圆的面积大全组合图形

合集下载

圆的面积课件ppt

圆的面积课件ppt
换算错误
进行单位换算时,应遵循正确的换算 关系。例如,1米等于100厘米,而不 是10厘米或1000厘米。
误区二:混淆直径与半径概念
概念不清
应明确半径是圆的任意一点到圆心的距离,而直径是通过圆心且两端都在圆上的线段。半径是直径的一半。
应用错误
在计算圆的面积时,应使用半径而不是直径。若题目给出的是直径,应将其除以2得到半径后再进行计算。
多边形内切圆与外接圆面积关系推导
正多边形情况
对于正多边形,其内切圆半径r与外接圆半径R之比为r:R=1:2,进而可推导出正多边形 内切圆面积与外接圆面积之比为πr²:πR²=1:4。
一般多边形情况
对于一般多边形,由于其各边长度和角度不均等,内切圆半径r与外接圆半径R之比不具 有固定值。但可以通过计算多边形各顶点到内切圆圆心的距离平均值来估算内切圆半径
圆的面积计算公式推导
• 推导过程:假设圆的半径为r,将圆划分为无数个小的扇形,每个扇形的面积近似于一个三角形。三角形的底为圆的周长( 2πr),高为半径(r)。因此,圆的面积可以表示为无数个三角形面积之和,即S=πr²。
CHAPTER 02
圆的面积计算方法详解
直接法计算圆的面积
01
02
03
公式推导
求解组合图形的面积
当需要求解由圆和其他图形组合而成的复杂图形的面积时,可以通过圆的面积 公式来求解。
圆的面积在物理学中的应用
计算物体的转动惯量
在物理学中,转动惯量是一个物体对于旋转运动的惯性大小 的度量,而圆的面积公式可以用于计算某些形状物体的转动 惯量。
计算电磁场的能量
在电磁学中,电磁场的能量密度与场的分布有关,而场的分 布又与某些几何形状的面积有关,因此圆的面积公式也被用 于计算电磁场的能量。

圆的周长、面积及组合图形面积

圆的周长、面积及组合图形面积
44
培优例题
例4 有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌
装置进行喷灌,现有射程为20米、15米、10米的三种装置。 你认为应选哪种比较合适?安装在什么地方?
培优例题
例4 有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌
装置进行喷灌,现有射程为20米、15米、10米的三种装置。 你认为应选哪种比较合适?安装在什么地方?
培优例题
例5 一个半圆形花坛,周长为10.28米,面积为多少平方米?
培优例题
例6 一张长方形的纸,长25 cm、宽13 cm,最多可以剪几个半径
为3 cm的小圆片?
培优例题
例7 有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌
装置进行喷灌,现有射程为20米、15米、10米的三种装置。 你认为应选哪种比较合适?安装在什么地方?
培优例题
例1 一棵老槐树粗28.26分米,它的横截面的面积是多少 平方分米?
培优例题
例2 在一张周长为24厘米的正方形硬纸板上,剪一个最 大的圆,这个圆的周长和面积各是多少?
培优例题
例3 把一只羊拴在一块长8 m,宽6 m的长方形草地 上,拴羊的绳长2 m,那么这只羊吃到草的最大 面积是多少平方米?如果要使羊吃草的面积最小, 应该将羊拴在这个长方形草地的什么位置?
计算右图半圆的周长。
r=5cm
(1)今天我学习了圆周长的知识。我知 道圆周率是( 周长)和(直径 )的比值, 它用字母(π )表示。
π≈3.14
直径d
(2)我还知道圆的周长总是
直径的( π )倍。已知圆的直 径就可以用公式( C=πd )求 周长;已知圆的半径就可以用公
式( C= 2π r)求周长。

