凝结水精处理讲课内容
精处理、水汽系统培训讲课
九、各系统加药目的及注意事项
•炉水中PO43- 浓度太高的危害: •增加了炉水的含盐量,影响蒸汽品质 •有生成磷酸镁的危险。炉水中的Mg2+ 含量一般是 比较少的,当磷酸根含量过高时,可能形成 Mg3(PO4)2 。 Mg3(PO4)2 能粘附在炉管内形成传 热性能很差的二次水垢 •当炉水含铁量较高时,有生成磷酸盐铁垢的可能 •易发生磷酸盐暂时消失现象:磷酸盐溶解度开始是 随温度升高而增大,当水温达到200 ℃以上时,溶 解度反而降低,所以负荷升高时析出,负荷降低时 重新溶解,附着的炉管管壁,影响传热,同时会产 生游离NaOH,引起炉管金属的碱性腐蚀
五、精处理系统操作方式
•点操:可以单独开启阀门和启停电机,同时具有 “复位”的功能,会将运行混床退出;点操开启的 设备,若没有点操关闭而直接复位,下次打到“点 操”时,这些设备将保持开启状态 •步操:单独进行每一步的操作,不受时间控制,不 进行复位,会一直停留在该步 •半自动:会按照设定时间走完每一大步 •自动:按照设定时间执行完所有再生步序 •复位:混床和再生系统各有“复位”按钮,点击后 分别退出所有设备
九、各系统加药目的及注意事项
•给水、凝结水加氨、联胺: • 加氨处理的目的是中和水中的游离二氧化碳,防 止热力系统的酸性腐蚀 CO2 酸性腐蚀一般发生在凝汽器至除氧器之间的一 段管道,因为有凝补水带入的CO2 首先进入该管段; 其腐蚀特征一般是均匀腐蚀,因为其腐蚀产物是可 溶性的金属碳酸盐,在金属表面没有腐蚀产物的积 累,所以不易产生腐蚀坑 • 加联胺的目的是消除水中残留的溶解氧,防止热 力系统的氧腐蚀 氧腐蚀最易发生的部位在给水管道和省煤器入口端, 有腐蚀坑存在
四、失效树脂的再生操作
•树脂分离:先通过水反洗,使阴塔内阴、阳树脂因 密度不同分开;将阳树脂送入阳塔时,通过光电检 测仪和电导率仪监测界面,不至于将阴树脂送入阳 塔;光电检测仪是通过阴、阳树脂颜色不同进行监 测,电导率仪是利用阳树脂和阴树脂在水溶液电导 率不同进行监测,同时通入二氧化碳,使电导率差 距增大 •树脂再生:阴、阳塔各自进酸碱进行再生,控制酸、 碱浓度为5%,分别正洗至电导率小于5 µs/cm •树脂混合:树脂再生好后,将阴树脂送入阳塔,同 阳树脂混合均匀,正洗至电导率小于0.3 µs/cm
凝结水精处理ppt课件
树脂分别塔
4
1
5
11
6
12
2
10
8
7
3
13
9 14
1.失效树脂进脂阀; 2.阴脂出脂阀 3.阳脂出脂阀; 4.紧缩空气进气阀 5.顶部进水阀; 6.反洗进水上部辅助阀 7.底部进气阀; 8.底部主进水阀 9.反洗进水下部辅助阀 10.反洗进水中部辅助进水阀 11.上部水位调整阀;12.顶部排水阀 13.底部排放阀;14.底部辅助进水阀
图4.2.1 凝结水处置 (a)低压系统, 1—汽轮机; 2—发电机; 3—凝汽器; 4—凝结水泵(低压); 5—凝结水处置设备; 6—凝升泵; 7—低加; 8—凝结水泵(高压)
中压系统衔接方式
中压系统衔接方式即为水处置设备串联在凝结水泵和低压加热器之间, 见图4.2.1(b),压力在2.5~3.5MPa。采用中压凝结水系统,简化了热力系统,提 高了系统的的严密性,能耗省,也为凝结水处置系统布置在汽机房发明了条件。
