4-4 交通流理论-流体理论

合集下载

4交通流理论

4交通流理论

第四章交通流理论交通流理论(Traffic Flow Theory)是研究交通流随时间和空间变化规律的模型和方法体系,被广泛应用于交通系统规划与控制的各个方面。

第一节交通流理论的发展历程在本节中,我们一起回顾交通流理论的发展历程。

交通流理论的兴起大致在20世纪30年代,在20世纪50年代到60年代经历了繁荣和快速发展,70年代以后,主要是对既有理论的发展完善和应用拓展。

一、交通流理论的萌芽期萌芽期从20世纪30年代到第二次世界大战结束。

由于发达国家汽车使用和道路建设的发展,需要探索道路交通流的基本规律,产生了研究交通流理论的初步需求。

Adams在1936发表的论文中将概率论用于描述道路交通流,格林息尔治(Greenshields)在1935年开创性提出了流量和速度关系式(也就是格林息尔治关系),并调查了交叉口的交通状态。

二、交通流理论的繁荣期繁荣期从第二次世界大战结束到20世纪50年代末。

汽车使用显著增长和道路交通系统建设加快,应用层面对交通特性和交通流理论的研究提出了急切需求。

此阶段是交通流理论最为辉煌的时期,经典交通流理论和模型几乎全部出自这一时期。

交通流理论中的经典方法、理论和模型相继涌现,如车辆跟驰(Car-following)模型、车流波动(Kinematic Wave)理论和排队论(Queuing Theory)。

这一时期群星闪耀,许多在自然科学其他领域中的大师级人物(如数学家、物理学家、力学家、经济学家)都投入到交通流理论的研究中,其中不乏诺贝尔奖金的获得者,如1977年的诺贝尔化学奖获得者伊利亚•普列高津(Ilya Prigogine)。

著名人物有赫曼(Herman)、鲁切尔(Reuschel)、沃德卢普(Wardrop)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽维尔(Newell)、盖热斯(Gazis)、韦伯斯特(Webster)、伊迪(Edie)、福特(Foote)和钱德勒(Chandler)。

《交通流理论 》课件

《交通流理论 》课件

数值模拟法
定义:通过计 算机程序模拟 交通流现象的
方法
优点:可以模拟 复杂的交通流现 象,包括车辆之 间的相互作用、
道路条件等
缺点:需要较 高的计算能力 和技术水平, 且可能存在误

应用:用于研 究交通流的基 本规律、优化 交通设计和控
制等方面
交通流分析与评价方法
交通流流量分析
交通流量定义:单位时间内通过道路某一断面的车辆数 交通流量分类:基本流量、设计流量、实际流量 交通流量调查方法:路边调查、断面调查、连续调查
交通信号优化:通过调整交通 信号的配时方案,减少车辆在 路口的等待时间和延误
智能交通系统应用:利用智能 交通系统技术,实时监测交通
状况,调整交通流分配
交通流控制策略
交通信号控制:通过调整交通信号灯的配时方案,优化交通流分配,减少 拥堵和事故发生率。
智能交通系统:利用先进的技术手段,实时监测交通流量、车速等参数, 为交通管理部门提供决策支持,实现交通流优化与控制。
交通流分析与评价方法在交 通安全与控制中的应用
交通流分析与评价方法介绍
交通流分析与评价方法在环境 保护与可持续发展中的应用
交通流数据的采集与处理
交通流分析与评价方法的发 展趋势与挑战
交通流优化与控制策略
交通流优化方法
道路设计优化:优化道路布局 和设计,提高道路通行能力和 安全性
交通管理优化:加强交通管理, 提高交通运行效率和管理水平
交通组织优化:通过合理规划道路网络、优化交通标志标线等措施,提高 道路通行效率,减少交通冲突。
公共交通优先:通过设置公交专用道、提高公交服务质量等措施,鼓励市 民选择公共交通出行,减少私家车使用,从而优化交通流。

交通工程学课件-第八章--交通流理论

交通工程学课件-第八章--交通流理论

m 1)!
Pk
•时间t内到达车辆数小于k的概率P(K<k) •时间t内到达车辆数大于等于k的概率P(K≥k) •时间t内到达车辆数大于等于x但不超过y的概率
P(x≤K≤y)
第八章 交通流理论
• 该分布的均值M和方差D都等于m=λt。
• 实际应用中,均值M=E(X)和方差D(X)可分别由其样本 均值和样本方差S2分别进行估计:
1、负指数分布
• 交通流到达服从泊松分布,则交通流到达的车头时距 服从负指数分布, 反之亦然
• 已知到达某交叉口的车流车头时距(单位:s)服从负
指数分布,且 P(h 10) 0.2
• 试求任意10s到达车辆数不小于2辆的概率
P0 0.2 et P1 t et P( X 2) 1 P0 P1
交通工程中,另一个用于描述车辆到达随机特性的度量 就是车头时距的分布,常用的分布有负指数分布、移位的 负指数分布、M3分布和爱尔朗分布
1、负指数分布(Exponential Distribution)
由泊松分布知 P( X 0) (T )0 eT eT
0!
四、连续性分布(continuous distribution)
第八章 交通流理论
一、概述
• 交通流理论是运用物理学与数学的定律来描述交 通特征的一门科学,是交通工程学的基础理论。 它用分析的方法阐述交通现象及其机理,从而使 我们能更好地掌握交通现象及其本质,并使城市 道路与公路的规划设计和营运管理发挥最大的功 效。
第八章 交通流理论
一、概述 当前交通流理论的主要内容: • 1、交通流量、速度和密度的相互关系及测量方法 • 2、交通流的统计分布特性 • 3、排队论的应用 • 4、跟驰理论 • 5、驾驶员处理信息的特性 • 6、交通流的流体力学模拟理论 • 7、交通流模拟

