代数和⎰badx x f几何意义:积取负号.轴下方的面在轴上方的面积取正号;在数和.之间的各部分面积的代直线的图形及两条轴、函数它是介于x x b x a x x f x ==,)(++--当函数)(x f 在区间],[b a 上连续时,定理1定理2 设函数)(x f 在区间],[b a 上有界,且只有有限个间断点,则)(x f 在四、定积分的存在定理区间],[b a 上可积.例1 利用定义计算定积分.12dx x ⎰解将]1,0[n 等分,分点为nix i =,(n i ,,2,1 =)小区间],[1i i x x -的长度nx i 1=∆,(n i ,,2,1 =)取i i x =ξ,(n i ,,2,1 =)i i n i x f ∆∑=)(1ξi i ni x ∆=∑=21ξ,12i ni ix x ∆=∑=.,102的选取无关及法故和式极限与区间的分可积因为i dx x ξ⎰n n i ni 121⋅⎪⎭⎫ ⎝⎛=∑=∑==n i i n 12316)12)(1(13++⋅=n n n n ,121161⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n ∞→⇒→n 0λdx x ⎰102i i ni x ∆=∑=→210lim ξλ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=∞→n n n 121161lim .31= 几何上是曲线y=x 2,直线x=1及x 轴围成的曲边三角形面积.例2 利用定义计算定积分.121dx x⎰解在]2,1[中插入分点 12,,,-n q q q ,典型小区间为],[1ii q q -,(n i ,,2,1 =)小区间的长度)1(11-=-=∆--q qq q x i i i i ,取1-=i i qξ,(n i ,,2,1 =)i i ni x f ∆∑=)(1ξi ni ix ∆=∑=11ξ)1(1111-=-=-∑q q q i ni i ∑=-=ni q 1)1()1(-=q n 取2=nq即nq 12=),12(1-=n n )12(lim 1-+∞→xx x x xx 112lim1-=+∞→,2ln =)12(lim 1-∴∞→nn n ,2ln =dx x ⎰211i ni ix ∆=∑=→101lim ξλ)12(lim 1-=∞→n n n .2ln =i i ni x f ∆∑=)(1ξ原式⎥⎦⎤⎢⎣⎡π+π-++π+π=∞→n n n n n n n nsin )1(sin 2sin sin 1lim π=∑=∞→n i n n i n 1sin 1lim n n i ni n π⋅⎪⎭⎫ ⎝⎛ππ=∑=∞→1sin lim 1.sin 10⎰ππ=xdx ix ∆i ξ例3:将下列和式极限表示成定积分.⎥⎦⎤⎢⎣⎡-+++∞→n n n n n n πππ)(sin sin sin lim121 :五、小结1.定积分的实质:特殊和式的极限.2.定积分的思想和方法:分割化整为零求和积零为整取极限精确值——定积分求近似以直(不变)代曲(变)取极限Z .思考n n n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dxx f e 2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n 证明n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛∞→ 21lim ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21lim ln n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dx x f e 利用对数的性质得⎪⎭⎫⎝⎛∑==∞→n i f n ni n e1ln 1lim n n i f ni n e1ln lim 1⋅⎪⎭⎫ ⎝⎛∑==∞→ 指数上可理解为:)(ln x f 在]1,0[区间上的一个积分和.分割是将]1,0[n 等分分点为nix i =,(n i ,,2,1 =)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21ln lim 极限运算与对数运算换序得nn i f n i n 1ln lim 1⋅⎪⎭⎫ ⎝⎛∑=∞→⎰=10)(ln dx x f 故nn n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim.10)(ln ⎰=dxx f e 因为)(x f 在区间]1,0[上连续,且0)(>x f 所以)(ln x f 在]1,0[上有意义且可积 ,2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n ⎰∑-=-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-+-=⎥⎦⎤⎢⎣⎡-++-+-=∞→∞→∞→1021222222222411)(41lim )(41)2(41)1(411lim 41241141lim dxx n ni n n n n n n n n n n i n n n 解第二节 定积分的性质、中值定理1.定积分性质2.中值定理对定积分的补充规定:(1)当b a =时,0)(=⎰ba dx x f ;(2)当b a >时,⎰⎰-=abb adx x f dx x f )()(.