8. 阴树脂再生塔
树脂在分别塔中分别后,上部的阴 树脂保送到阴再生塔进展擦洗再生。
阴再生塔的构造表示图
顶部进紧缩空气阀 顶部排气阀
再生塔的进口安装采用支母管式构造, 底部进水、出水;出树脂安装采用的 是双速水嘴的构造。
阴塔顶部 进水阀
顶部排放阀
阴塔进碱阀
阳再生塔兼树脂储存塔的构造与阴再
生塔类似,它的作用是将保送来的阳
第4章 凝结水精处置
4.1 凝结水精处置的必要性 4.2 凝结水精处置的技术概略 4.3 600MW超临界机组凝结水精处置 4.4 600MW超临界机组凝结水精处置实例 4.5 600MW亚临界机组凝结水精处置
凝结水精处理PPT课件
❖ 凝结水污染的原因 ❖ (1)凝汽器渗漏或泄漏 ❖ 凝结水污染的主要原因是冷却水从凝汽器不严密的
部位漏至凝结水中。凝汽器不严密的部位通常是在 凝汽器内部管束与管板连接处,由于机组工况的变 动会使凝汽器内产生机械应力,即使凝汽器的制造 和安装质量较好,在使用中仍然可能会发生循环冷 却水渗漏或泄漏现象。而冷却水中含有较多悬浮物、 胶体和盐类物质,必然影响凝结水水质。我公司采 用直接空冷式凝汽器,不存在循环水泄漏影响凝结 水品质的情况。
4
❖ 凝结水精处理的目的 ❖ 凝结水处理目的有两个:去除凝结水中的金属腐蚀
产物及去除微量的溶解盐类。 ❖ (1)去除凝结水中金属腐蚀产物 ❖ 由于设备和管道的金属腐蚀,使凝结水中含有金属
腐蚀产物,主要是铁和铜的氧化物。他们是以微粒 形式存在于水中的,真正呈溶解状态的很少。 ❖ 凝结水中金属腐蚀产物的量与很多因素有关,比如 机组运行工况,设备停备用保护的好坏,凝结水的 ph值,溶解氧含量等。在机组正常运行中,要想降 低给水中的铜铁含量是很困难的,而设置了凝结水 处理装置,对凝结水中金属氧化物微粒进行滤除, 就可以使凝结水中铜铁含量大大下降,保证给水品 质。
3
❖ (2)金属腐蚀产物的污染 ❖ 凝结水系统的管路和设备会由于某些原因而被腐蚀,
因此凝结水中常常有金属腐蚀产物。其中主要是铁 和铜的氧化物(我公司热力系统设备基本上没有铜 质们材呈料悬)浮。态铁和的胶形态态,主此要外是也以有F铁e2的O3、各F种e3离O4子为。主凝,它结 水中的腐蚀产物的含量与机组的运行状况有关,在 机组启动初期凝结水中腐蚀产物较多,另外在机组 负荷不稳定情况下杂质含量也可能增多。 ❖ (3)锅炉补给水带入少量杂质 ❖ 化学水处理混床出水即为锅炉补给水,一般从凝气 器补入热力系统。由于混床出水在运行中的严格控 制,补给水杂质含量很少,其水质要求: D合D格≤,0.就2μ可s能/c对m 凝,结Si水O2≤造2成0μ污g染/L。。如果混床出水不
凝结水精处理讲课内容
凝结水精处理系统杨清亮树脂的工作原理除去水中溶解性盐类的方法主要有三种:离子交换法、膜分离法和蒸馏法,其中离子交换树脂是目前在水处理过程中运用最广泛的方法。
工作原理:树脂是一类带有活性基团的网状结构高分子化合物,在树脂中有一活动部分,遇水可以电离,并能在一定范围内移动,可与周围水中的其他带同类电荷的离子进行交换反应。
所以当含有盐类的水溶液通过树脂时,树脂可以将水中的盐份交换下来。
树脂的特性1、树脂具有选择性离子交换树脂的选择性主要取决于被交换离子的结构。