交通流理论(4)

交通流理论(4)
第4章 交通流理论
The theory of traffic flow
2009年3月 年 月
4.6 车流波理论
车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 建立车流的连续性方程。 建立车流的连续性方程。该理论把车流密度的疏密变化比拟成水波的 起伏而抽象成车流波。 起伏而抽象成车流波。当车流因道路或交通状况的改变而引起密度的 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 速度来得到流量、速度、密度三者之间的关系。 速度来得到流量、速度、密度三者之间的关系。 来得到流量
二、 车流中的波
流量密度曲线上的车流波分析
Q B
A C 0 Kj K
二、 车流中的波
车辆运行时间-空间轨迹图 车辆运行时间 空间轨迹图
X
Ⅲ G C Ⅱ D B E 1 2 3 4 F Ⅰ 5 6 t A
内容提要: 内容提要: 车流连续性方程 车流波 车流波的应用
一、车流连续性方程
q
k
q+dq
k -dk


由质量守恒定律可知:流入量-流出量 数量上的变化 由质量守恒定律可知:流入量-流出量=数量上的变化 (dk/ dt)+( dq / dx)=0 上述的守恒等式表明: 上述的守恒等式表明: 当流量随距离降低时,密度则随着时间而增大。 当流量随距车流中的波
波速公式
Vw V1 K1 A K2 X S B V2
波速公式:
VW=(q1-q2)/(K1-K2).
二、 车流中的波
集结波与疏散波 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 前进波与后退波 当车流波的波速> 时 我们称为前进波; 当车流波的波速>0时,我们称为前进波; 当车流波的波速< 时 我们称为后退波。 当车流波的波速<0时,我们称为后退波。

第4章 交通流理论

第4章 交通流理论

P(h t) e。t
4.2.3.1 负指数分布(续)/λ2,用样本均值m代替M、样本的方差S2代替D,
既可算出负指数分布的参数λ 。 (3)适用条件:用于描述有充分超车机会的单列车流
和密度不大的多列车流的车头时距分布,它常与计 数的泊松分布相对应。
(3)排队系统:既包括了等待服务的,又包括了正在被服 务的车辆。
(4)排队论的应用:电话自动交换机;车辆延误、通行能 力、信号灯配时以及停车场、加油站等交通设施的设计 与管理;收费亭的延误估计。
4.3.2 基本原理
(1)排队系统的3个组成部分 输入过程:各种类型的“顾客(车辆或行人)”
按怎样的规律到达。如定长输入;泊松输入;爱 尔郎输入。(到达时距符合什么样的分布)
可算出移位负指数分布的参数λ和τ 。
4.2.3.2 移位负指数分布(续)
(3)适用条件 用于描述不能超车的单列车流的车头时距分布和
车流量低的车流的车头时距分布。 (4)移位负指数分布的局限
移位负指数分布的概率密度函数曲线是随t-τ单 调递降的,车头时距愈接近τ,其出现的可能性愈大。 这在一般情况下是不符合驾驶员的心理习惯和行车特 点的。从统计角度看,车头时距分布的概率密度曲线 一般总是先升后降的。
4.5.1 理论概述
1955年,英国学者莱脱希尔和惠特汉提出。 车流波动理论的定义:通过分析车流波的传播速
度,以寻求车流流量和密度、速度之间的关系, 并描述车流的拥挤——消散过程。 适用条件:流体力学模拟理论假定在车流中各个 单个车辆的行驶状态与它前面的车辆完全一样, 这与实际不符,因此该模型运用于车辆拥挤路段 较为合适。
4.2 交通流的统计分布特 性
4.2.1 交通流统计分布的含义 4.2.2 离散型分布 4.2.3 连续性分布