说明 在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小.一、定积分性质和中值定理证⎰±ba dxx g x f )]()([i i i ni x g f ∆±=∑=→)]()([lim 10ξξλi i ni x f ∆=∑=→)(lim 10ξλii ni x g ∆±∑=→)(lim 10ξλ⎰=ba dx x f )(.)(⎰±ba dx x g ⎰±b a dx x g x f )]()([⎰=b a dx x f )(⎰±ba dx x g )(.(此性质可以推广到有限多个函数作和的情况)性质1⎰⎰=ba b a dx x f k dx x kf )()( (k 为常数).证⎰ba dx x kf )(ii ni x kf ∆=∑=→)(lim 10ξλi i n i x f k ∆=∑=→)(lim 1ξλii ni x f k ∆=∑=→)(lim 10ξλ.)(⎰=ba dx x f k 性质2⎰ba dx x f )(⎰⎰+=bcca dx x f dx x f )()(.补充:不论 的相对位置如何, 上式总成立.c b a ,,例 若,c b a <<⎰c a dx x f )(⎰⎰+=cb b a dx x f dx x f )()(⎰b a dx x f )(⎰⎰-=cb c a dxx f dx x f )()(.)()(⎰⎰+=bc ca dx x f dx x f (定积分对于积分区间具有可加性)假设bc a <<性质3dx b a ⋅⎰1dx ba⎰=a b -=.则0)(≥⎰dx x f ba. )(b a <证,0)(≥x f ,0)(≥ξ∴i f ),,2,1(n i =,0≥∆i x ,0)(1≥∆ξ∴∑=i i ni x f },,,max{21n x x x ∆∆∆= λi i ni x f ∆∴∑=→)(lim 1ξλ.0)(⎰≥=ba dx x f 性质4性质5如果在区间],[b a 上0)(≥x f ,例1 比较积分值dx e x⎰-20和dx x ⎰-20的大小.解令,)(x e x f x -=]0,2[-∈x ,0)(>x f ,0)(02>-∴⎰-dx x exdx ex⎰-∴2,02dx x ⎰->于是dx e x ⎰-2.20dx x ⎰-<性质5的推论:证),()(x g x f ≤ ,0)()(≥-∴x f x g ,0)]()([≥-∴⎰dx x f x g ba ,0)()(≥-⎰⎰ba ba dx x f dx x g 于是 dx x f ba ⎰)( dx x g ba ⎰≤)(.则dx x f ba ⎰)( dx x g ba ⎰≤)(. )(b a <如果在区间],[b a 上)()(x g x f ≤,(1)dx x f b a ⎰)(dx x f ba⎰≤)(.)(b a <证,)()()(x f x f x f ≤≤- ,)()()(dx x f dx x f dx x f ba ba ba ⎰⎰⎰≤≤-∴即dx x f ba ⎰)(dx x f ba⎰≤)(.说明: 可积性是显然的.|)(x f |在区间],[b a 上的性质5的推论:(2)设M 及m 分别是函数证,)(M x f m ≤≤ ,)(⎰⎰⎰≤≤∴ba ba b a Mdx dx x f dx m ).()()(a b M dx x f a b m ba -≤≤-⎰(此性质可用于估计积分值的大致范围)则 )()()(a b M dx x f a b m ba -≤≤-⎰.)(x f 在区间],[b a 上的最大值及最小值,性质6例2 估计积分dx x⎰π+03sin 31值的范围.解,sin 31)(3xx f +=],,0[π∈∀x ,1sin 03≤≤x ,31sin 31413≤+≤x ,31sin 31410030dx dx x dx ⎰⎰⎰πππ≤+≤.3sin 31403π≤+≤π∴⎰πdx x例3 估计积分dx xx⎰ππ24sin 值的范围.解,sin )(xx x f =2sin cos )(x x x x x f -='2)tan (cos x x x x -=⎥⎦⎤⎢⎣⎡∈2,4ππx ,0<)(x f 在]2,4[ππ上单调下降,,22)4(π=π=f M ,2)2(π=π=f m ,442π=π-π=-a b ,422sin 4224π⋅π≤≤π⋅π∴⎰ππdx x x .22sin 2124≤≤∴⎰ππdx x x 如果函数)(x f 在闭区间],[b a 上连续,上的平均值在],[)()(1b a x f dxx f a b ba⎰-则在积分区间],[b a 上至少存在一个点 ξ,使dx x f b a ⎰)())((a b f -=ξ. )(b a ≤≤ξ性质7(定积分中值定理)积分中值公式证Mdx x f a b m ba≤-≤∴⎰)(1)()()(a b M dx x f a b m ba -≤≤-⎰ 由闭区间上连续函数的介值定理知在区间],[b a 上至少存在一个点 ξ,)(1)(⎰-=ξbadx x f a b f dx x f ba ⎰)())((ab f -=ξ.)(b a ≤≤ξ即在区间],[b a 上至少存在一个点ξ,1. 积分中值公式的几何解释:xyoa b ξ)(ξf 使得以区间],[b a 为以曲线)(x f y =底边,为曲边的曲边梯形的面积等于同一底边而高为)(ξf 的一个矩形的面积。