有两个规律:1)离子带的电荷越多越容易被吸收。
2)带有相同电荷的离子,原子序数大的较容易被吸收。
对于强酸性阳树脂:Fe3+>Al3+>Ca2+>Mg2+>K+=NH4+>Na+>H+对于强碱性阴树脂: SO42->HSO4->N03->Cl->OH->HCO3->HSiO3-2、树脂具有可逆性阴、阳树脂交换的离子反应:1)阳树脂的交换反应:RH+Na+=RNa+H+2)阴树脂的交换反应:ROH+Cl-=RCl+OH-再生时的离子反应:1)阳树脂: RNa+H+=RH+Na2) 阴树脂: RCl+OH-= ROH+Cl1.二期凝结水精处理系统介绍1)二期凝结水精处理采用中压处理系统,#3、4机组各配备两台高速混床,两台机组共用一套再生系统,机组正常运行时两台混床并列运行,当有一台混床失效时,凝水50%旁路。
2)系统分为两个部分,一部分为凝结水精处理部分,另一部分为再生部分。
3)该系统的作用:可以除去凝结水中的溶解盐类、热力系统的腐蚀产物以及因凝汽器泄漏而进入凝结水中的盐份。
4)混床的监督项目:钠离子,二氧化硅,DD,温度(大于50℃时旁路门自动开启),压差。
1.1混床系统介绍1.1.1每台机组的凝结水精处理由2×50%高速混床、二台树脂捕捉器、一台再循环泵和一套旁路系统组成。
二台混床同时运行,不设备用。
机组启动初期,凝结水含铁量超过1000 μg/L时,不进入凝结水处理装置,直接通过旁路100%排放。
电厂化学岗前培训第五章凝结水精处理ppt课件
3、覆盖过滤器
工作原理:依靠滤层表面滤料颗粒间小孔的机械 阻留和滤料表面的吸附作用来完成的。当水中悬 浮物被截留下来时,它们会彼此重叠、架桥而变 成一层附加的滤膜,以后这层滤膜就起主要的过 滤作用。 结构:在覆盖过滤器中,各滤元的表面都是过滤 面积,所以它与堆放粒状滤料的过滤器相比,生 产率大得多,即在相同出力的情况下,其体积要 小得多。 运行:覆盖过滤器的运行分铺膜、过滤和去膜三 个步骤
五、凝结水处理的工艺流程: 1、有前置过滤器的系统: 1)凝结水→覆盖过滤器→混合床; 2)凝结水→树脂粉覆盖过滤器→混合床; 3)凝结水→电磁过滤器→混合床; 4)凝结水→管式微孔过滤器→混合床; 5)凝结水→氢型阳床→混合床。 2、不设前置过滤器的凝结水处理系统: 1)凝结水→树脂粉覆盖过滤器; 2)凝结水→空气擦洗高速混床。 有时将树脂扑捉器称为后置过滤器。
态杂质,而且由于颗粒很细,可以有效地除掉水中悬浮态和胶态杂质,如金属的
腐蚀产物和胶态的硅酸化合物。
用于除盐的离子交换树脂粉覆盖过滤器,要采用强酸性和强碱性树脂,在开
始工作时,其出水电导率为0.06~0.10µS/cm,当出水电导率升高到0.2~ 0.4µS/cm后,就应将工作过的树脂粉排掉,换上新的树脂粉。
学习内容
➢
绪论
➢ 第一章 电厂用水概述
➢ 第二章 水的预处理
➢ 第三章 水的预脱盐(超滤、反渗透)
➢ 第四章 锅炉补给水深度除盐
➢ 第五章 凝结水精处理
➢ 第六章 超临界机组热力设备腐蚀概述
➢ 第七章 热力设备的氧腐蚀和酸性腐蚀
➢ 第八章 超临界机组的水化学工况
➢ 第九章 冷却水系统的腐蚀与防护
➢ 第十章 热力设备的化学清洗
2.凝结水的污染
凝结水精处理系统课件