交通流理论-流体理论

交通流理论-流体理论

(5 - 8 )
在流量—密度相关曲线上, 在流量—密度相关曲线上,集 散波的波速就是割线的斜率、微弱波 散波的波速就是割线的斜率、 流量和密度非常接近) (流量和密度非常接近)的波速就是 切线的斜率。如图所示, 切线的斜率。如图所示,当车流从低 密度低流量的A 密度低流量的A状态转变的高密度高 流量的B状态时, 流量的B状态时,集散波的波速是正 的,即波沿道路前进。当车流从低流 即波沿道路前进。 量高密度的C 量高密度的C状态转变到高流量而密 度较低的B状态时, 度较低的B状态时,集散波的波速是 负的,即波沿道路后退。 负的,即波沿道路后退。从A状态到 状态的波是集结波。而从B状态到A B状态的波是集结波。而从B状态到A 状态的波是消散波,两者都是前进波。 状态的波是消散波,两者都是前进波。 状态到C状态的波是集结波, 从B状态到C状态的波是集结波,从C 状态到B状态的波为消散波, 状态到B状态的波为消散波,两者都 是后退波。 是后退波。
(5-3)
q = ku
∂k ∂ ( ku ) + = 0 ∂t ∂x
(5-4)
上式表明,当车流量随距离而降低时, 上式表明,当车流量随距离而降低时,车流密度则随 时间而增大。 时间而增大。
二、车流波动理论 交通车流和一般的流体一样, 交通车流和一般的流体一样,当道路具有瓶颈形 式路段,车流发生紊乱拥挤现象, 式路段,车流发生紊乱拥挤现象,会产生一种与车流 方向相反的波,好像声波碰到障碍物时的反射一样, 方向相反的波,好像声波碰到障碍物时的反射一样, 阻止车流前进,降低车速。如图5 阻止车流前进,降低车速。如图5-1。
第五节
交通流的流体力学模拟理论
2、车流连续性方程的建立 假设车辆顺次通过断面I II的时间间隔为 的时间间隔为Δ 假设车辆顺次通过断面I和II的时间间隔为Δt,两断 面的间距为Δ 面的间距为Δx。

《交通流理论 》课件

《交通流理论 》课件
介观车辆行为模型
研究车辆在行驶过程中的群体行为和相互作用,揭示交通流 的内在机制。
交通流模型的比较与选择
适用范围
根据研究目的和场景选择合适的交通流模型,宏观模型适用于整体交通状况分析和预测,微观模型适用于个体车辆行 为研究和模拟,介观模型适用于揭示交通流内在机制和规律。
精度与计算成本
不同模型的精度和计算成本各不相同,需根据研究需求进行权衡和选择。
交通安预防提供理论支持。
02
交通流模型
宏观交通流模型
80%
平均速度-流量模型
描述交通流中车辆的平均速度与 流量之间的关系。
100%
交通流密度-流量模型
研究交通流密度与流量之间的关 系,用于描述交通流的拥堵状况 。
80%
宏观交通流模拟模型
通过模拟整个交通网络的运行情 况,预测交通流的变化趋势。
数据需求
不同模型所需的数据类型和数据量也不同,需根据可获取的数据情况进行选择。
03
交通流特性分析
交通流的流量特性
流量定义
交通流量是指在单位时间内通过道路某一断面的 车辆数。
流量变化
交通流量在不同时间段和不同道路条件下会有所 变化,通常呈现早晚高峰现象。
流量影响因素
交通流量受到多种因素的影响,如道路状况、交 通规则、车辆类型、驾驶员行为等。
微观交通流模型
车辆跟驰模型
描述单个车辆在行驶过程中与 前车的跟随行为。
车辆换道模型
研究车辆在行驶过程中换道的 决策过程和换道行为对交通流 的影响。
微观交通流模拟模型
模拟单个车辆在道路上的行驶 行为,用于评估交通设施和交 通管理措施的效果。
介观交通流模型
流体动力学模型
将交通流视为流体,通过流体动力学理论描述交通流的运动 特性。

交通流理论4流体力学模拟理论

交通流理论4流体力学模拟理论
车流波动理论。
交通工程电子教程
流体流与交通流的比较
第八章 交通流理论
物理意 义
离散元 素
运动方 向
连续体 形态
变量
流体特性
交通流特 物理意


流体特 性
交通流 特性
流体分子 一向性
车辆 单向
变量
流速v 车速v 压力P 流量Q
可压缩或 不可压缩
流体
不可压缩 交通流
动量
Mv
Kv
质量(密 度)m
密度K
状态方 程
• 当Q2<Q1 、K2<K1时,产生一个消散波,
w为正值,消散波在波动产生的那一点,沿
着与车流相同的方向,以相对路面为w的速
度移动。Q
(K1,Q1)
(K2,Q2)
K
• 当Q2>Q1 、K2>K1时,产生一个集结波,
w为正值,集结波在波动产生的那一点,沿
着与车流相同的方向,以相对路面为w的速
度移动。Q
dk dq 0 dt dx
车流连续 性方程
交通工程电子教程
第八章 交通流理论
车流波动理论
集结波 车流波由低密度状态向高密度状态转变的界面 移动,车流在交叉口遇红灯,车流通过瓶颈路段、桥梁 等都会产生集结波。
疏散波 车流波由高密度状态向低密度状态转变的界面 移动,交叉路口进口引道上红灯期间的排队车辆绿灯时 开始驶离,车流从瓶颈路段驶出等都会产生疏散波。
车流的波动:车流中两种不同密度部分的分界面经过一 辆辆 车向车队后部传播的现象。
波速:车流波动沿道路移动的速度。
交通工程电子教程
虚线代表车流密度变 化的分界线,虚线AB是 低密度状态向高密度状态 转变的分界,它体现的车 流波为集结波;而虚线 AC是高密度状态向低密 度状态转变的分界,它体 现的车流波为疏散波。虚 线的斜率就是波速。