《高等数学》第二节 定积分基本公式

《高等数学》第二节  定积分基本公式

例 1 设f (x) sin 2t d t, 求f (x) 0 x 2 2 解:f (x) sin 2t d t sin 2x 0
2
x
如果函数f (x)在区间[a, b]上连续,则 I (x) f (t )dt
a x
是f (x)在[a, b]上的一个原函数.
或记作
证明
b f ( x ) d x F ( x ) a F (b) F ( a ). b a
b a
F (x)是f (x)的一个原函数, 而I (x) f (t )dt也是f (x)的一个原函数,
a x
F (x) I (x) C.
令x a有 F (a) I (a) C.
1 1 1 x2 1 lim . 2 x 0 1 2
I I' ( x) lim lim f ( ) f (x), x 0 x x

d x I ' (x ) f (t )dt f (x ). dx a
a
结论:变上限积分所确定的函数 x f (t )dt 对积分上限 x的导数等于被积函数f(t)在积分上限x处的值f(x).
注意:积分上限x与被积表达式f(x)dx中的积分变量x 是两个不同的概念,在求积时(或说积分过程中)上限 x是固定不变的,而积分变量x是在下限与上限之间 变化的,因此常记为
x a
x
f (t )dt.
定理1
如果函数f (x)在区间[a, b]上连续,则变上限 I (x) f (t )dt
1 1 dx arctan x 1 2 1 x
1 1
arctan 1 arctan( 1) π π ( ) 4 4 π . 2

《高数》定积分课件

《高数》定积分课件
《高数》定积分ppt 课件
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被

《高数定积分》课件

《高数定积分》课件

05
广义积分及其收敛性判别法
广义积分的概念及分类
广义积分的定义
广义积分是相对于正常积分而言的一种特殊积分,其积分区间可能包含无穷大或者无界 函数。
广义积分的分类
根据被积函数和积分区间的不同,广义积分可分为无穷限广分的收敛性判别法
比较判别法
通过比较被积函数与已知收敛或发散的函数,来判断广义积分的收敛性。
换元法求解定积分
01
换元法的基本思想
通过变量代换简化定积分的计算 。
02
常见的换元方法
03
换元法的注意事项
三角函数代换、倒代换、根式代 换等。
代换后需调整积分上下限,并验 证代换的可行性。
分部积分法求解定积分
分部积分法的基本思想
将复杂函数拆分为简单函数 进行积分。
常见的分部积分公式
幂函数与三角函数、幂函数 与指数函数、幂函数与对数 函数等。
06
定积分在经济学等领域的应用
由边际函数求原经济函数
边际函数与定积分的关系
边际函数描述的是经济量变化的瞬时速率,而定积分则可用于求取原经济函数,即总量 函数。
求原经济函数的步骤
首先确定边际函数的表达式,然后根据定积分的定义,对边际函数进行积分,得到原经 济函数的表达式。
示例
已知某产品的边际收益函数为MR(q),通过对其进行定积分,可以得到总收益函数 TR(q)。
曲线的长度、图形的面积等。
THANKS
感谢观看
原函数与不定积分概念
原函数定义
原函数是指一个函数的导数等于给定函数的函数。根据微积分基本定理,不定积分就是求原函数的过 程。
不定积分性质
不定积分具有线性性质、常数倍性质和积分区间可加性。这些性质在求解复杂函数的定积分时非常有 用。