3.2 树脂粉末过滤器
树脂粉末过滤器作为混床的前置过滤, 可有效地除去水中氧化铁颗粒,对铁的 去除率可高达87~98% ;对铜的去除率 达80~90%。虽然粉末树脂过滤器能除 掉90% 或更多的可滤物,但却存在树脂 粉末漏出的问题。Fra bibliotekGPTRI
������ 华能福州电厂二期工程2×350MW 机 组的凝 结水精处理系统是美国 GRAVER 公司的 POWDEX 凝结水过滤除铁系统 (简称“树脂 粉末过滤器”),其功能主 要是除铁氧化物 等腐蚀产物,除盐作用 很差,其离子全交换 容量不到混床的 1%。 在凝汽器发生泄漏时,不能保证给水水 质的 要求。 国外的经验指出,采用粉末树脂凝结水精处 理系统的机组所发生的汽轮机腐蚀积盐问题 较多,而采用深床精处理的机组上较少发生。 因此国外不考虑在凝结水精处理系统上配备 粉末树脂过滤器作为前置过滤用。
GPTRI
4 高速混床
目前国内多数电厂均采用不设前置过滤器的高速混床, 国外也称为裸混床。高速混床同时承担除盐和除铁的 作用。 混床除盐装置的去除效率:对铁可达 60%~85% ; 对铜达 75%~93% ;对镍达70%~90% 。 虽然单一高速混床系统具有节省投资和占地面积 等 优点,但树脂易受铁污染。遭受铁污染后的树 脂 (尤其是阴树脂)密度增加,不利于混床内两 种树 脂的分离 。 每次再生前,都要进行多次擦洗,将增加树脂的磨损 和破碎;
GPTRI 粉末树脂精处理装置应用问题
研究表明,来自粉末树脂精处理装置的 树脂细末向给水系统的释放要大大高于 深床装置。因此,无论从过滤技术的要 求还是从除盐技术的要求来看,粉末树 脂精处理装置均不适用于超(超)临界 机组。
GPTRI 3.3 前置阳树脂床
凝结水精处理系统简介讲解课件
制系统发生联系,达到整个系统协调统
一。
上位机程控操作,共有点操/步操/半自
动/自动四种操作模式。
4
4.树脂离子交换原理
阴树脂
R-OH+Q-
R-Q+OH -
阳树脂
R-H+P+
R-P+H +
混合树脂
H + +OH -=H2O
5
5.运行指标
精处理入口母管:
3.凝结水温度大于50℃
4.凝结水压力大于4.0MPa
5.单台运行中树脂捕捉器压差大于100kPa
以上条件为并列条件
请关注报警内容,判断混床是否失效,失效混
床应停运;混床进出口压差高也应将树脂输送
至再生系统进行清洗。
15
混床失效条件
1.混床进出口压差大于0.35MPa(联锁条件
为0.35 MPa)
2.混床出水电导率大于0.15μs/cm
3.混床出水硅含量大于15μg/L
4.混床出水钠含量大于5μg/L
以上条件为并列条件,除了混床进出口
压差达到0.35 MPa自动开启混床旁路电
动门外,其余条件均只有上位机报警提
醒。
16
树脂再生流程图
2.再生好的阴、阳树脂
7.再生好的阴树脂
在凝汽器泄漏时,能获得处理故障的时间;在
凝汽器严重泄漏时,能按停机程序,正常停机。
在机组启动过程中,能大大缩短水汽质量达到
合格的时间。
2
2.工艺系统介绍
奥里油电厂一期2×600MW机组选用一套中压凝结水
精处理系统,包括混床系统和再生系统。
《凝结水精处理》课件