第四章 交通流理论ppt课件

第四章  交通流理论ppt课件
度的时间内到达某场所交通的间隔时间的统计分布; 4) 研究交通分布的意义:预测交通流的到达规律(到达数及到
达时间间隔),为确定设施规模、信号配时、安全对策提供依 据;
.
4.2.1 离散型分布
车辆的到达具有随机性
描述对象:
在一定的时间间隔内到达的车辆数, 在一定长度的路段上分布的车辆数
4.2 概率统计模型
.
4.2 概率统计模型
4.2.1 离散型分布
2. 二项分布:
适用条件:车辆比较拥挤、自由行驶机会不多的车流 基本模型:计数间隔t内到达k辆车的概率
P (k)C n k n t k 1 n t nk,k1 ,2,.n ..
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
出分布参数 p 和 n;
.
4.2 概率统计模型
4.2.1 离散型分布
3. 负二项分布:
适用条件:到达的车流波动性很大时适用。 典型:信号交叉口下游的车流到达。
4. 离散型分布拟合优度检验——χ2检验
用于根据现场实测数据来判断交通流服从何种分布 原理和方法:
1) 建立原假设:随机变量X服从某给定的分布 2) 选择合适的统计量 3) 确定统计量的临界值 4) 判断检验结果
.
4.2 概率统计模型
4.2.1 离散型分布
1. 泊松分布:
递推公式:由参数m及数量k可递推出Pk+1;
P0 em
Pk1
m k 1Pk
分布的均值M与方差D皆等于λt,这是判断交通流到达规律是否 服从泊松分布的依据。
运用模型时的留意点:关于参数m=λt可理解为时间间隔 t 内的 平均到达车辆数。
4. 有效性指标——延误

第四章交通流理论(详细版)

第四章交通流理论(详细版)
34
二、排队论的基本原理
幻灯片 35§4-3 排队论的应用 2.排队系统的组成 (2)排队规则:指到达的顾客按怎样的次序接受服务。 例如: 损失制:顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来。 等待制:顾客到达时,若所有服务台均被占,他们就排成队伍,等待服务,服务次序有先到先服务(这是最通常的
36
二、排队论的基本原理
幻灯片 37-3 排队论的应用 2.排队系统的组成 (3) 服务方式:指同一时刻多少服务台可接纳顾客,每一顾客服务了多少时间。每次服务可以成批接待,例如公
7.5m
Q=360辆/h
Qt
3607.5
P(h7.5) e 3600 e 3600 0.4724
360 0.4724 170
(次)
幻灯片 27 当 Q = 900 辆/h 时,车头时距大于 7.5s 的概率为:
26 §4-2 交通流的统计分布特性
1h 内车头时距次数为 900,其中 h≥7.5s 的车头时距为可以安全横穿的次数:
33
二、排队论的基本原理
幻灯片 34§4-3 排队论的应用 2.排队系统的组成 (1) 输入过程:就是指各种类型的"顾客(车辆或行人)"按怎样的规律到达。有各式各样的输入过程,例如: D—定长输入:顾客等时距到达。 M—泊松输入:顾客到达时距符合负指数分布。 Ek—爱尔朗输入:顾客到达时距符合爱尔朗分布。
p m s2 m
m
1 N
N
i
i 1
n
m2 m s2
s 2
1 N 1
N i 1
(i
m)2
14 幻灯片 15 【例 4-2】:在一交叉口,设置左转弯信号相,经研究来车符合二项分布,每一周期平均来车 30 辆,其中有 30%

