线性规划问题的两种求解方式
线性规划问题求解例题和知识点总结
线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
线性规划(图解法)
D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
线性规划问题求解的基本方法
线性规划问题求解的基本方法线性规划是一种重要的数学方法,可用来解决许多实际问题。
它的核心是寻找目标函数下的最优解,同时满足一组线性等式或不等式约束条件。
在实际应用中,我们通常使用线性规划求解器来解决这些问题。
本文将介绍线性规划问题求解的基本方法。
一、线性规划问题的标准形式线性规划问题可以写成如下的标准形式:$$ \begin{aligned} &\text{最小化} \quad \mathbf{c}^T \mathbf{x} \\ &\text{满足} \quad A \mathbf{x} = \mathbf{b}, \mathbf{x} \geq\mathbf{0} \end{aligned} $$其中,$ \mathbf{x} \in \mathbb{R}^n $ 是一个 $ n $ 维向量,$ \mathbf{c} \in \mathbb{R}^n $ 是目标函数的系数向量,$ A \in\mathbb{R}^{m \times n} $ 是约束条件矩阵,$ \mathbf{b} \in\mathbb{R}^m $ 是约束条件的右侧向量。
二、线性规划问题的求解方法1. 单纯形法单纯形法是求解线性规划问题最常用的方法,基本思想是不断循环迭代,利用基变量与非基变量的互换来寻找可行解,并逐步靠近最优解。
具体步骤如下:(1)将标准形式化为相应的单纯形表。
(2)从单纯形表的行中选择一个入基变量,使目标函数值减小。
(3)从入基变量所在列中选择一个出基变量。
(4)用入基变量和出基变量生成一个新的单纯形表。
(5)重复上述步骤直到达到最优解。
单纯形法的优点在于可以找到最优解,但当变量数量增多时,计算时间随之增加。
因此,对于大规模问题来说,单纯形法可能不是最优的求解方法。
2. 内点法内点法是一种比单纯形法更高效的求解线性规划问题的方法。
它选取一个内点作为初始点,逐步靠近最优解。
具体步骤如下:(1)选取一个内点作为初始点。
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
求解线性规划的方法
求解线性规划的方法
求解线性规划问题的常用方法有以下几种:
1. 单纯形法(Simplex Method):单纯形法是解线性规划问题的经典方法,通过逐步迭代找到目标函数的最优解。
它适用于小到中等规模的问题。
2. 内点法(Interior Point Method):内点法通过在可行域内的可行点中搜索目标函数最小化的点来解决线性规划问题。
相对于单纯形法,内点法在大规模问题上的计算效率更高。
3. 梯度法(Gradient Method):梯度法是基于目标函数的梯度信息进行搜索的一种方法。
它适用于凸优化问题,其中线性规划问题是一种特殊的凸优化问题。
4. 对偶法(Duality Method):对偶法通过构建原问题和对偶问题之间的关系来求解线性规划问题。
通过求解对偶问题,可以得到原问题的最优解。
5. 分支定界法(Branch and Bound Method):分支定界法通过将原问题划分为更小的子问题,并逐步确定可行域的界限,来搜索目标函数的最优解。
需要根据具体的问题规模、约束条件和问题特点选择合适的方法进行求解。
线性规划问题的两种求解方式
线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。
线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。
⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。
解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。
在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。
⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。
从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。
以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。
例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。
问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。
线性规划问题的四种求解方法
可画出直线
l0
:y
=-
2 3
x
,
把直线
l0
向右上方
平移 , 当经过可行域上点 B 时 , 直线的截距最
大 .此时 z = 12x +18y 取最大值 .解方程组
z =6x +3y +5[ 300 -(x +y)] +5(200 -x ) +9(450 -y)+6(100 +x +y)=2 x -5y +
解 设每天生产甲 、乙产品的件数分别是
维生素 B (单位 / 千克) 800 400 500
成本(单位 / 千克) 11 9 4
某食物营养所想用 x 千克甲种食物 , y 千 克乙种食物 , z 千克丙种食物配成 100 千克混合 物 , 并使混合物至少含有 56000 单位维生素 A 和 63000 单位维生素 B
问题的最优解具有十分重要的现实意义 .现介
二 、等值线法
绍几种求解线性规划问题的最优解的策略 .