定积分与原函数的关系 微积分基本定理【高等数学PPT课件】

定积分与原函数的关系 微积分基本定理【高等数学PPT课件】
通过原函数计算定积分开辟了道路 .
2) 变限积分求导:
d (x)
dx a
f
(t) d t

f
[ (x)](x)
d
dx
( x) (x)
f
(t)
dt

d dx

a
f (t) d t
(x)
( x)
a
f
(t) d t

f [ (x)](x) f [ (x)] (x)
第二节 定积分与原函数的关系 微积分基本定理
一、积分上限函数
二、牛顿—莱布尼茨公式
一、积分上限函数
定理1. 若
x
则变上限函数 y
y f (x)
(x) a f (t) d t
(x)
证: x, x h [a, b] , 则有
o a x b x
(x

h) h
(x)

1
o
x
0
例6

f
(x)

2x 5
0 1

x x

1
,
2

2
0
f
( x)dx.
解:
2
0
f
ห้องสมุดไป่ตู้
( x)dx
1 0
f
( x)dx

2
1
f
( x)dx
y
在[1,2]上规定当x 1时, f ( x) 5,
原式
1
2xdx
2
5dx 6.
0
1
o 12x
例7. 设
解:设
1

清华微积分(高等数学)课件第十七讲定积分(二)-36页精品文档

清华微积分(高等数学)课件第十七讲定积分(二)-36页精品文档

a
x
x
f R [ a ,b ] M 0 ,f ( x ) M x [ a ,b ]
xx
xx
0F (xx)F (x)f(t)d t f(t)dt
x
x
M x 0(x 0)
22.11.2019
5
[证] (2) 用导数定义证明
任 x [ a 取 ,b ],x x [ a ,b ]
满足三个条件:
(1) (t) C1[ , ];
(2) a (t) b;
(3) ( ) a, ( ) b ,
则有
b
f ( x)dx

f [ (t)] (t) dt
a

22.11.2019
20
x
b
x(t)
x
b
x(t)
a o
t
a o
a
a
0
对于右端,作 第变 一 :换 x项 t
又由 f(x)为偶函数知
22.11.2019
f(x)f( t)f(t)
24
从而由换元公式
0
0
a
f(x)d x f(t)d t f(t)dt
a
a
0
为什麽?
a
定积分与积分变量
f (x)dx
0
所用字母无关!
a
0
a
f(x )d x f(x )d xf(x )dx
x2

2
0
1csoixsn2 xd
x
2
[例] 计 算3(x3) 1x2dx
3
9
[解]
3
(x3)
1 x2dx

清华大学微积分高等数学课件第讲定积分的应用二

清华大学微积分高等数学课件第讲定积分的应用二
W a bF y(y)d ykma bM yld 2yy2
kmM b2l2l
a2l2l
08.04.2021
[ln
l
b
ln a
]14 9
(三)静力矩和质心
1. 质点系的质心
y •A 3
•A n

yi


•A 1
o
•A i ( m i ) •A2
• •
x
xi
质 点 Ai 对x轴 的 静 m 力 iyi矩
于是得
Mx
Lydl
L
yd,l
0
0
My
Lxdl
L
xdl
0
0
M0Ldl0LdlL
质心坐标
08.04.2021
xMy
L
xdl
0
L
xdl
0
M L
L
yMx
L
ydl
0
L
ydl
0
M L
L
18
3. 平面薄板的质心
y
设面密度 常数
y f(x)
y
2
••
oa
x
xxdx b
08.04.2021
19
质量:
y
[解] 上半圆方程 y1b a2x2
下半圆方程 y2b a2x2 b
y12y2 2y2a2x2x2
x
a o a
1y2 a
a2x2
08.04.2021
6
所求面积为上、绕 下x轴 半旋 圆转的
侧面积之 ,故和
S 2 S 1 40 a y 11 y 1 2 d x 40 a y 21 y 2 2 d
[解]