交通流理论

交通流理论

4-2 交通流的统计分布特性
(二)二项分布 (1)适用条件:车辆比较拥挤、自由行驶机会不多的车流。 (2)基本公式:
P(k) Cnk pk ((14-1p0))nk
式中:P(k)——在计数间隔t内到达k辆车或k个人的概率; λ——平均到达率(辆/s或人/s); t——每个计数间隔持续的时间(s)或距离(m);
递推公式:
p0
em ,
p(k4-13)
m k 1
pk
分布的均值M和方差D都等于m
4-2 交通流的统计分布特性
① 到达数小于k辆车(人)的概率:
P( k ) k 1 miem
i 0(4-4i)! ② 到达数小于等于k的概率:
P( k ) k miem
i 0(4-5i)! ③ 到达数大于k的概率:
的平均车辆数。
P(0) em e6 0.0025
P( 2 )
m 2
P(1)
0.0446
m P(4) 4 P(3) 0.1338
P(6)
m 6
P(6)
0.1606
P(1)
m 1
P(0)
0.0149
P( 3ห้องสมุดไป่ตู้)
m 3
P( 2 )
0.0892
m P(5) 5 P(4) 0.1606
4-2 交通流的统计分布特性
一、含义与作用
随机变量:对随机试验来说,每次试验的结果可能不止一种情 况。如果我们将试验的结果用一个实数X来表示,那么对于试验 结果的不同情况,X将取不同的值,所以X是一个变量。这种随 着随机试验结果的情况不同而取不同值的变量,称为随机变量。
离散型随机变量: 如果一个随机变量只可能取数轴上有限个或 可数个孤立的值,并且对应于这些值有确定的概率,则称这个 随机变量为离散型随机变量。

交通流理论

交通流理论

用样本的均值m代替M、样本的方差S2代替D,即可算出负指数分布
的参数λ。 此外,也可用概率密度函数来计算。负指数分布的概率密度函数为:
P(t )
d d P(h t ) [1 P(h t )] e t dt dt

P(h t ) p(t )dt et dt et
跟驰条件(车速条件、间距条件)
2. 延迟性 (也称滞后性)
3. 传递性
二. 线性跟驰模型
s(t ) d1 d2 L - d3

假定d2=d3,要使在时刻t两车的间距能 保证在突然剥车事件中不发生幢碰,则应 有:
对于跟驰车辆的反应,一般指加速、减速,因此,将 上式微分,得到 :
. . ( t T ) X ( t ) X ( t ) n n 1 X n1 ..

道路上一辆跟踪另一辆车的追随现象是很多的, 前一辆车行驶速度的变化,影响后一辆车行驶,后 一辆车为了与前车保持具有最小安全间隔距离。需 要调整车速,这种前后车辆运动过程可以应用动力 学跟踪理论,建立道路上行驶车辆流动线性微分方 程式来分析车辆行驶情况和变化规律。这种研究方 法称为交通跟驰理论。

(3)应用条件
1 N 1 g 2 2 S ( k m ) ( k m ) fj i j N 1 i 1 N 1 j 1
2
2. 二项分布
(1)基本公式
k P ( k ) Cn (
t
n
) k (1
t
n
) nk ,
k 0,1,2, , n
式中:P(k)——在计数间隔t内到达k辆车或k个人的概率; λ——平均到达率(辆/s或人/s); t——每个计数间隔持续的时间(s)或距离(m);

第四章 交通流理论

第四章  交通流理论

4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
跟驰的稳定性
局部稳定性——前后两车间距摆动大小,大则不稳定,小则稳 定;只在车队的局部发生。 渐进稳定性——引导车的状态变化向后传播,传播过程中,状 态变化的振幅越来越大(发散),则不稳定,状态变化振幅越 来越小(收敛)则稳定。
4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
4.4 跟驰模型
4.4.4 非线性跟驰模型
线性跟驰模型的局限性
后车的反应仅与两车的相对速度有关,而与车辆间距无关。
非线性跟驰模型
1959,Gazis 灵敏度系数λ与车头间距成反比
xn1 t T
其中 Vm
Vf 2
k t k
P(k ) Cn 1 n n
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
t
n k
, k 1,2,...n
P(k ) C P 1 p
k n k
nk
, k 1,2,...n
4.2 概率统计模型
4.3 排队论模型
4.3.3 M/M/N系统
简述——两类多通道服务
1)单路排队多通道服务——排成一条队等待数 条通道服务
4.3 排队论模型
2)多路排队多通道服务——每个通道各排一队,每个通道只为 其相对应的一队顾客服务,顾客不能随意换队。
计算公式由M/M/1系统的计算公式确定
4.4 跟驰模型
4.4 跟驰模型
1. 简述
定义:研究在无法超车的单一车道上车辆列队行驶时,后车跟 随前车行驶的状态,并且借数学和动力学的模式表达并加以分 析的一种理论。 研究目的:通过观察各个车辆逐一跟驰的方式来了解单车道交 通流的特性,并用来检验管理技术和通讯技术,以预测短途车 辆对市区交通流的影响,在稠密交通时使尾撞事故减到最低限 度等

道路交通流理论

道路交通流理论

F
(t
)