圆的组合图形面积及答案

圆的组合图形面积及答案

圆的组合图形面积姓名:知识与方法要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=n是圆心角的度数2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法;例1.求阴影部分的面积;单位:厘米解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14平方厘米例2.正方形面积是7平方厘米,求阴影部分的面积;单位:厘米解:这也是一种最基本的方法用正方形的面积减去圆的面积;设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积;单位:厘米解:最基本的方法之一;用四个圆组成一个圆,用正方形的面积减去圆的面积, 所以阴影部分的面积:2×2-π=0.86平方厘米;例4.求阴影部分的面积;单位:厘米解:同上,正方形面积减去圆面积,16-π=16-4π=3.44平方厘米例5.求阴影部分的面积;单位:厘米解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍;例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米解:两个空白部分面积之差就是两圆面积之差全加上阴影部分π-π=100.48平方厘米注:这和两个圆是否相交、交的情况如何无关例7.求阴影部分的面积;单位:厘米解:正方形面积可用对角线长×对角线长÷2,求正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形例8.求阴影部分的面积;单位:厘米解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆, 所以阴影部分面积为:π=3.14平方厘米例9.求阴影部分的面积;单位:厘米解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形, 所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积;单位:厘米解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米注: 8、9、10三题是简单割、补或平移11、例13.求阴影部分的面积;单位:厘米解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米12、例14.求阴影部分的面积;单位:厘米解:梯形面积减去圆面积,4+10×4-π=28-4π=15.44平方厘米 .13、例16.求阴影部分的面积;单位:厘米解:π+π-π=π116-36=40π=125.6平方厘米14、例17.图中圆的半径为5厘米,求阴影部分的面积;单位:厘米解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和;所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米15、例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长;解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米16、例19.正方形边长为2厘米,求阴影部分的面积;解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形;所以面积为:1×2=2平方厘米17、例25.如图,四个扇形的半径相等,求阴影部分的面积;单位:厘米分析:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×4+7÷2-π=22-4π=9.44平方厘米18、例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积;解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+π÷4-2=π-1+π-1=π-2=1.14平方厘米19、例28.求阴影部分的面积;单位:厘米解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:π÷2-5×5÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米20、例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米;求BC的长度;解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米21、例33.求阴影部分的面积;单位:厘米解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为π+π-6=×13π-6=4.205平方厘米22、例34.求阴影部分的面积;单位:厘米解:两个弓形面积为:π-3×4÷2=π-6 阴影部分为两个半圆面积减去两个弓形面积,结果为π+π-π-6=π4+-+6=6平方厘米。

圆的周长和面积组合图形练习

圆的周长和面积组合图形练习

学习目标
掌握圆的周长和面积 的计算方法。
了解这些组合图形在 实际生活中的应用, 提高解决实际问题的 能力。
理解如何通过组合多 个圆来构建复杂的图 形。
02
圆的周长基础知识
圆的周长计算公式
总结词
圆的周长计算公式是C=2πr,其中r是圆的半径,π是一个常数 约等于3.14159。
详细描述
这个公式用于计算圆的周长,是几何学中一个基础而重要的公 式。通过这个公式,我们可以知道圆的周长与半径之间存在线 性关系,即周长是半径的两倍乘以π。
04
圆的周长和面积组合图形练习
练习一:简单的组合图形
总结词
基础练习,适合初学者
详细描述
提供简单的组合图形,如圆与圆、圆与直线等, 要求计算其周长和面积。
练习题目示例
一个直径为8cm的圆,被一个半径为4cm的圆完 全覆盖,求覆盖后形成的组合图形的周长和面积。
练习二:复杂的组合图形
总结词
进阶练习,适合中等水平学生
了。
下节课预告
下节课我们将学习组合图形的面 积计算,涉及到多种形状的组合, 需要灵活运用已学过的面积计算
公式来解决实际问题。
在学习过程中,我们将通过大量 的练习来加深对组合图形面积计 算的理解,并培养自己的解题能
力。
请同学们做好预习,准备好相关 的学习资料,以便更好地参与课
堂学习。
THANKS
感谢观看
详细描述
对于一些简单的圆的周长组合图形,可以直接使用圆的周长公式进行计算。对于复杂的图形,可能需要使用到更 高级的几何学公式和定理,如定积分、格林公式等。在计算时,需要注意区分各个圆的周长和各个部分的长度, 避免混淆。
03
圆的面积基础知识