所谓等值线是指直线上任一点的坐标(x ,
一 、截距法
y )都使 F(x , y)=Ax +By 取等值C 的直线l :
例 1 某厂需从国外引进两种机器 .第一 Ax +By = C(A 、B 不同时为零).通过比较等
7150 作出以上不等式组所表示的平面区域即可
x +2y 4x +y
=13得 =24
B(5 , 4).故当
x
=5, y
=4
行域 .令 z = 0 , 则可画出 直线 l 0 :2x -5y + 7150 =0 .画出一组与 l 0 平行的等值线 , 比较等
线性规划问题的图解法
j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域
线性规划的解法
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
线性规划问题的解法与最优解分析
线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将介绍线性规划问题的解法和最优解分析。
一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。
线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。
1. 图形法图形法适用于二维或三维的线性规划问题。
它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。
首先,将约束条件转化为不等式,并将其绘制在坐标系上。
然后,确定目标函数的等高线或等高面,并绘制在坐标系上。
最后,通过观察等高线或等高面与约束条件的交点,找到最优解。
图形法简单直观,但只适用于低维的线性规划问题。
2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。
它通过在可行域内不断移动,直到找到最优解。
单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。
它通过选择一个基本变量和非基本变量,来构造一个新的可行解。
然后,通过计算目标函数的值来判断是否找到了最优解。
如果没有找到最优解,则继续迭代,直到找到最优解为止。
单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。
线性规划中的最优解求解
线性规划中的最优解求解线性规划是一种在运筹学和数学中广泛应用的数学建模技术,通过确定一组线性约束条件下的最优解,以实现目标最大化或最小化。
最优解是指在满足给定约束条件的前提下,能使目标函数达到最优值的解。
在线性规划问题中,最优解的求解有多种方法。
本文将介绍线性规划中的两种主要方法:图解法和单纯形法。
一、图解法图解法是一种简单直观的方法,适用于只有两个变量的问题。
它通过在平面坐标系上画出约束条件的图形,找到可行域(满足所有约束条件的解集),并在可行域内寻找使目标函数达到最优值的点。
具体步骤如下:1. 绘制坐标系,并画出约束条件的直线或曲线。
每个约束条件都会限制变量的取值范围,在平面上形成一条直线或曲线。
2. 标出可行域。
根据所有约束条件的交集,确定满足所有约束条件的解的集合,即可行域。
可行域通常是一个多边形区域。
3. 确定目标函数。
根据问题的要求确定目标函数,并将其表示为直线或曲线。
4. 在可行域内寻找最优解。
通过平行于目标函数的线,将其移动至与可行域相切,并找到使目标函数取得最优值的点。
图解法的优点是简单易懂,能够提供初步的解决方案。
然而,对于复杂问题和具有多个变量的大规模问题,图解法可能不适用。
二、单纯形法单纯形法是一种基于矩阵运算的高效方法,适用于多变量和大规模问题。
它通过不断进行迭代计算,寻找最优解。
具体步骤如下:1. 将线性规划问题转化为标准形式。
标准形式要求目标函数为最小化问题,并且所有约束条件均为等式形式。