高等数学微积分教学ppt(2)

高等数学微积分教学ppt(2)
2、自变量趋于无穷大时函数的极限
本节内容 :
二、函数的极限
1、自变量趋于有限值时函数的极限
1).
时函数极限的定义
引例. 测量正方形面积.
面积为A )
边长为
(真值:
边长
面积
直接观测值
间接观测值
任给精度 ,
要求
确定直接观测值精度 :
定义1 . 设函数
在点
的某去心邻域内有定义 ,

时, 有
1.幂函数
2.指数函数
3.对数函数
4.三角函数
正弦函数
余弦函数
正切函数
余切函数
正割函数
余割函数
5.反三角函数
幂函数,指数函数,对数函数,三角函数和反三角函数统称为基本初等函数.
四. 初等函数
由常数及基本初等函数
否则称为非初等函数 .
例如 ,
并可用一个式子表示的函数 ,
例6. 求
解:
利用定理 4 可知
说明 : y = 0 是
的渐近线 .
内容小结
1). 无穷小与无穷大的定义
2). 无穷小与函数极限的关系
Th1
3). 无穷小与无穷大的关系
Th3
4). 无穷小的运算法则
Th4
Th5
二、 函数的间断点
一、 函数连续性的定义
函数的连续性与间断点
第一章
可见 , 函数
分析基础
函数
极限
连续
— 研究对象
— 研究方法
— 研究桥梁
函数、极限与连续
第一章
二、函数
一、集合
第一节
函数
元素 a 属于集合 M , 记作

清华大学微积分高等数学课件第7讲定积分二

清华大学微积分高等数学课件第7讲定积分二

1 10
2020/5/3
11
[例6] 试问:具有什麽性质的f ,恒 函有 数
x
f(x)d xaf(t)d tC(x [a,b])
若fC[a,b],则 有
x
f(x)dxa f(t)d tC (x[a,b])
2020/5/3
12
思考题:
1.有原函数的函数是否一定连续? 2.有原函数的函数是否一定黎曼可积? 3.黎曼可积的函数是否一定存在原函
1 2 si2 xc no 2 xdsx
0
(si2 xnco2 xs)2dx
x
x
0
sin cos dx
2
2
0 2(c2 x o ssi2 x n )d x 2 (s2 x i n co 2 x)d sx
| | 202 0/5(/32 si2 xn 2 co 2 x)0 2 s ( 2 co 2 x 2 ssi2 x)n 2 4(
数?
2020/5/3
13
二、牛顿—莱布尼兹公式 定理2:设f(x)C[a, b],F(x)是f(x)在[a, b]
上的任意一,则 个有 原函数
bf(x)d xF (b)F (a)F (x)b
a
a
[证] 因f为 (x)C[a,b]故 , 由1知 定 ,变理 上
定 积G分 (x)
x
f(t)dt
a
是f(x)在 [a, b]上的一个 ,且 G 原 (a)函 0.
b
G (b )f(t)d t G (b ) G (a )(1 )
2020/5/3
a
14
又已F(知 x)是f(x)在[a, b]上的任意 一个原,故 函有 数
F(x)G (x)C

微积分课件第七节定积分的几何应用.

微积分课件第七节定积分的几何应用.

2. 截面面积已知的几何体的体积设有立体如图 A( x 表示过点x的截面面
积, , 求此立体的体积 . (1 任取区间 x, x dx], [ 落在该区间几何体的体积为V,Δ 可近似扁圆视为以A(x为底面积、dx 为高的柱体的体积, 则体积微元为利用定积分的微元法 A(x a x x+dx b x A( x dx,就是所求几何体的体积 V 在区间 a, b]作定积分, [ (2 以A( x dx为被积表达式, b a A( x dx.
例设有底圆半径为R的圆柱,被一与圆柱底面交成α且过底圆直径的平面所截,求截下的楔形体的体积。