5.5 圆、正方形组成的组合图形

5.5 圆、正方形组成的组合图形

=3.14×126.5625-36
=397.40625-36
≈361.41(mm²)
答:这个铜钱的面积是361.41mm²。
正方形的边长圆的直径2m外方内圆组合图形正方形的面积224m圆的面积3141314m阴影部分面积正方形面积圆的面积4314086m外圆内方组合图形教版数学六年级(上册)
我们先来看看台湾小学生 们的数学狂想
数学狂想曲
我本来认为数学是一堆数字的 +-×÷,但我发现,身边的 事物都是数学,所以,数学真
阴影部分面积=圆的面积-2个三角形面积 1 =3.14×1²-( ×2×1)×2 2 =3.14-2 =1.14(m²)
做一做
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是 24cm。 外面的圆与内部的正方形之间的面积是多少? 3.14×(24÷2)²-24×12÷2×2
=452.16-288
=164.16(cm²)
伟大!
数学狂想曲
我的感觉是:
1.原来数学也可以用来玩
游戏。
2.让我觉得数学很奇妙, 能解决各种问题。
3.不要把数学想得太复杂。
数学狂想曲
感觉数学是我们的好朋友,
在日常生活中不可少,有时 候觉得很麻烦,有时候又觉
得很好玩。
我的数学狂想曲
请用力想想
数学的影子在哪里!
数学的影子
3
中国建筑中经常能见到“外方内圆”和“外圆内方” 的设计。上图中的两个圆半径都是1m,你能求出正方 形和圆之间部分的面积吗?
“外方内圆”组合图形
正方形的边长=圆的直径=2m 正方形的面积=2×2=4(m²) 圆的面积=3.14×1²=3.14(m²) 阴影部分面积=正方形面积-圆的面积 =4-3.14 =0.86(m²)

五年级下圆环及圆的组合图形的面积

五年级下圆环及圆的组合图形的面积

注意事项:计 算时要考虑圆 与矩形或三角 形是否相切, 以及圆心是否 在矩形或三角
形内部
举例说明:给 出具体例子, 展示如何计算 组合图形面积
计算方法:先分别求出圆和圆环的面积,再根据组合图形的特点进行计算
注意事项:考虑圆与圆环的相对位置,注意圆心与半径的确定
举例说明:通过具体例子展示组合图形面积的计算过程
培养空间思维和 逻辑推理能力
圆的组合图形在艺术领域的应用:在艺术设计中,圆环和圆的组合图形被广泛应用于 各种艺术作品的创作中,如雕塑、绘画等,以增加作品的美感和视觉效果。
理解问题的背景和要求 分析问题中的已知条件和未知条件 运用圆的组合图形的面积公式计算面积 结合实际,考虑实际情况,确定最终解决方案
实际应用中,要考 虑到实际情况,如 圆环的大小、位置 等。
结论:组合图形的面积计算需要灵活运用圆的面积公式和圆环的面积公式,同时要注意图形 的特点与计算方法的结合。
定义:由两个 或两个以上的 圆组成的图形
计算方法:先 计算每个圆的 面积,再根据 组合图形的特 点进行相加或
相减
注意事项:确 保每个圆的半 径和位置都正 确,避免计算
错误
举例:通过具 体例子展示多 个圆的组合图 形面积计算过

圆环和圆相切:使用圆环面积公式和圆面积公式计算 圆环和圆相交:分解为多个图形,分别计算面积再相加 圆和圆外其他图形组合:分解为多个图形,分别计算面积再相加 圆内嵌套其他图形:使用分割法,将图形分割成多个部分,分别计算面积再相加
掌握圆环和圆的 面积计算方法
理解图形组合的 解题思路
学会运用辅助线、 分割法等技巧
计算面积时,需要 考虑到圆环的内外 半径及高。
在组合图形中,需 要考虑圆与其他图 形的关系及相互作 用。