1 exp (t )_(t

0
_______________(t
) )
爱尔朗(Erlang)分布
• 爱尔朗(Erlang)分布的概率密度函数为
f (t) et (t)k1
(k 1)!
• 积分得 P(h t) l1 (lt)i elt
泊松分布
• 到达数小于x辆车(人)的概率
P( X x) x1 miem
i0 i!
• 到达数大于x的概率:
P(X x) 1 P(X x) 1 x miem
i0 i!
参数m的计算:
n
n
观测的总车辆数
xi fi
xi fi
m 总计间隔数
i1 n
• 然而,总是存在一个合理的比较一致的驾驶员行
为范围,也就存在着一个合理一致的交通流表现 范围。
交通设施种类
• 连续流设施:无内部设施会导致交通流
周期性中断。长路段、高速公路。
• 间断流设施:由外部设备而导致交通流
周期性中断。信号灯等,引起车群。
• 一般认为,3.2Km可以使车群分散成连续流。
三参数之间的关系
离散型分布
• 泊松分布 • 二项分布 • 负二项分布
泊松分布
• 基本公式 P( X x) (t)x et mxem
x!
x!
• 式中P(X=x)——在计数间隔T内到达x辆车或x个
人的概率;
• λ——单位时间间隔的平均到达率(辆/s或人/s); • T——每个计数间隔持续的时间(s)或距离(m); • m=λT为在计数间隔T内平均到达的车辆(人)数。
• 三参数:交通量Q(辆/h) • 行车速度(空间平均车速)(Km/h) • 车流密度K(辆/Km) • 三个参数之间相互联系,相互制约。

第八章交通流理论4流体力学模拟理论-PPT课件

第八章交通流理论4流体力学模拟理论-PPT课件

流速v
压力P Mv
车速v
流量Q Kv
状态方 P=cmT 程
Q=Kv
交通工程电子教程
第八章 交通流理论
一、车流连续性方程的建立 假设车流依次通过断面Ⅰ和断面Ⅱ的时间间隔为dt,两 断面的间距为dx。车流在断面Ⅰ的流入量为q,密度为k; 车流在断面Ⅱ的流出量为(q+dq),密度为(k-dk)。 根据质量守恒定律: 流入量-流出量=dx内车辆数的变化 即:
q q 3880 1 2 4200 w 2 . 58 km / h k k 53 177 1 2
表明此处为排队反向波,波速为2.58km/h,因距离为速度与时 间的乘积,整个过程中排队长度均匀变化,故平均排队长度为:
0 1 . 69 2 . 58 1 . 69 L 2 . 18 km 2
例1:车流在一条6车道的公路上畅通行驶,其速度V为80km/h。路上
有4车道的桥,每车道的通行能力为1940辆/h,高峰时车流量为4200 辆/h(单向)。在过渡段的车速降至22km/h,这样持续了1.69h,然
后车流量减到1956辆/h(单向)。
试估计:1)1.69h内桥前的车辆平均排队长度; 2)整个过程的阻塞时间。 解:1)桥前高峰时车流量为4200辆/h,与通行能力的比值(V/C)
A N k v W t k v W t 1 1 2 2
图2 两种密度的车流运行状况
交通工程电子教程
第八章 交通流理论
化简得:
v1k1 v2k2 W k1 k2
根据宏观交通流模型:
S V1,k1
W V2,k2 x
Q kv
得波速公式:
图2 两种密度的车流运行状况

4第四章 交通流理论

4第四章 交通流理论

2. 渐近稳定
是引导车向后面各车传播速度变化。
如扩大其速度振幅,叫做不稳定,如振幅逐渐衰 弱,则叫做稳定,这称为渐近稳定。
36
4.3
线性模型的稳定性
随着C值的增加,两车之间的车头间距逐渐的成为不稳定。这是 由于,如果对出现的事件,延迟反映的时间T过长,反应太强烈 (������大,表现在油门过大,或脚刹车踏得过重),则在作出反应 时,情况可能已偏离实际上的需求。
3
Contents 目录
1、概述 2、交通流的统计分布特性 3、排队论的应用
4、跟驰理论简介
5、流体动力学模拟理论
4
2.1
交通流统计分布的含义与作用
交通的到达在某种程度上具有随机性,描述这种随 机性的统计规律有两种方法。一种是以概率论中的
离散型分布为工具,考察在一段固定长度的时间内
到达某场所的交通数量的波动性;另一种是以概率 论中的连续性分布为工具,研究上述事件发生的间 隔时间的统计特性。
dk d (kv ) 0 dt dx
用流体力学的理论建立交通流的运动方程:
dk dv 0 dx dt
41
5.1
Q K
车流连续性方程
△x △t
Q
(K-△K,Q+△Q ) (K,Q)
Q+△Q K-△K