根据工艺要求和监测需要选择合适的流量计、压力表、温度计等设备,并定期 进行检查和维护,以保证其正常运行和使用寿命。同时,也需要定期对其他设 备进行校准和标定,以保证其测量准确性和可靠性。
04
凝结水精处理应用案例
火电厂凝结水精处理
火电厂是电力生产的主要场所,在发电过程中会产生大量的凝结水。
树脂罐的结构
树脂罐通常由罐体、进出水口、树脂 层、布水装置和排水装置等组成。罐 体一般为圆柱形,内部装有布水装置 和排水装置,用于均匀分配水和排出 水。进出水口用于连接管道,使水流 能够进入和流出罐体。树脂层是离子 交换反应发生的地方,通过填充不同 性质的离子交换树脂,实现对不同离 子的去除。
树脂罐的操作
国外发展现状
凝结水精处理技术在美国、欧洲等发达国家起步较早,技术成熟且应用广泛。国外知名企业如GE、 EBARA等在凝结水精处理设备研发和生产方面具有较高的水平,产品在国内外市场占有一定份额。
02
凝结水精处理技术
混床处理技术
01
02
03
原理
通过混合树脂,使阴阳离 子交换反应更加完全,提 高水质。
管道与阀门的操作和 维护
在操作过程中,需要定期检查管道和 阀门的密封性能和运行状态,及时发 现和处理泄漏和故障。同时,也需要 定期对阀门进行润滑和维护,以保证 其正常运行和使用寿命。
其他设备
其他设备的作用
其他设备包括流量计、压力表、温度计等辅助设备,用于监测和控制凝结水精 处理设备的运行状态和工艺参数。
重要性
随着电力需求的增长,火电机组容量不断扩大,对给水水质 的要求也越来越高。凝结水精处理是保证机组安全、经济运 行的重要环节,可以有效防止热力设备腐蚀、结垢和积盐等 问题。
凝结水精处理系统(完整版)
火力发电厂化学水处理取证凝结水精处理系统的运行•凝结水精处理系统的作用•凝结水精处理装置以及再生方式•凝结水精处理系统的离子泄漏•再生剂中的杂质和树脂的交叉污染对水质的影响•铵型运行的优点和缺点•铵型运行时的离子去除能力•凝汽器泄漏对铵型运行的影响•铵型运行是否适合本电厂?凝结水精处理系统的作用•在凝汽器泄漏可以方便地提供有效的保护;在大量泄漏的情况下使机组有时间实施停机。
•可减少系统中的腐蚀和沉积物的产生;•可以减少对机组进行化学清洗的要求;•有利于机组的启动,可以减少由于凝结水和给水品质相关的原因而引起的启动延迟。
凝结水精处理系统水质标准GB/T12145-2008直流锅炉凝结水质量标准DL/T915-2005凝结水精处理的特点•含盐量低•pH值高•流量大•温度相对高•压力高,对设备和设备的承压要求高低压凝结水精处理系统凝汽器→凝结水泵→凝结水处理设备→升压泵→低压加热器→中压凝结水精处理系统凝汽器→凝结水泵→凝结水处理设备→低压加热器→由于低压凝结水精处理系统出口需要升压泵,升压泵与凝结水泵流量匹配问题很难解决,目前我省的凝结水精处理系统都采用中压凝结水精处理系统,凝结水精处理系统承受的压力为凝结水泵出口压力。
凝结水装置的前置处理•纸粉覆盖过滤器•电磁过滤器•管式过滤器•膜过滤器前置过滤器绕线式滤芯的性能•精度与流量μm 1 3 5 10 20 30 50L/min 9 12 18 30 37 42 44•最高耐压≤0.5MPa;最高压差≤0.2MPa •工作温度丙纶线:聚丙烯骨架≤60℃,不锈钢骨架≤80℃。
脱脂棉线≤120℃。