如果原问题不符合标准形式,可以进行线性变换进行转化。
2. 构建初始单纯形表。
将原问题的线性规划模型表示为矩阵形式,并构建单纯形表,包括目标函数系数、基变量和非基变量等信息。
3. 迭代计算。
根据单纯形表中的信息,进行迭代计算,通过选择合适的主元(即最大系数法则)和更新各个单元的值,逐步接近最优解。
4. 判断终止条件。
在每一次迭代计算后,判断是否满足终止条件,即目标函数是否达到最优解。
线性规划图解法
下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。
精选课件
图解法
Page 2
一、线性规划的图解法(解的几何表示)
对于只有两个变量的线性规划问题,可以在二维直角坐标 平面上作图表示线性规划问题的有关概念,并求解。
X1 + 1.9X2 = 10.2 (≤)
8=5X1+4X2 此点是唯一最优解 (0,2)
D可行域
43=5X1+4X2
max Z
X1 + 1.9X2 = 3.8(≥)
min Z
o
L0: 0=5X1+4X2
精选课件
X1 - 1.9X2 = 3.8 (≤)
Page 18
x1
图解法
x2
6 3x1+x2=6(≥) 4
X = X1 + (1- ) X2 则必定有X = X1 = X2,则称X为S的一个顶点。
精选课件
图解法
Page 24
可以证明,线性规划的可行域以及最优解有以下 性质:
(1)、若线性规划的可行域非空,则可行域必定为一凸集;
(2)、线性规划问题的基本可行解对应于可行域的顶点;
(3)、若可行域有界,线性规划问题的目标函数一定可以在 其可行域的顶点上达到最优,或在可行域的某个顶点(唯一最 优解)或在某两个顶点及其连线上(无穷多最优解)得到。
2x1+ x2 50 z = 50x1+30x2= 1350
z = 50x1+30x2= 900
(15, 20)
解线性规划问题
解线性规划问题线性规划问题是数学中的一种重要问题,广泛应用于运筹学、经济学和管理学等领域。
它的求解方法有很多种,下面将介绍两种主要的解线性规划问题的方法:单纯形法和内点法。
一、单纯形法单纯形法是解线性规划问题最常用的方法之一。
它的基本思想是从一个可行解出发,通过不断调整进入和离开基变量,逐步接近最优解。
具体步骤如下:1. 设置线性规划问题的标准型:将目标函数和约束条件转化为标准形式,即目标函数为最小化形式的线性函数,约束条件为一组线性不等式。
2. 初始化:确定初始可行解,选择初始基变量。
3. 检验最优性:计算当前可行解的目标函数值,若满足最优性条件则终止算法,得到最优解;否则进入下一步。
4. 选取离开基变量:根据离开变量的选择准则,确定需要离开的基变量。
5. 选取进入基变量:根据进入变量的选择准则,确定需要进入的基变量。
6. 更新基变量:通过更新基变量,得到新的可行解。
7. 重复步骤3-6,直到找到最优解。
二、内点法内点法是一种通过变量逐渐趋近可行域内部,实现对线性规划问题的解的方法。
与单纯形法相比,内点法在渐近性和稳定性方面具有优势。
内点法的主要思想是引入一个惩罚函数,目标函数加上此惩罚函数之后,约束条件变成等式。
然后通过求解惩罚函数的极小值来逼近原问题的最优解。
具体步骤如下:1. 设置线性规划问题的标准型:将目标函数和约束条件转化为标准形式。
2. 初始化:确定初始可行解,选择初始内点。
3. 更新内点:通过逐步调整内点,使其逼近可行域内部。
4. 求解惩罚函数:将目标函数和约束条件转化为一个待求解的非线性优化问题,通过求解此问题来逼近原线性规划问题的最优解。
5. 重复步骤3-4,直到找到最优解。
通过使用单纯形法和内点法,我们可以解决各种线性规划问题。
无论是单纯形法还是内点法,都有其优缺点和适用范围,选择合适的方法来解决具体问题是非常重要的。
两参数线性规划问题的解法