K
42
5.2
车流波动理论
列队行驶的车辆在信号灯交叉口遇到红灯后,即陆续停车排 队而集结成密度高的队列,绿灯启亮后,排队的车辆又陆续
单路多通道系统(M/M/4系统)计算各相应指标并比
较之。
25
3.2
M/M/1系统及其应用举例
26
3.2
M/M/1系统及其应用举例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据物质守恒定律:流入量-流出量=Δ x内车辆数 的变化,即:
[q (q q)]t [k (k k )]x
或:
k q 0 t x
取极限可得:
又: 故:
k q 0 t x
q ku
k ( ku ) 0 t x
上式表明,当车流量随距离而降低时,车流密度则 随时间而增大。
2、波速(集散波集结和消散的 速度) 这个车队从度V1、密度K1,(对 应于车间距离l1)转变到速度V2、密度 K2(对应于车间距离l2)。O为第一辆车 的变速点,A为第二辆车的变速点、 虚线OA的斜率就是集散波的波速。 V2t 设变速点A的时刻为t,位置为x,则:
t x V1t
l 2 v1t v2 t l1
dv c 2 m 0 dt m x
du du 2 k k( ) 0 dt dk x 3
第五节
交通流的流体力学模拟理论
2、车流连续性方程的建立 假设车辆顺次通过断面I和II的时间间隔为Δ t,两断 面的间距为Δ x。
q k Δx I II
车流在断面I的流入量为q,密度为k。车流在断面II 的流出量为(q+Δ q),密度为(k-Δ k)。 Δ k前面加一负 号,表示在拥挤状态,车流密度随车流量的增加而减小。
故集散波从第一辆车传到第二辆车所 需时间为: 图5-3 车队前三辆车运行轨迹 l l t 2 1 (5-5) v 2 v1
又因x tv1 l1,于是有
波速:
l1 l1 (v 2 v1 ) l 2 v1 l1v 2 x W v1 v1 t t l 2 l1 l 2 l1 v1 v 2 l l2 k v k 2 v 2 Q1 Q2 1 1 1 1 1 k1 k 2 k1 k 2 (5-6) l1 l 2
Q2 Q1 1200 1000 w1 2.5( Km / h) K 2 K1 100 20
由状态2转变到状态3形成消散波,记其波速为w2
Q3 Q2 1500 1200 w2 6( Km / h) K3 K 2 50 100
受拥挤的N辆车的时间—空 间运行轨迹线如图中的N条 折线所示。虚线OB的斜率等 于w1,虚线AB的斜率等于w2, 以xB、tB表示图中B点的空 间坐标和时间坐标,其它各 点亦然。从图看出,从t0到 tA,拥挤车队愈来愈长,最 长时占路长度等于xA-xc, 过了时刻tA,拥挤车队愈来 愈短,到时刻tB拥挤完全消 除,很自然应把时段tB-tA 称为消散时间ts.由于N条折 车辆运行时间-空间轨迹图 线的斜率表示车速,易得 x 2 tA A 0.167h v2 12
车辆波动图
三、车流波动理论的应用 例1:知某快速干道上车流速度(KM/h)与密度(辆/KM) 具有:u 0.103 1.547 0.00256 K 之关系。现知一列 u1=50KM/h的车流中插入一u2=12KM/h的低速车,并不能超 车而集结形成速度为u2拥挤车流。此低速车在行驶2KM后 离去,拥挤车队随之离散形成具有速度u3=30KM/h的状态。 试求: 1.拥挤车队消散的时间ts; 2.拥挤车队持续的时间tj; 3.拥挤车队最长时的车辆数Nm; 4.拥挤车辆的总数N; 5.拥挤车辆所占用过的道路总长度L; 6.车流速度从Vl降低至V2而延误的总时间T。
第五节 交通流体力学模拟理论
第五节
交通流的流体力学模拟理论
一、引言 1、流体动力学理论建立 1955年,英国学者莱脱希尔和惠特汉将交通流比拟为一种 流体,对一条很长的公路隧道,研究了在车流密度高的情况下 的交通流规律,提出了流体动力学模拟理论。该理论运用流体 动力学的基本原理,模拟流体的连续性方程,建立车流的连续 性方程。把车流密度的变化,比拟成水波的起伏而抽象为车流 波。当车流因道路或交通状况的改变而引起密度的改变时,在 车流中产生车流波的传播,通过分析车流波的传播速度,以寻 求车流流量和密度、速度之间的关系,并描述车流的拥挤—消 散过程。因此,该理论又可称为车流波动理论。
这是一后退波,表示居 住区路段入口处向上游 形成一列密度为298 辆 /Km的拥挤车流队列 。 图中tF-tH=tE-t0=1.69, 则tE=1.69小时,OF为W1 的轨迹。在F处高峰流消 失,出现流量为1950辆 /小时,速度为59Km/h 的低峰流。
1950 K3 33辆 / km 59
二、车流波动理论 交通车流和一般的流体一样,当道路具有瓶颈形 式路段,车流发生紊乱拥挤现象,会产生一种与车流 方向相反的波,好像声波碰到障碍物时的反射一样, 阻止车流前进,降低车速。
交通流回波现象
第五节
交通流的流体力学模拟理论