凝结水精处理装置•粉末树脂过滤器(“Powdex”)•在管式过滤器的滤元表面,覆盖粉末树脂,希望达到过滤颗粒杂质和除盐的目的。
•实际上,由于覆盖的粉末树脂量太少,每次铺膜的除盐时间,只能达到4~8 h。
•投资低,但运行费用高。
•在凝汽器泄漏时,失去了对热力设备的保护作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凝结水精处理系统杨清亮树脂的工作原理除去水中溶解性盐类的方法主要有三种:离子交换法、膜分离法和蒸馏法,其中离子交换树脂是目前在水处理过程中运用最广泛的方法。
工作原理:树脂是一类带有活性基团的网状结构高分子化合物,在树脂中有一活动部分,遇水可以电离,并能在一定范围内移动,可与周围水中的其他带同类电荷的离子进行交换反应。
所以当含有盐类的水溶液通过树脂时,树脂可以将水中的盐份交换下来。
树脂的特性1、树脂具有选择性离子交换树脂的选择性主要取决于被交换离子的结构。
有两个规律:1)离子带的电荷越多越容易被吸收。
2)带有相同电荷的离子,原子序数大的较容易被吸收。
对于强酸性阳树脂:Fe3+>Al3+>Ca2+>Mg2+>K+=NH4+>Na+>H+对于强碱性阴树脂: SO42->HSO4->N03->Cl->OH->HCO3->HSiO3-2、树脂具有可逆性阴、阳树脂交换的离子反应:1)阳树脂的交换反应:RH+Na+=RNa+H+2)阴树脂的交换反应:ROH+Cl-=RCl+OH-再生时的离子反应:1)阳树脂: RNa+H+=RH+Na2) 阴树脂: RCl+OH-= ROH+Cl1.二期凝结水精处理系统介绍1)二期凝结水精处理采用中压处理系统,#3、4机组各配备两台高速混床,两台机组共用一套再生系统,机组正常运行时两台混床并列运行,当有一台混床失效时,凝水50%旁路。
2)系统分为两个部分,一部分为凝结水精处理部分,另一部分为再生部分。
3)该系统的作用:可以除去凝结水中的溶解盐类、热力系统的腐蚀产物以及因凝汽器泄漏而进入凝结水中的盐份。
4)混床的监督项目:钠离子,二氧化硅,DD,温度(大于50℃时旁路门自动开启),压差。
1.1混床系统介绍1.1.1每台机组的凝结水精处理由2×50%高速混床、二台树脂捕捉器、一台再循环泵和一套旁路系统组成。
二台混床同时运行,不设备用。
机组启动初期,凝结水含铁量超过1000 μg/L时,不进入凝结水处理装置,直接通过旁路100%排放。
正常运行后,混床启动初期出水不符合要求时,需经再循环泵循环至混床出水合格方可向系统供水。
1.1.2每个精处理混床系统设有一套自动旁路系统,当混床进出口母管压差大于0.3MPa或水温度超过50℃时,旁路阀自动打开,并关闭每个混床的进出水阀,凝结水100%通过旁路系统,保护树脂和混床不受损坏;当有一台混床树脂失效时,机组旁路阀门开启适当开度使50%凝结水流量通过旁路系统;另外50%凝结水流量通过没有失效的混床。
失效混床内的树脂送入树脂分离塔以进行树脂的再生处理,失效树脂从混床转移完毕后,将阳再生塔兼树脂贮存塔内再生好的备用树脂送入该混床,准备投运。
1.2精处理再生系统介绍每两台机组的混床共用一套再生装置,再生装置的主要功能能满足混床NH+4/OH-型运行时的树脂彻底分离、彻底清洗、完全再生的全部要求,且不会对树脂造成不必要的损害。
