计数原理及二项式定理概念公式总结
35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
计数的公式知识点总结

计数的公式知识点总结1.基本计数原理基本计数原理是计数问题中最基本的方法之一。
它适用于一些简单的问题,例如从一个有限的集合中选择元素的方式数量。
基本计数原理的核心思想是:如果一件事情可以划分为若干个独立的步骤,每个步骤有若干个选择,那么总的选择数就是所有步骤的选择数的乘积。
例如,考虑从一个4位数字(0-9)中选择一个数字的问题。
根据基本计数原理,我们可以将这个问题划分为4个步骤:先选第一位数字,再选第二位数字,以此类推。
每一步都有10种选择,因此总的选择数量为$10^4$=10000。
2.排列排列是计数中比较常见的问题之一。
排列是指从一个集合中选择一部分元素,并按照一定的顺序进行排列。
对于一个包含n个元素的集合,如果从中选择r个元素进行排列,则一共有$n\cdot(n-1)\cdot...\cdot(n-r+1)=\frac{n!}{(n-r)!}$种排列方式。
排列问题的应用十分广泛,例如在密码学中用于生成密码、在组合游戏中用于解决游戏的排列问题等。
在实际应用中,我们也可以用排列的方法来解决一些实际问题。
比如,在一家商店里,有10种不同的衣服,小王要挑选3种不同的衣服,问他共有多少种不同的选择方式?根据排列的计数方法,答案为$P^{10}_3=10\cdot 9 \cdot 8=720$种选择方式。
3.组合组合是另一个常见的计数问题。
组合是指从一个集合中选择一部分元素,并不考虑元素的排列顺序。
对于一个包含n个元素的集合,如果从中选择r个元素进行排列,则一共有$\frac{n!}{r!(n-r)!}$种组合方式。
组合问题在实际中也有着很多应用,例如在概率论中,组合问题用于计算事件发生的概率;在统计学中,组合问题用于计算样本的数量等。
组合问题也有着很多有趣的性质和应用,例如在计算机程序设计中,组合问题用于生成排列和组合的算法。
4.二项式定理二项式定理是组合的一个重要的应用。
它描述了二项式的幂的表达式。
二项式定理-计数原理

二项式系数
二项式系数是二项式定理中的重要概念,它代表了展开式中每一项的系数。 二项式系数的计算方法是利用组合数学中的排列组合原理。 这些系数有很多有趣的性质,例如对称性、递推关系等。
二项式定理的公式形式
二项式定理的公式形式是: (a + b)^n = C(n,0) * a^n + C(n,1) * a^(n-1) * b + ... + C(n,n) * b^n 其中,C(n,k)表示组合数,它可以利用二项式系数的性质来计算。
二项式定理在实际问题中的应 用
二项式定理在实际问题中有着广泛的应用。 例如,在统计学中,我们可以利用二项式定理来计算二项分布的概率。 在计算机科学中,我们可以利用它来设计高效的算法以解决各种问题。
二项式系数可以用于计算组合数,而二项式定理提供了展开多项式和计算组 合数的方法。
通过学习二项式定理,我们可以定理的证明和推导
数学家们通过数学归纳法等方法对二项式定理进行了证明和推导。 证明过程涉及到数学中的一些基本概念和技巧,例如二项式系数的递推关系和组合数的性质。 通过深入研究二项式定理的证明和推导过程,我们可以增强对数学的理解和掌握。
二项式定理-计数原理
二项式定理是一种重要的数学定理,它与计数原理密切相关,可以帮助我们 解决各种计数问题。
二项式定理的概念和定义
二项式定理是一个关于展开幂次多项式的公式,它可以用于计算任意次幂的 展开式。 通过二项式定理,我们可以将任意次幂的展开式中的每一项系数都计算出来。
这个定理是数学中的基础定理之一,在代数、概率论等领域有广泛的应用。
二项式定理的应用举例
二项式定理具有广泛的应用,例如在概率论中,我们可以利用它来计算不同结果出现的概率。 在代数中,它可以用于展开多项式、简化运算等。 在实际问题中,我们可以利用二项式定理来解决计数和排列组合等问题。
计数原理:第3讲二项式定理