1、集散波的定义 列队行驶的车辆在信号灯交叉口遇到红灯后,即陆 续停车排队而集结成密度高的队列;绿灯启亮后,排队 的车辆又陆续起动而疏散成一列具有适当密度的车队。 车流中密度经过了由低到高,再由高到低两个过程, 车流中两种不同密度部分的分界面经过一辆辆车向车队 后部传播的现象,称为车流的波动。车流波动沿道路移 动的速度,称为波速。
如果车流前后两行驶状态的流量和密度非常接近,则: dQ W (5-7) dk 集散波总是从前车向后车传播的,把单位时间内集散波所掠过的 车辆数称为波流量。
Qw 3600 3600 3600 (v2 v1 ) V2 V1 l2 l1 1 1 t l2 l1 v2 v1 k 2 k1
所以K-V关系为: V V f
Vf Kj K 57.6 0.4608K
由已知条件,得:
t A 48.1s 0.013361 h
V2 V1 0 V1 Qw1 1 1 1 1 k 2 k1 k j k1
N m Qw1 (t c t 0 ) Qw1t A V2 V1 12 50 tA 0.167 158辆 1 1 1 1 K 2 K1 100 20
w1掠过的车辆总数就是拥挤过的车辆总数N。
N Qw1 (t B t 0 ) Qw1t B Qw1t j V2 V1 12 50 t j 0.353 335辆 1 1 1 1 K 2 K1 100 20
交通流与流体流的比拟
物理特性 连续体
离散元素 变 动 量 量 质量m 速度v 压力p mv P=cmt
流体动力学系统 单向不可压缩流体
分子 密度k 速度u 流量q ku q=ku
交通流系统 单车道不可压缩车流
车辆
状态方程
连续性方程
运动方程
m (mv) 0 t x
k (ku) 0 t x
又: 解得: 所以:
xB w1 (t A t s ) 2 w2t s
2 W1t A 2 2.5 0.167 ts 0.186h W1 W2 2.5 (6) t j t A t s 0.353h
由图可知拥挤车队从A点开始消散,所以落在路段AC上的车数 就是拥挤车队最长时的车数Nm,它等于波wl在时段tc-t0内掠 过的车数,根据波流量公式,可得:
t B QW 1 (t s t A )QW 1 N L Kj Kj Kj
根据题设条件计算上式中各个量: K j 1000/ 8 125 辆 / km Qm 3600/ 2 1800 辆/ h
) / 125 57.6km / h 则: V f 4Qm / K j (4 1800
解:把车流经历的疏散一密集一疏散这三个阶段的状态记为 状态l、2、3,相应的流量、速度、密度分别记为Qi,ui, Ki;i=1,2,3。则由已知车流模型可算出: Q1=1000,u1=50,K1=20 Q2=1200,u2=12,K2=100 Q3=1500,u3=30,K3=50 由状态1转变到状态2形成集结波,记其波速为wl
tG 0.337 1.641 1.978 小时
例3:某信号灯交叉口的一条进口道上,车流服从V-K线性模 型,饱和车头时距为2s,停车排队的车头空距为8m,到 达流量为720辆/h,红灯时长48.1s,绿灯足够长,求停 车排队最远至几米? 解:利用例1中的公式,可算出停车排队达到的最远距离为
车队运行状态变化图为在时间-空间 坐标系下表示的一队n辆车的运行状态变 化图。图中每根曲线表示一辆车运行的时 间—空间轨迹,曲线间的水平距离表示车 头时距,垂直距离表示车头间距,两条虚 线分隔出I、II和III三个时间—空间区域。 在区域I内,车速最高而密度最低。进人 区域II后,车速明显降低而密度明显升高。 进入区域III后,速度有所回升而密度有 所下降。虚线与运行轨迹的交点就是车队 密度不同的两部分的分界(对某一确定时 刻而言),而虚线则表示此分界既沿车队 向后一辆辆地传播下去,又沿着道路而移 动,虚线的斜率就是波速。虚线AB是低密 度状态向高密度状态转变的分界,它所体 图5-2 车队运行状态变化图 现的车流波称为集结波;而AC是高密度状 态向低密度状态转变的分界,它所体现的 车流波称为疏散波,两种不同的车流波可 统称为集散波。
将 W1 1.495,V1 50带入方程组,解得: t R 1.641 小时,t E t R 0.049小时, x R x F t R (W1 ) 1.641 1.495 2.453Km
即拥挤流向上游延长的距离为2.453km,共包含车辆为: 2.453×298=731辆。集结波W2推进到G的历时为: xR xF 2.453 t s tG t R 0.337小时 w 7.283 则拥挤持续的时间为:2
(5-8)
在流量—密度相关曲线上,集 散波的波速就是割线的斜率、微弱波 (流量和密度非常接近)的波速就是 切线的斜率。如图所示,当车流从低 密度低流量的A状态转变的高密度高 流量的B状态时,集散波的波速是正 的,即波沿道路前进。当车流从低流 量高密度的C状态转变到高流量而密 度较低的B状态时,集散波的波速是 负的,即波沿道路后退。从A状态到 B状态的波是集结波。而从B状态到A 状态的波是消散波,两者都是前进波。 从B状态到C状态的波是集结波,从C 状态到B状态的波为消散波,两者都 是后退波。
相关文档
最新文档