再生装置主要有分离塔、阴再生塔、阳再生塔兼树脂贮存塔及废水树脂捕捉器组成。
分离塔通过高速水流将树脂彻底分层,用上下进水的方法将阳阴树脂分别输送至阳阴再生塔,树脂经彻底清洗后分别进行同时再生,清洗合格后,将阴树脂输送至阳再生塔,混合清洗,导电度合格后备用。
废水树脂捕捉器是捕捉通过再生塔的树脂,防止再生塔中树脂漏入废水系统。
1.3再生工艺1.3.1再生前采用彻底的空气擦洗法:树脂表面粘附的金属氧化物,金属氧化物的颗粒直径较大,密度又因金属氧化物的不同而不同,用一般的反洗很难将其冲洗出去,用空气擦洗的方法在分离塔中将树脂表面的氧化物洗脱,用向下冲洗的方法将密度较重的杂质从下部排掉,然后在树脂分离后在阳阴树脂再生塔中再进行空气擦洗,擦洗下来的杂物以气室式将密度相对较轻的氧化物从中部排掉,密度相对较大从下部排掉。
这种方法可以彻底清除金属氧化物对树脂的污染,同时可以去除细碎树脂,有利于树脂的再生。
1.3.2 采用弧形多孔板结构和气水输送树脂的方法:混床和再生设备的弧形多孔板,既满足了设备布水的均匀性,又满足了树脂输送的流畅。
气水输送树脂是当失效树脂或再生合格的树脂输送到分离塔或混床中,利用压缩空气对树脂产生的扰动将水和树脂一起输送到对应的塔体中,最后用水冲洗设备和管道将残留的树脂输送干净。
这种方法可以将运行床或再生塔中的树脂输干净,输出率达99.9%。
1.3.3混床树脂体外再生采用高塔法:失效树脂输送到分离塔进行空气擦洗后,首先打开调节阀进行大流量反洗:反洗流速约40m3/h左右,此流速下阳阴树脂被升到锥体部分,通过调节阀逐渐减小反洗流量至阳树脂临界沉降速度以下,最后将流量降至阴树脂临界沉降速度以下,这样可使阳阴树脂彻底分层。
反洗沉降后,将分离塔中完全分离的阴树脂从分离塔的侧面输送到阴再生塔中,然后输送阳树脂,其终点由光电开关控制。
光电开关装在分离塔侧面的适当位置,此装置是通过光对水和树脂的反射率的不同而产生的不同的反映,光电开关的不同反映控制阳树脂输送阀关闭,达到控制阳树脂输送终点的目的。
1.3.4树脂再生后的再次进行空气擦洗:与树脂再生前在阳阴再生塔中的空气室擦洗方法一样,有利于去除阳阴树脂再生时从树脂孔隙中浸出来的杂物,同时可以去除残余的再生液,再生后的阳阴树脂得到了充分的清洁。
4.系统内部机构介绍4.1精处理混床的内部设有进水装置,出水装置等。
进水装置设为挡板加多孔板旋水帽型。
即充分保证进水分配的均匀,又防止水流直接冲刷树脂表面造成表面不平,从而引起偏流,降低混床的周期制水量及出水水质。
出水装置设计为弧型多孔板加水帽,其作用有二个:第一,由于水帽在设备内均匀分布,使得水能均匀地流经树脂层,使每一部分的树脂都得到充分的利用,可以使制水量达到最大的限度;第二,光滑的弓形不锈钢多孔板可减少对树脂的附着力,使树脂输送非常彻底。
4.2再生系统内部机构介绍4.2.1树脂分离塔:分离塔设计成下小上大的倒锥形容器,小端直径∅1300,大端直径∅2100,这种结构的设计能充分利用反洗时的水流特性,使阴阳树脂彻底分离。
设备中间留有约1m高的混脂层,避免了树脂输送时造成阴、阳树脂交叉污染。
该设备底部集水装置设计成弓形多孔板水帽式,使得水流分布较为均匀,顶部进水及反洗排水装置为梯形绕丝,以便于正洗进水和反洗排水时不跑树脂。