二项式定理1.二项式定理n*(a + b) = _______________________________ (k , n € N ),这个公式所表示的规律叫做二项式定理.(a + b)n 的二项展开式共有 _______________ 项,其中各项的系数 ______________ (k € {0 , 1, 2,…,n})叫 做二项式系数,式中的 _____________ 叫做二项展开式的通项,用 T k +1表示,即 ____________________ •通项为展开式的第 ___________ 项.2.二项式系数的性质 (1) 对称性在二项展开式中,与首末两端等距离”的两个二项式系数相等,即 C n = C n , C n = C n , C n =,…,C n = C 0.(2) 增减性与最大值二项式系数c n ,当 _______________ 时,二项式系数是递增的;当 ______________ 时,二项式系数是递减 的.当n 是偶数时,中间的一项 _____________ 取得最大值.当n 是奇数时,中间的两项 _____________ 和 _____________ 相等,且同时取得最大值. ⑶各二项式系数的和(a + b)n 的展开式的各个二项式系数的和等于 ____________ ,即C 0 + C 1+ U+…+ ◎+••• + C ;; = _________ 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即 c 1+ C 3+ ◎+•••=氏+ U+C 4+ …= __________ .【答案】1.++...+...+w+iCj C 制Ti 二C 紗乍护七+12.【基础自测】1在2x 2— 1 5的二项展开式中,x 的系数为( )A . 10B . — 10C . 40D .— 40解:二项展开式的通项为 T r +1= C 5(2x 2)5 'J — X / = C 525 r x 10 3r (一 1)r ,令 10— 3r = 1,解得 r = 3,所以w+_l 7T 4= C;22X (— 1)3=— 40x ,所以 x 的系数为一40•故选 D.2n *2 (1 + X ) (n € N )的展开式中,系数最大的项是 ( )A •第n + 1项B •第n 项C .第n + 1项D .第n 项与第n + 1项解:展开式共有2n + 1项,且各项系数与相应的二项式系数相同•故选 C.3使?x + 总](n € N *)的展开式中含有常数项的最小的 n 为( )A . 4B . 5C . 6D . 74 设(X — 1)21 = a °+ a 1x + a 2X 2+…+ 玄2低21,贝V a® + a^= ________________ .解:T r + 1 = C 21X^ r (一 1),,…a 10= C 21(一 1)" , a 11= C 21 ( 一 1)勺° •- a 10 + a 11 = 0.故填 0. 5 设「2+ X )10= a °+a 1x + a 2X 2+…+ a 10x 10,贝V (a °+ a 2 + a 4+…+ ag)2—⑻十 a 3 + a 5+…+ a g )2的值为解:设 f(x)=(”』2 + X )10,则(a °+ a ?+ a °+…+ ag)2—⑻十 a 3 + a §+…+ a g )2= [(a °+ a ?+ a °+…+ aw)+ ⑻ + a 3 + a 5+ …+ a 9)][( a o + a 2 + a 4 + …+ ag)—(a 1 + a 3 + a 5 + …+ a ?)] = f(1)f( — 1)=(岑2 + 1)10(p2 — 1)10 = 1.故填 1.【典例】 类型一求特定项例一 (1) x + a 2X — 1 5的展开式中各项系数的和为 2,则该展开式中的常数项为 ( )A . — 40B . — 20C . 20D . 40解:令"1,可得卄1=2, 口f的展幵式中+项的系数为C 辺(―卩工项的系数为€?2\.■.«+典肚一打的展开式中常数顷为C?2:. - 1 ]十匚工:=40一故选D.【评析】①令工=1可得所有项的系数和,②在求出口的值后,再分析常数项的构成,便可解得常数 项.广 1 帯(2)已知在 饭一 丁 '的展开式中,第6项为常数项,求含 X 2项的系数及展开式中所有的有理项.< 2钱丿 n —5 1 丨 r / 1 r n —2r解:通项 T r +1= C fi x 3 一 2 X 3= C n 一 2 X 3,•••第6项为常数项,••• r = 5时,有上器=0,得n = 10.令芝芦=2,得r = 2,二含x 2项的系数为C ?。
计数原理及二项式定理概念公式总结