两参数线性规划问题是一类常见的数学规划问题,通常表示为:有两个变量x和y,求解以下线性规划问题:max z = ax + bys.t.c1x + d1y ≤b1c2x + d2y ≤b2...cnx + dny ≤bnx, y ≥0其中,a、b、c1、d1、...、cn、dn和b1、b2、...、bn均为常数。
两参数线性规划问题的解法通常采用解析法和数值法两种方法。
解析法:解析法是指用数学方法直接求解最优解的方法。
常用的解析法有单纯形法、图解法等。
单纯形法是一种常用的解析法,它通过构造单纯形来求解线性规划问题。
图解法是一种简单易懂的解析法,它通过绘制线性规划模型的图象来求解问题。
数值法:数值法是指通过计算机程序或其他数学工具来近似求解线性规划问题的方法。
常用的数值法有随机化算法、贪心算法、遗传算法等。
随机化算法是指利用随机数来求解线性规划问题的方法。
常用的随机化算法有随机化单纯形法、随机化贪心算法等。
贪心算法是一种解决线性规划问题的有效算法,它的基本思想是每一步都选择最优的解决方案。
遗传算法是一种基于自然进化规律的算法,它通过模拟自然界中物种进化的过程来求解线性规划问题。
总的来说,两参数线性规划问题可以采用解析法和数值法两种方法来求解。
在选择求解方法时,应根据实际情况和需求的精度来决定使用哪种方法。
如果需要精确求解最优解,可以使用解析法,如果只需要大致估算最优解,则可以使用数值法。
此外,在求解两参数线性规划问题时,还需要注意以下几点:确定目标函数: 目标函数是线性规划问题的核心,通常表示为max z = ax + by或min z = ax + by,其中z是目标函数值,a和b是系数。
确定约束条件: 约束条件是线性规划问题的基本要求,表示为c1x + d1y ≤b1、c2x + d2y ≤b2、...、cnx + dny ≤bn,其中c1、d1、...、cn、dn和b1、b2、...、bn均为常数。
线性规划问题的解
线性规划问题的解线性规划(Linear Programming, LP)是数学规划的一种重要方法,其应用领域十分广泛。
线性规划的目标是在给定的线性约束条件下,寻找使目标函数最大或最小的变量取值。
本文将介绍线性规划问题的解以及如何求解线性规划问题。
一、线性规划问题的解的基本概念1. 可行解:满足线性约束条件的变量取值被称为可行解。
可行解集合构成了解空间。
2. 最优解:在可行解集合中,使目标函数取得最大或最小值的可行解被称为最优解。
二、线性规划问题的求解方法线性规划问题的求解方法通常有两种:图形法和单纯形法。
1. 图形法:适用于二维或三维线性规划问题,即变量的个数较少,可以通过绘制图形来确定最优解。
图形法的基本思路是绘制等式约束和不等式约束的直线或平面,并通过观察它们的交点或交线来确定可行解和最优解。
2. 单纯形法:适用于多维线性规划问题,即变量的个数较多。
单纯形法通过迭代计算,逐步逼近最优解。
其基本思路是从一个初始可行解开始,通过调整变量的取值来提高目标函数的值,直到找到最优解或确定问题无解。
三、线性规划问题的示例下面以一个简单的线性规划问题为例。
假设有两种产品A和B,它们的生产需要使用以下资源:钢材、机器时数和人工时数。
每单位产品A需要2吨钢材、4机器时数和6人工时数;每单位产品B需要3吨钢材、5机器时数和4人工时数。
公司目前有100吨钢材、120机器时数和150人工时数可用。
已知产品A的利润为1000元/单位,产品B的利润为2000元/单位。
问如何安排生产,使得利润最大化?1. 建立数学模型:令x为产品A的产量,y为产品B的产量。
则目标函数为最大化利润:1000x+2000y。
约束条件为:2x+3y≤100(钢材约束),4x+5y≤120(机器时数约束),6x+4y≤150(人工时数约束),x≥0,y≥0。
2. 通过图形法找到可行解和最优解:先绘制钢材约束的直线2x+3y=100,机器时数约束的直线4x+5y=120,人工时数约束的直线6x+4y=150。
线性规划问题的基本概念及求解方法