4.2.2阴树脂再生塔:该设备上部进水装置设计成支母管梯形绕丝结构,底部集水装置设计成弓形多孔板加双速水帽,即保证了设备运行时能均匀配水和配气,又使得树脂输出设备时彻底干净。
进碱装置为鱼刺式,支管为梯形绕丝结构,其缝隙既可使再生碱液均匀分布又可使完整颗粒的树脂不漏过,且可使细碎树脂和空气擦洗下来的污物去除。
4.2.3阳树脂再生塔兼树脂贮存塔:该设备结构类似于阴树脂再生塔,进水装置设计成支母管梯形绕丝结构,底部集水装置设计成弓形多孔板加双速水帽,进酸装置为鱼刺式,支管为梯形绕丝结构。
5 再生工艺介绍5.1两台机组共设五套树脂,其中四套运行,一套放在阳再生塔兼树脂贮存塔中备用,当一台混床树脂失效后,该混床内树脂通过树脂输送管输入树脂分离塔,再立即将阳再生兼树脂贮存塔内再生好的树脂送至该混床。
5.2在树脂分离塔内,首先将树脂进行初步空气擦洗以清除吸附于树脂表面的杂质,并消除阴阳树脂抱团现象。
然后进行反洗,首先控制反洗流量在调试设定值,使得阳、阴树脂全部被水力托起,浮于分离塔顶部;然后程序控制反洗流量分多个阶段逐步降低,直至完全关闭反洗门,从而使阳、阴树脂彻底分离,并在分离塔中部形成一清晰的界面。
5.3采用上下同时进水输送法,将阴树脂先从树脂分离塔送至阴再生塔,再采用上部进气底部进水输送法,并通过光电液位开关控制把阳树脂送至阳再生塔兼树脂贮存塔,混脂层则留在分离塔参与下一轮的分离。
5.4在阳再生兼树脂贮存塔及阴再生塔内分别对阳、阴树脂进行循环空气擦洗和气水冲洗,反复的次数操作人员可根据树脂的染情况设定,之后,阳、阴再生塔分别进行酸、碱再生,置换完成后,再分别对阳、阴树脂进行空气擦洗和气水冲洗,最后是快速正洗,阳再生塔正洗出水导电度控制在10μs/cm以下,阴再生塔出水导电度控制在5μs/cm以下,若正洗不合格,则需把树脂重新进行空气擦洗和气水冲洗,重新再生,重新冲洗。
5.5在阴、阳树脂再生结束后,用气水输送法将阴树脂送至阳再生兼树脂贮存塔内,启动罗茨风机,混合阴、阳树脂。
正洗树脂至出水导电度在0.2μs/cm以下,备用,整个再生过程结束。
6.混床在运行中常见问题⏹6.1混床运行周期短的原因(1)再生不彻底 (2) 运行流速过高(3)树脂老化(4)树脂污染⏹6.1.5树脂损失量大⏹6.1.6布水装置故障⏹6.1.7凝结水质劣化⏹6.2混床出水水质不合格的原因⏹6.2.1混床失效⏹6.2.2再生效果差⏹6.2.3混脂不均匀⏹6.2.4凝结水水质劣化⏹6.2.5产生偏流⏹6.3再生后正洗水质不合格⏹6.3.1 树脂分离不完全;⏹6.3.2.酸碱质量不好;⏹6.3.3.再生剂量不足;⏹6.3.4.再生液浓度偏离正常值;⏹6.3.5.树脂污染;⏹6.3.6.混脂不均;⏹6.3.7.床层偏流。
⏹6.4再生液浓度偏低⏹6.4.1.稀释水流量过大;⏹6.4.2.酸碱浓度计故障;⏹6.4.3.再生管道阀门开度不适;⏹6.4.4.酸碱浓度低;⏹6.4.5.酸碱计量泵出力不够再生时注意问题⏹1、酸碱液位有连锁:低于30CM时酸碱泵启动不了。
⏹2、在输送树脂的过程中,程序无法暂停或停止,只能到就地电磁阀箱操作。
⏹3、在其他步骤出现问题时可以选择暂停或跳步。
混床系统图再生系统图。