计数原理及二项式定理概念公式总结排列组合及二项式定理概念及公式总结1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有N=m 1+m 2+……+m n2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法分类要做到“不重不漏”,分步要做到“步骤完整”3.两个计数原理的区别:如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示(2)排列数公式:)1()2)(1(+---=m n n n n A mn或m nA )!(!m n n -=()n m N m n ≤∈*,,nnA =!n =()1231- n n =n(n-1)! 规定 0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用mn C 表示(2)组合数公式: (1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且(3)组合数的性质:① m n n m n C C -=.规定:10=n C ;②m n C 1+=m n C +1-m n C . ③0132nn nn n n C C C C ++++= ④n C C n n n ==-11 ⑤1=n n C6.二项式定理及其特例:(1)二项式定理()()*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n110展开式共有n+1项,其中各项的系数{}()n k C kn ,,2,1,0 ∈叫做二项式系数。
高中数学常见公式总结与应用

高中数学常见公式总结与应用数学作为一门基础学科,其中公式的运用是不可或缺的。
在高中数学的学习中,学生们常常需要掌握和应用各种常见的数学公式。
本文将对高中数学常见公式进行总结,并给出相应的应用示例。
一、代数公式1. 二次方程求根公式对于一元二次方程ax^2 + bx + c = 0(其中a≠0),其根可以通过求根公式得到。
其公式为:x = (-b ± √(b^2 - 4ac))/2a应用示例:已知二次方程3x^2 + 2x - 1 = 0,求解x的值。
解:a = 3,b = 2,c = -1根据求根公式,代入数值进行计算:x = (-2 ± √(2^2 - 4×3×(-1)))/2×3= (-2 ± √(4 + 12))/6= (-2 ± √16)/6= (-2 ± 4)/6= -1 或 1/3所以方程的解为x = -1 或 x = 1/3。
2. 二项式定理二项式定理是代数中一个重要的展开定理,用于计算(x + y)^n的展开式,其中n为自然数。
其公式为:(x + y)^n = C(n, 0)x^n y^0 + C(n, 1)x^(n-1) y^1 + C(n, 2)x^(n-2) y^2 + ... + C(n, n-1)x^1 y^(n-1) + C(n, n)x^0 y^n应用示例:计算展开式(2x - 3)^4。
解:根据二项式定理,展开式为:(2x - 3)^4 = C(4,0)(2x)^4 (-3)^0 + C(4,1)(2x)^3 (-3)^1 + C(4,2)(2x)^2 (-3)^2 + C(4,3)(2x)^1 (-3)^3 + C(4,4)(2x)^0 (-3)^4= 1(16x^4) + 4(8x^3)(-3) + 6(4x^2)(9) + 4(2x)(-27) + 1(1)(81)= 16x^4 - 96x^3 + 216x^2 - 216x + 81所以展开式为16x^4 - 96x^3 + 216x^2 - 216x + 81。
高中数学二项式定理知识点总结