线性规划问题的基本概念及求解方法线性规划是一种优化方法,用于找到一个线性方程的最大或最小值,同时满足一组线性约束条件。
线性规划问题广泛应用于经济、工业、运输、物流等各个领域。
本文将讲述线性规划问题的基本概念和求解方法。
一、线性规划的基本概念线性规划问题可表示为:$\max_{x} z = c^Tx$$\text{s.t.} \qquad Ax \leq b$其中,x表示决策变量,z表示目标函数,c和b为常数系数,A为系数矩阵。
目标函数表示要最大化或最小化的数量,约束条件表示限制决策变量取值的条件。
二、线性规划的求解方法线性规划问题的求解方法有两种,即图形法和单纯形法。
1. 图形法图形法是一种用图形的方式来求解线性规划问题的方法。
它可以用于二元线性规划问题求解,但对于多元线性规划问题,它的应用受到了限制。
对于二元线性规划问题,我们可以将目标函数表示为直线,约束条件表示为线段,然后在可行域内寻找能让目标函数最大或最小的点。
2. 单纯形法单纯形法是一种通过交换决策变量的取值来寻找最优解的方法。
它通过构建初始单纯形表格,逐步利用高斯消元法将问题转化为标准型,然后不断交换基变量和非基变量,直到找到最优解。
单纯形法在求解多元线性规划问题时具有广泛的应用,因为它能够较快地寻找最优解。
但是,它也存在一些问题,例如当问题的维度较高时,算法的计算复杂度会相应增加,计算机的处理能力也会受到限制。
三、线性规划的应用线性规划在各个领域中都有着广泛的应用。
以下是一些典型的应用案例:1. 运输问题运输问题是一种线性规划问题,旨在确定一组产品从生产场所运往销售场所的最优方案。
这种问题通常涉及到对物流成本、物流时间等多种因素的优化。
2. 设备维护问题设备维护问题是一种线性规划问题,旨在通过优化设备的维护策略来最大化设备的使用寿命和效益。
这种问题通常涉及到对机器的使用寿命、维修成本、机器停机时间等多种因素的优化。
3. 生产计划问题生产计划问题是一种线性规划问题,旨在通过对原材料和生产线的安排来优化产品的生产过程。
数学建模按算法法分类知识点梳理
数学建模按算法法分类知识点梳理一、线性规划算法相关知识点。
1. 基本概念。
- 线性规划问题是在一组线性约束条件下,求线性目标函数的最优值问题。
例如,目标函数z = ax+by(a、b为常数),约束条件可能是mx + ny≤slant c、px+qy≥slant d等形式的线性不等式组(m、n、p、q、c、d为常数)。
- 可行解:满足所有约束条件的解(x,y)称为可行解,所有可行解构成的集合称为可行域。
2. 求解方法。
- 单纯形法:这是求解线性规划问题的经典算法。
它从可行域的一个顶点(基本可行解)开始,沿着可行域的边界移动到另一个顶点,使得目标函数值不断优化,直到找到最优解。
在人教版教材中,会详细介绍单纯形表的构造和迭代步骤。
- 对偶理论:每一个线性规划问题都有一个与之对应的对偶问题。
原问题与对偶问题之间存在着许多重要的关系,例如对偶定理(若原问题有最优解,则对偶问题也有最优解,且目标函数值相等)。
利用对偶理论可以简化线性规划问题的求解,或者从不同角度分析问题的性质。
3. 在数学建模中的应用示例。
- 生产计划安排问题:某工厂生产两种产品A和B,生产A产品每单位需要m_1小时的劳动力和n_1单位的原材料,生产B产品每单位需要m_2小时的劳动力和n_2单位的原材料。
已知劳动力总工时为T小时,原材料总量为S单位,A产品单位利润为p_1,B产品单位利润为p_2。
求如何安排生产A和B的数量,使得利润最大。
可以设x为A产品的产量,y为B产品的产量,建立线性规划模型求解。
二、非线性规划算法相关知识点。
- 非线性规划问题是目标函数或约束条件中至少有一个是非线性函数的规划问题。
例如目标函数z = f(x,y),其中f(x,y)是一个非线性函数,如f(x,y)=x^2+y^2+xy,约束条件可能也包含非线性函数,如g(x,y)=x^3+y^3- 1≤slant0。