苏教版五年级下册数学第6单元 圆 简单组合图形的面积

苏教版五年级下册数学第6单元 圆 简单组合图形的面积
3.14×(8+2)2-3.14×82=113.04(平方 米)
3.14×8=25.12(平方厘米) 25.12÷4×3
=6.28×3 =18.84(平方厘米)
易错辨析
3.一个半径6米的圆形菜地,周围有一条1米宽的小路(如 下图),求这条小路的面积。 6+1=7(米) 3.14×(72-62) =3.14×13 =40.82(平方米) 答:这条小路的面积是40.82平方米。
正方形面积:1.8×1.8= 3.24(平方米) 窗户面积: 1.2717+3.24= 4.5117(平方米)
答:这扇窗户的面积是4.5117平方米。
小试牛刀(教材P99练一练) 求涂色部分的面积。(单位:cm)
长方形面积:8÷2×8=32(cm2) 半圆面积: 3.14×(8÷2)2÷2
= 3.14×16÷2
14.下面3个正方形大小相同,涂色部分的面积相等吗? 为什么?
涂色部分的面积都相等。因为每个正方形中的空白部分的 面积相当于一个大小相同的圆的面积,涂色部分的面积为 正方形面积减去圆的面积,所以涂色部分的面积都相等。
15.一个半径8米的圆形水池,周围有一条2米宽的小路 (如右图)。求这条小路的占地面积。
两个圆面积的差就 是铁片的面积。
外圆的面积: 3.14×102
内圆的面积: 3.3.14×36
=314(平方厘米)
=113.04(平方厘米)
圆环形铁片的面积: 314-113.04=200.96(平方厘米)
答:这个铁片的面积是 200.96平方厘米。
右图是一个圆环形铁片。它的外圆半径是10厘米,内 圆半径是6厘米。你会求这个铁片的面积吗?
4.一个圆形花坛的直径是20米,在它的周围种上4米宽的 环形草坪,环形草坪的面积是多少平方米? 20÷2=10(米) 10+4=14(米) 3.14×(142-102) =3.14×96 =301.44(平方米) 答:环形草坪的面积是301.44平方米。 易错点:不能正确找出环形中外圆的半径。

数学 - 组合图形面积的计算

数学 - 组合图形面积的计算

数学 - 组合图形面积的计算引言在数学中,组合图形是指由多个基本图形组合而成的复合图形。

而要计算组合图形的面积,需要先计算组合图形中各个基本图形的面积,然后将这些面积相加。

本文将介绍如何计算常见的组合图形的面积。

一、矩形和正方形的面积计算矩形和正方形是最简单的组合图形,其面积的计算公式分别为:•矩形的面积:$S = l \\times w$,其中l为矩形的长,w为矩形的宽。

•正方形的面积:$S = a \\times a$,其中a为正方形的边长。

示例:假设有一个矩形,长为 5,宽为 3,那么它的面积可以通过以下计算得到:S = 5 * 3 = 15因此,该矩形的面积为 15。

二、三角形的面积计算三角形是另一个常见的组合图形,其面积的计算公式为:$S = \\frac{1}{2} \\times b \\times h$,其中b为三角形的底边长,ℎ为三角形的高。

示例:假设有一个底边长为 4,高为 6 的三角形,那么它的面积可以通过以下计算得到:S = 0.5 * 4 * 6 = 12因此,该三角形的面积为 12。

三、圆的面积计算圆是另一种常见的组合图形,其面积的计算公式为:$S = \\pi \\times r^2$,其中r为圆的半径。

需要注意的是,计算圆的面积时,需要使用 $\\pi$(圆周率)的近似值,通常取 3.14 或更精确的值。

示例:假设有一个半径为 5 的圆,那么它的面积可以通过以下计算得到:S = 3.14 * (5^2) = 78.5因此,该圆的面积为 78.5。

四、组合图形的面积计算当组合图形由多个基本图形组合而成时,其面积的计算可以通过计算各个基本图形的面积,然后将这些面积相加得到。

示例:假设有一个由一个矩形和一个三角形组成的图形,如下图所示:---------------| ▲ || ╱╲ || ╱╲ || ╱╲ || ╱______╲ || ▔ |--------------矩形的长和宽分别为 6 和 4,三角形的底边长为 4,高为 3。