高中数学二项式定理知识点总结一、二项式定理的概念和公式二项式定理是指两个数的整数次幂之和在展开时,任意一个数都可以拆开成两个数相乘的形式。
根据二项式定理,可以得到以下的公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³对于一般情况下的二项式展开,可以根据组合数的知识得出下列公式:(a+b)ⁿ = C(n,0) * aⁿ+ C(n,1) * aⁿ⁻¹b + C(n,2) * aⁿ⁻²b² + ... + C(n,n) * bⁿ其中,C(n,m)表示从n个元素中取m个元素的组合数。
二、二项式定理的应用1. 计算二项式的展开式利用二项式定理,可以将任意形式的二项式展开成为多项式,从而方便进行计算。
例如,对于 (x+2)³的展开式,根据二项式定理可以得到:(x+2)³ = x³ + 3x²*2 + 3x*2² + 2³= x³ + 6x² + 12x + 82. 求解组合数在概率论、统计学等领域中,经常需要计算组合数。
而组合数实际上就是二项式展开中的系数。
因此,通过二项式定理可以方便地求解组合数。
3. 计算二项式的特定项有时候并不需要将整个二项式展开,只需求解其中的某一项。
例如,对于(x+2)⁵ 的展开式,如果只需要求解其中x⁴ 的系数,可以直接利用二项式定理计算得出,而无需展开整个式子。
4. 解决数学问题在数学建模、求解等问题中,二项式定理也可以被广泛应用。
通过利用二项式定理,可以简化问题的表达和计算,从而更加方便地求解问题。
第1讲计数原理二项式定理

第1讲计数原理二项式定理计数原理是组合数学中的一个重要分支,它研究的是对一些数量进行计数的方法和原理。
而二项式定理是计数原理的一个经典定理,它在数学和实际生活中都有着广泛的应用。
二项式定理是由法国数学家帕斯卡在17世纪提出的,他是计数原理的奠基人之一、二项式定理的具体内容是指出了如何求一个二项式的n次方。
一个n次方的二项式可以表示为(a+b)^n,其中a和b是任意常数。
二项式定理告诉我们可以通过展开这个二项式,得到它的展开式。
(a+b)^n的展开式的一般形式是:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n)b^n其中C(n,0),C(n,1),C(n,2),...,C(n,n)被称为组合数,它表示从n 个元素中取k个元素的组合数。
组合数的计算可以借助计数原理中的排列组合问题来解决。
组合数C(n,k)的计算公式为:C(n,k)=n!/(k!(n-k)!)其中n!表示n的阶乘,k!表示k的阶乘。
阶乘是一个非常重要的数学概念,它表示从1到一些正整数的连乘积。
阶乘的计算可以通过递归或迭代的方式进行。
二项式定理通过组合数的计算,将一个n次方的二项式展开为多个项的和,其中每个项都包含了a和b的不同次数的幂。
这个展开式的应用非常广泛,几乎涉及到了所有领域的数学问题。
在代数中,二项式定理可以求解多项式的展开式,简化复杂表达式的计算。
在概率论中,二项式定理可以用来计算事件的可能性,求解二项分布等概率分布。
在组合数学中,二项式定理可以用来计算组合数,求解排列组合问题。
总之,二项式定理是计数原理中的一个重要定理,它通过组合数的计算,将一个n次方的二项式展开为多个项的和。
二项式定理的应用涉及到了代数、概率论、组合数学等多个领域。
深入理解和掌握二项式定理,对于推导和解决各种数学问题都具有重要意义。
计数原理公式