2. 求解方法。
- 梯度下降法:对于无约束的非线性规划问题,梯度下降法是一种常用的迭代算法。
线性规划问题的建模与求解
线性规划问题的建模与求解线性规划是一种常见的数学优化方法,用于解决一系列约束条件下的最优化问题。
它在工业、经济、管理等领域具有广泛的应用。
本文将介绍线性规划问题的建模过程以及求解方法,并通过实例来说明其应用。
一、线性规划问题的定义线性规划问题可以定义为在一定的约束条件下,寻找一组决策变量的最优解,使得目标函数达到最大或最小值。
其中,目标函数和约束条件均为线性的。
在建模过程中,首先需要明确决策变量、目标函数和约束条件。
决策变量是我们需要确定的决策因素,可以是某个产品的生产数量、某个投资项目的投入金额等。
目标函数是我们希望最大化或最小化的量,可以是利润、收益、成本等。
约束条件是对决策变量的限制条件,可以是资源约束、技术约束等。
二、线性规划问题的建模过程线性规划问题的建模过程一般包括以下几个步骤:1. 确定决策变量:根据实际问题确定需要确定的决策因素,例如某个产品的生产数量、某个投资项目的投入金额等。
2. 建立目标函数:根据问题的要求,确定目标函数的形式和系数。
如果是最大化问题,目标函数一般为各决策变量的系数之和;如果是最小化问题,目标函数一般为各决策变量的系数之差。
3. 确定约束条件:根据问题中的限制条件,建立约束条件的数学表达式。
约束条件一般包括资源约束、技术约束等。
每个约束条件都可以表示为决策变量的线性组合与某个常数之间的关系。
4. 确定决策变量的取值范围:根据实际问题的限制条件,确定决策变量的取值范围。
例如,某个产品的生产数量不能为负数,某个投资项目的投入金额有上限等。
5. 建立数学模型:将上述步骤中确定的决策变量、目标函数和约束条件组合起来,建立线性规划问题的数学模型。
三、线性规划问题的求解方法线性规划问题的求解方法主要有两种:图形法和单纯形法。
1. 图形法:对于二维或三维空间中的线性规划问题,可以使用图形法进行求解。
首先将目标函数和约束条件转化为几何形式,然后在坐标系中画出目标函数的等高线和约束条件的边界线,最后确定最优解所在的交点。
线性规划学习线性规划的解法
线性规划学习线性规划的解法线性规划是一种数学优化方法,用于解决一类特定的最优化问题。
线性规划的主要目标是在给定的线性约束条件下,找到一个线性目标函数的最大值或最小值。
本文将介绍线性规划的基本概念和解法。
Ⅰ. 线性规划的基本概念线性规划问题通常可以表示为以下形式:给定一组线性约束条件和一个线性目标函数,求解目标函数的最大值或最小值。
其中,线性约束条件可以表示为一组形如ax1 + bx2 + … + c ≤ d的不等式,线性目标函数为z = cx1 + dx2 + … + e。
Ⅱ. 线性规划的解法线性规划问题的求解方法有多种,下面将介绍其中两种常用的解法:单纯形法和内点法。
1. 单纯形法单纯形法是一种逐步改进的方法,通过迭代寻找最优解。
具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行基本解。
(2)选择进基变量:从非基变量中选择一个可以增大目标函数值的变量作为进基变量。
(3)选择出基变量:由于选择进基变量而产生的新的解是非可行解,需要选择一个基变量作为出基变量,并进行调整。
(4)迭代:重复进行步骤2和步骤3,直到找到满足条件的最优解。
2. 内点法内点法是一种基于迭代的方法,通过寻找线性规划问题的可行解来逼近最优解。
具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行解。
(2)构造路径方程:引入一个路径参数,并构造路径方程,将线性规划问题转化为一系列等价的非线性问题。
(3)迭代:通过求解路径方程的解,逐步逼近最优解。
Ⅲ. 实例分析下面通过一个实例来说明线性规划问题的解法。
假设有一家制造公司生产两种产品A和B,分别需要通过机器X和机器Y进行加工。
