【教学设计】《整式的乘法》第三课时参考教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法(3)
(一)教学目标:理解多项式乘法的法则,并会进行多项式乘法的运算.教学重点:多项式与多项式相乘法则及应用.
教学难点:多项式乘法法则的推导.;多项式乘法法则的灵活运用.(二)教学过程
例题讲解:
例题1:计算:
(1)(x+2y)(5a+3b);(2)(2x-3)(x+4);
(3)(x+y)2;(4)(x+y)(x2-xy+y2解:(1)(x+2y)(5a+3b)
=x·5a+x·3b+2y·5a+2y·3b
=5ax+3bx+10ay+6by;
(2)(2x-3)(x+4)
=2x2+8x-3x-12
=2x2+5x-12
(3)(x+y)2
=(x+y)(x+y)
=x2+xy+xy+y2
=x2+2xy+y2;
(4)(x+y)(x2-xy+y2)
=x3-x2y+xy2+x2y-xy2+y3
=x3+y3
例题2:计算以下各题:
(1)(a+3)·(b+5);
(2)(3x-y) (2x+3y);
(3)(a-b)(a+b);
四、达标训练
计算
(1)(a+b)(a-b)
(2)(a+b)2
(3)(a+b)(a2-ab+b2)
(4)判断题:
①(a+b)(c+d)=ac+ad+bc;()
②(a+b)(c+d)=ac+ad+ac+bd;()
③(a+b)(c+d)=ac+ad+bc+bd;()
④(a-b)(c-d)=ac+ad+bc-()
(5)长方形的长是(2a+1),宽是(a+b),求长方形的面积(6)先化简,再求值:
(2a-3)(3a+1)-6a(a-4)其中a=2/17
参考答案:
(1)a2- b2
(2)a2+2ab+b2
(3)a3+b3
(4)错误,错误,正确,错误
(5)S=(2a+1)(a+b)=2 a2+2ab+a+b
(6)(2a-3)(3a+1)-6a(a-4)
=6a2+2a-9a-3-6a2+24a
=17a-3
当a=2/17时,原式=17×2/17-3=-1
15.1.4整式的乘法(3)
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.