解取该平面与圆柱体底面的交线为 x轴, 底面上过圆中心且垂直于 x轴的直线为轴, y R 则底圆方程为 x 2 y 2 R 2 , x 在
x( R x R处垂直于x轴作立体的截面 , 截面为直角三角形, 两条直角边分别为 y y 及y tan α , 即 R 2 x 2 及 R 2 x 2 tan α , R x 1 2 A( x ( R x 2 tan α , 截面面积 2 R 则立体体积 V 1 (R 2 x 2 tan αdx 2 R3 tan α . 2 R 3
小结一、定积分应用的微元法二、用定积分求平面图形的面积三、用定积分求体积 (1旋转体的体积 Vx V a b a π[ f ( x ] dx Vy 2 d c π[ ( y ] dy 2 (2截面面积已知的几何体的体积 b A( xdx
作业: P266 1(2),2(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若fC[a,b],则 有
x
f(x)dxa f(t)d tC (x[a,b])
2020/4/28
12
思考题:
1.有原函数的函数是否一定连续? 2.有原函数的函数是否一定黎曼可积? 3.黎曼可积的函数是否一定存在原函
数?
2020/4/28
13
二、牛顿—莱布尼兹公式 定理2:设f(x)C[a, b],F(x)是f(x)在[a, b]
2020/4/28
路程函数是速度函数的原函数4
[证] (1) 用连续定义证明
任 x [ a 取 ,b ],x x [ a ,b ]
xx
x
F (xx)F (x)f(t)d tf(t)dt
xx
a
a
a
x x
f(t)dt f(t)dt f (t )dt
a
x
x
f R [ a ,b ] M 0 ,f ( x ) M x [ a ,b ]
满足三个条件:
(1) (t) C1[ , ];
(2) a (t) b;
(3) ( ) a, ( ) b ,
则有
b
f ( x)dx
f [ (t)] (t) dt
a
2020/4/28
20
x
b
x(t)
x
b
x(t)
a o
t
a o
t
[证] 设F(x)是f(x)的一个原函数
d[F ( t) ] F ( x )( t) f( x )( t) f[( t)] ( t) dt f[(t)] (t)d tF [() ]F [()]
试比 I1与 较 I2的大小。
[解] 利用估值定理
当 x [0,]时 ,有 six n x,
2
且当 x[0,]时, sin x, coxs,
2 因而有
sisn ix n ) ( six ,n cx o c s os x )(,sin
2020/4/28
18
因此
2sinx )( ds x i2n six nd x co xs 2 1
1 4
x
[解] 原 式 1ln xdx 4ln xdx
1 4
x
1x
2020/4/28
| (2
1
xlnx1
4
1
1 4
2 xdx) x
| (2
4
xlnx
4
2
xdx )
11x
| | 1
4
(2x ln x 4x )1 (2x ln x 4x )1
4
6ln22
31
[例 2]计 算 1x2(1x)ndx 0
aT
T
a f (x)dx 0 f (x)dx
nT
T
f(x)dxnf(x)dx (n为 正 整 ) 数
0
0
2sin 2xdx4
2sin 2xdx
2020/4/28 0
0
27
四、定积分的分部积分法
定理2: (定积分的分部积分法)
设 函u数 (x),v(x)在 区[a间 , b]上 有 连 续 的 一u阶 (x)导 ,v(x数 ),则 有 分部积分公式
xx
xx
0F (xx)F (x)f(t)d t f(t)dt
x
x
M x 0(x 0)
2020/4/28
5
[证] (2) 用导数定义证明
任 x [ a 取 ,b ],x x [ a ,b ]
由 (1 )有 , F (x )liF m (x x ) F (x )
x 0
x
1 xx
lim f(t)dt
作业
P174习题6.3
1(3)(4). 2(2). 4. 5.
7(3)(5)(11). 8(1)(3).
复习: P168—186
2020/4/28
1
第十七讲 定积分(二) 一、变上限定积分 二、牛顿-莱布尼兹公式 三、定积分的换元积分法 四、定积分的分部积分法
2020/4/28
2
一、变上限定积分
a
a
u(x)v(x)|b a