机器X每小时可工作6小时,机器Y每小时可工作4小时。
产品A通过机器X加工需要1小时,产品B需要2小时;产品A通过机器Y加工需要2小时,产品B需要1小时。
产品A的利润为3万元,产品B的利润为2万元。
问该公司如何安排生产,才能使利润最大化?解:首先,设产品A的产量为x,产品B的产量为y,则目标函数为z = 3x + 2y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划问题的两种求解方式
线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
解决线性规划问题常用的方法是图解法和单纯性法,而图解法简单方便,但只适用于二维的线性规划问题,单纯性法的优点是可以适用于所有的线性规划问题,缺点是单纯形法中涉及大量不同的算法,为了针对不同的线性规划问题,计算量大,复杂繁琐。
在这个计算机高速发展的阶段,利用Excel建立电子表格模型,并利用它提供的“规划求解”工具,能轻松快捷地求解线性模型的解。
无论利用哪种方法进行求解线性规划问题,首先都需要对线性规划问题建立数学模型,确定目标函数和相应的约束条件,进而进行求解。
从实际问题中建立数学模型一般有以下三个步骤;
1、根据所求目标的影响因素找到决策变量;
2、由决策变量和所求目标的函数关系确定目标函数;
3、由决策变量所受的限制条件确定决策变量所要满足的约束条件。
以下是分别利用单纯形法和Excel表格中的“规划求解”两种方法对例题进行求解的过程。
例题:某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,工厂中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每生产出I、II产品所获得的利润为2和3,问I、II两种产品的生产数量的哪种组合能使总利润最大?
问题的决策变量有两个:产品I的生产数量和产品II的生产数量;目标是总利润最大;需满足的条件是:(1)两种产品使用设备的台时<= 台时限量值(2) 生产两种产品使用原材料A、B的数量<= 限量值(3)产品I、II的生产数量均>=0。
设x1、x2分别表示产品I、II的产量,由于资源限量的限制,可用不等式表示资源总量的约束条件:x1+2 x28
≤;4 x212
≤;4 x116
≤;
该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x1、x2以得到最大的利润。
若用z表示利润,这时z=2x1+3x2
综合上述,该问题可用数学模型表示为:
目标函数max z=2x1+3x2
满足约束条件:x1+2 x28
≤
4 x116
≤
4 x212
≤
x1 , x20
≥
一、
利用单纯形法进行求解,则例题的标准型为:
maxZ=2x1+3x2+0x3+0x4+0x5
+x3 =8
x1+2 x
4 x1 +x4=16
4 x2+x5=12
x j0
, j=1,2, (5)
(1)根据标准型,取松弛变量x3,x4,x5为基变量,它对应的单位矩阵为基,这就得
到初始基可行解X(0)=(0,0,8,16,12)T
将有关数字填入表中,得到初始单纯形表,见表1-2
表1-2
(2)因检验数都大于零,且须找出换入换出变量,继续进行计算;
(3)Max(σ1, σ2)=max(2,3)=3,对应的变量x2为换入变量,计算θ
θ=min(8/2,-,12/4)=3
所以它所在行对应的x5为换出变量。
x2所在列和x5所在行的交叉处[4]称为主元素。
(4)以[4]为主元素进行初等行变换,使P2变换为(0,0,1)T,在X B列中将x2
342
于是得到新的基可行解X(1)=(0,3,2,16,0)T,目标函数的取值z=9
(5)检查表1-3的所有σ,这时有σ1=2;说明x1应为换入变量。
重复(2)—(4)的计
c j 2 3 0 0 0 θ