苏教版五年级下册数学《组合图形的面积》

苏教版五年级下册数学《组合图形的面积》

8π÷4×3 =2π×3 =6π =18.84(平方厘米)
求下面半环的面积.
15厘米
C=18.84分米
18.84÷π÷2=3(分米)
32π=9π=28.26(平方分米)
下面两个图形,你见过吗?
圆环具有哪些特点?
(1)两个圆的圆心在同一个点上。
(同心圆)
(2)两个圆间的距离处处相等。
·
·
·
例10:下图是王师傅加工的一个圆环 形铁片。它的外圆半径是10厘米,内 圆半径是6厘米。你会求这个铁片的 面积吗?
外圆面积:
102π=100π ( cm2)
内圆面积:
62π=36π (cm2)
圆环形铁片的面积:
100π-36π=64π =200.96 (cm2)
R
102π-62π
r
=(102-62)π
长方形的面积:
4
8×4=32(平方厘米)
半圆的面积:
42×π÷2=25.12(平方厘米)
涂色部分的面积:
32-25.12=6.88(平方厘米)
综合算式:
8×4-42π÷2
直角三角形的面积:
3
6×6÷2=18(平方厘米)
半圆的面积:
32×π÷2=14.13(平方厘米)
涂色部分的面积:
18+14.13=32.13(平方厘米)

10、低头要有勇气,抬头要有低气。2021/5/22021/5/22021/5/25/2/2021 2:27:00 PM

11、人总是珍惜为得到。2021/5/22021/5/22021/5/2M ay-212-May-21

12、人乱于心,不宽余请。2021/5/22021/5/22021/5/2Sunday, May 02, 2021

圆的组合图形的面积计算

圆的组合图形的面积计算
光盘的面积 : 36π-4π=32π(平方厘米)
答:光盘的面积是32π平方厘米。
如果我们用S 表示圆环的面积,R 表示大圆的 圆环
半径,r 表示小圆的半径。圆环的面积公式可以怎 么表达?
S =πR²-πr² 圆环
或 S 圆环=π(R²-r²)
一扇窗户由一个正方形和一个半圆形组合而成 (如右图)。这扇窗户的面积是多少平方米?
圆的组合图形的面积计算
五年级数学·(下册)
复习 平面图形的面积计算公式
长方形面积 = 长×宽
三角形面积 =底×高÷2
正方形面积 =边 长×边长
梯形面积 =( 上底+下底)×高÷2
平行四边形面积 = 底×高
圆的面积 s=πr²
r
求下面各圆的面积。
(1)r=7dm
π×7²= 49 π(dm²)
(2)d=1.2m
π×112÷2-π×5.5²÷2
面积之和
16
24
涂色部分的面积=长方形的面积+半圆的面积 16÷2=8(毫米)……圆的半径
24×16+ π×82÷2
14
面积之差
涂色部分的面积=半圆的面积-三角形的面积 14×2=28(毫米)……三角形的底
π×142÷2-28×14÷2
计算组合图形的面积我们可以分几步走?
1.看 2.想 3.算
看组合图形是由哪些基本图形组合而成的。
想组合图形的面积是这些基本图形的面积之和 还是面积之差。
找到数据之间的相互联系,正确地运用公式进 行计算。
课后作业
课后作业
感谢您的莅临指导
长方形面积:8×4=32(cm2)
= 9π÷2
半圆面积: π×42找÷2到数据之间)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合图形1、求下列组合图形阴影部分的面积。

2、①求它的周长和面积。

(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。

③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。

的半径是3cm,求阴影部分的周长和面积。

(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。

AB=40cm,求BC的长。

⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。

求阴影部分的面积。

⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。

⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。

(单位:cm)部分面积64cm2,求梯形面积。

⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。

部分12平方厘米,求阴影部分面积。

3、求下列图形的体积。

(单位:厘米)。

相关文档
最新文档