b
au(x)v(x)dx
| b
b
u(x)v(x) u(x)v(x)dx
aa
[注意] 分部积分公式也可以写 成
| b
bb
u (x )d [v (x ) ]u (x )v (x )v (x )d [u (x )]
a
aa
2020/4/28
30
[例1]
计算
4 lnx dx
[证](1)
a
0
a
f(x)d x f(x)d x f(x)dx
a
a
0
对于右端,作 第变 一 :换 x项 t
又由 f(x)为偶函数知
2020/4/28
f(x)f( t)f(t)
24
从而由换元公式
0
0
a
f(x)d x f(t)d t f(t)dt
a
a
0
为什麽?
a
定积分与积分变量
f (x)dx
(2)若f(x)C[a, b]则 , F(x)D[a, b] 且F(x)f(x) x[a, b]
[注意] 连续函数一定存在原函数 !
dx
dx(a f(x)dx)f(x)
质 点 以v(速 t)从 度时a开 刻始 作 直,线

时t走 刻过
t
路s程 (t)a
v()d
当v(t )连续时就有s(t)dd[tatv()d]v(t)
0
x
能确定隐y函 y(x数 ),求dy. dx
[解] 方程两边 x求对 导 ,得到
ey2 dysinx2 0 dx
解出dy , 得 dx
dy ey2 sinx2 dx
[注意] 变上限定积分给出一种表示函数的方
法,对这种函数也可以讨论各种性态。
2020/4/28
9
[例 4]
设参数x 方ts程 in d,y
b
au(x)v(x)dx
| b
b
u(x)v(x) v(x)u(x)dx
a
a
2020/4/28
28
[证] 利用牛顿—莱布尼兹公式
[ u ( x ) v ( x ) ] u ( x ) v ( x ) u ( x ) v ( x )
由 条 件 上 式 右函 端数 是 ,从连 而续 左 端
1
x2etdt x3etdt
1
1
d d x x x 2 3e td td d x 1 x 2e td td d x 1 x 3e td t
2xxe2(3x2)ex3 2xxe23x2ex3
2020/4/28
8
[例3] 设由方ye程 t2dt 0sint2dt0
0
0
0
2cos x )( ds x i2 n co xs d sxix n2 1,
0
0
0
所以 2 sin(x)sdix n2cosx ()sdixn
0
0

I1 I2
2020/4/28
19
三、定积分的换元积分法
定理1: (定积分的换元积分法)
设函数 f ( x) C [a, b],作变换 x (t),
若 f(x)在 [a, b]上 可 ,则 x 积 [a, b] f(x)在 [a, x]上也 . 可积
记作 F(x)ax f (t)dt (axb)
上限变量
x
或 F(x)a f (x)dx (axb)
是 上 限 x的 函 数 积分变量
2020/4/28
3
定理: (1)若f(x)R[a, b]则 , F(x)C[a, b];
2
2
0 2(c2 x o ssi2 x n )d x 2 (s2 x i n co 2 x)d sx
| | 202 0/4(/22 8 si2 xn 2 co 2 x)0 2 s ( 2 co 2 x 2 ssi2 x)n 2 4(
21)
17
[例3]
设I102 sin(xs)din ,xI202cos(xs)din ,x
[u(x)v(x)]是 连 续.函 利数 用 NL公 式 ,
| 得
b
b
[u (x)v(x)]d xu (x)v(x)
a
a
而右端的积分为
b
a[u(x)v(x)u(x)v(x)]dx
b
b
a u(x)v(x)dxa u(x)v(x)dx
2020/4/28
29
于是得到
b
b
u(x)v(x)dx u(x)v(x)dx
2020/4/28
a
14
又已F(知 x)是f(x)在[a, b]上的任意 一个原,故 函有 数
F(x)G (x)C
于 , 是 G ( b ) G ( 有 a ) F ( b ) F ( a )
代入(1式 ) ,便得到
b
a f(x)dx F(b)F(a)
2020/4/28
15
牛顿—莱布尼兹公式将定积分的计 算问题转化为求被积函数的一个原函 数的问题.
5
x2
[解] “ 0 ”,利用洛比达法则 0
x
(1c
l i m 0
x 0
5
x2
ot2)sdt (1cox)s 1
lim x 0
3
x 5 2
2
2x
(1cosx)
lim x0
5x2
xli0m 512 xx22
1 10
2020/4/28
11
[例6] 试问:具有什麽性质的f ,恒 函有 数
相关文档
最新文档