C B X B b x1x2x3x4x5
2 x1 4 1 0 0 1/4 0
0 x5 4 0 0 -2 1/2 1
3 x2 2 0 1 1/2 -1/8 0
σ0 0 -3/2 -1/8 0
(4)表1-4最后一行的所有检验数已为负数或零,这表示目标函数值已不可能再
增大,于是得到最优解
X*=X(3)=(4,2,0,0,4)T
目标函数值z=14
二、利用Excel表格进行线性规划求解
将单纯形表中的有关数据输入到Excel中,建立如图1所示的电子表格模型。
被输入已知数据的单元格是数据单元格,如单元格C5:D8,G5:G7。
决策变量(即两种产品每周的生产量)放在单元格C9和D9,正好定位在这些产品所在列的数据单元格下面,这种含有需要做出决策的单元格是可变单元格。
单元格E5:E7是用来计算各个工厂每周的总生产时间,如单元格E5就是用C5:D5和C9:D9的对应数值各自相乘再总加得到。
Excel中有一个叫SUM PRODUC I的函数能对相等行数和相等列数的两个变化范围的单元格中的值乘积后进行加和。
被加和的每个值是对每一个变化范围的一些值和对应位置的第二个变化范围的一些值的积。
如E5=SUM PRODUCT(C5:D5,C9:D9)是把C5:D5变化范围的每个值与C9:D9变化范围中对应的每个值相乘,然后各个积相加。
同样
E6=SUM PRODUCT(C6:D6,C9:D9),
E7=SUM PRODU CT(C7:D7,C9:D9),
E5、E6、E7这些单元格的数值是依赖于可变单元格的,它们是输出单元格。
单元格F5、F6、F7中的“<=”符号表示它们左边的总值不允许超过列G中的对应数值,体现了函数的约束条件。
目标函数值(利润)被放在E8单元格,正好在用来帮助计算总利润的数据单元格右边,与列E中的其它的数据相象,它也是一些乘积的加和,
E8=SUM PRODUCT(C8∶D8,C9∶D9),
E8是特殊的输出单元格,是显示目标函数值的,是目标单元格。
在没有计算之前,可变单元格和输出单元格的数值均显示为0。
图1
Excel中有一个叫“规划求解”的工具,能快速求解线性规划问题,步骤如下:
1〉在工具菜单中选择“规划求解”,会弹出一个对话框。
在对话框中,将E8键入目标单元格,将C9:D9键入可变单元格,既然目标是要最大化目标单元格,还必须选中“最大值”。
2〉点击对话框中的“添加”按纽,弹出添加约束对话框,将约束条件具体化。
左端输入范围E5:E7,右端输入范围G5:G7,中间的符号可选择“<=”。
如果还要添加更多的函数约束就再点击“添加”按钮以弹出一个新的添加约束对话框,在这个例子中没有其它约束了。
下一步只要点击“确定”按钮回到“规划求解”对话框。
3〉点击“选项”按钮,在新弹出的对话框中,选中“采用线性模型”和“假定非负”选项,这就告诉了计算机要求解的问题是一个线性规划问题以及非负约束,点击“确定”再回到“规划求解”对话框。
4〉点击“求解”按钮,计算机会在后台开始对问题进行求解。
几秒钟之后会显示运行结果,一般而言,它会显示已经找到一个最优解。
如果模型没有可行解或没有最优解,对话框会显示“规划求解找不到可行解”。
求解模型之后,最优值就代替了可变单元格中的初始值,最优解是每周4个I产品和2个II产品,目标单元格的对应数值(最大利润)为14。
求解的电子表格模型(图2)如下:
图2
线性规划问题的数学模型是描述实际问题的抽象的数学形式,它反映了客观事物数量间的本质规律。
电子表格模型和数学模型两种形式是等价的。
电子表格模型的建立不是唯一的,是非常灵活的,一个好的电子表格模型能直观、简便地反映线性规划问题的实质。
这两种形式导致了不同但互补的分析问题的方法,但用“规划求解”工具会达到事半功倍的效果。
通过利用两种方法进行线性规划求解,可以得出,在日常生活中,利用Excel 表格求解线性规划问题,可以更加快速、准确地求出解值,避免了单纯形法大量的计算和转换,更能节省人力物力。