计数原理公式计数原理是概率论中非常重要的一部分,它是指通过对事件发生的次数进行计数,从而得出概率的方法。
在计数原理中,最基本的概念就是排列和组合。
排列是指从n个不同元素中取出m个元素进行排列,不同元素的顺序不同就是不同的排列。
组合是指从n个不同元素中取出m个元素进行组合,不考虑元素的顺序。
在计数原理中,有一些基本的公式和定理,下面我们来逐一介绍。
1. 排列的计数公式。
在排列中,我们常用的计数公式是阶乘。
阶乘的定义是n的阶乘(n!)等于123...n。
因此,从n个不同元素中取出m个元素进行排列的方法数可以表示为P(n,m) = n!/(n-m)!。
2. 组合的计数公式。
在组合中,我们常用的计数公式是组合数。
组合数C(n,m)表示从n个不同元素中取出m个元素进行组合的方法数,计算公式为C(n,m) = n!/(m!(n-m)!)。
3. 二项式定理。
二项式定理是指对任意实数a、b和非负整数n,都有(a+b)^n = C(n,0)a^n +C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n。
这个定理在概率论和组合数学中有着广泛的应用。
4. 多项式定理。
多项式定理是指对任意实数a1、a2、...、an和非负整数n,都有(a1+a2+...+an)^n = Σ C(n,k)a1^(n-k)a2^k,其中k的取值范围是0到n。
5. 康托展开。
康托展开是指将一个排列映射为一个自然数的过程,它在计算排列的逆序数时有着重要的应用。
康托展开可以将一个排列映射为一个唯一的自然数,从而实现排列的编码和解码。
通过以上介绍,我们可以看到计数原理在概率论和组合数学中有着广泛的应用。
掌握好计数原理的公式和定理,可以帮助我们更好地理解概率和组合问题,提高解题的效率和准确性。
总之,计数原理是概率论中的重要内容,它通过对事件发生的次数进行计数,从而得出概率的方法。
在计数原理中,排列和组合是基本概念,而排列的计数公式、组合的计数公式、二项式定理、多项式定理和康托展开等公式和定理都是我们在解决概率和组合问题时的重要工具。
计数原理-二项式定理

二项式定理知识点1•二项式定理:(a b)n C :a n C ;a n 1b LC :a n r b r L C ;b n (n N ),2. 基本概念:① 二项式展开式:右边的多项式叫做(a b)n 的二项展开式。
② 二项式系数:展开式中各项的系数 C n r (r 0,1,2, ,n). ③ 项数:共(r 1)项,是关于a 与b 的齐次多项式④ 通项:展开式中的第 r 1项C :a n r b r 叫做二项式展开式的通项。
用 T r 1 C ;a n r b r 表示。
3. 注意关键点:①项数:展开式中总共有 (n 1)项。
② 顺序:注意正确选择 a ,b ,其顺序不能更改。
(a b)n 与(b a)n 是不同的。
③ 指数:a 的指数从n 逐项减到0,是降幕排列。
b 的指数从0逐项减到n ,是升幕排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数, 二项式系数依次是4. 常用的结论:④ 奇数项的系数和与偶数项的系数和:b 的系数 (包括二项式系数)。
C n , C n , C n ,, C n ,, C n-项的系数是a与令 a 1,b x, (1 x)n C 0 C :x C :x 2 L C ;x r L C ;x n (n N 令 a 1,b x, (1 x)n C 0 C ;x CnX 2 Lc ;x rLn n n(1) C nX (n5. 性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 kk 1• • • C n②二项式系数和:令 a b 1,则二项式系数的和为Cn c nCn c n LC : 2n,1变形式c n cL C ; LC : 2n③奇数项的二项式系数和 =偶数项的二项式系数和: 在二项式定理中,令 a 1,b 1,则 C° C 1 Cn C 31)n C ; (1 1)n从而得到:C0 CC :Cn rc n c ; L2r 1C n大值。
二项式定理知识点归纳总结

二项式定理知识点归纳总结一、二项式定理公式。
1. 二项式定理。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中n∈ N^*。
- 这里C_n^k=(n!)/(k!(n - k)!),叫做二项式系数。
例如(a + b)^2=a^2 +2ab+b^2,这里n = 2,当k = 0时,C_2^0a^2-0b^0=a^2;当k = 1时,C_2^1a^2 -1b^1=2ab;当k = 2时,C_2^2a^2-2b^2=b^2。
2. 二项展开式的通项公式。
- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k = 0,1,·s,n)。
例如在(x+2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。
当k = 2时,T_3=C_5^2x^5-22^2=10× x^3×4 = 40x^3。
二、二项式系数的性质。
1. 对称性。
- 与首末两端“等距离”的两个二项式系数相等,即C_n^k=C_n^n - k。
例如在(a + b)^6中,C_6^2=(6!)/(2!(6 - 2)!)=(6×5)/(2×1)=15,C_6^4=(6!)/(4!(6 -4)!)=(6×5)/(2×1)=15,所以C_6^2 = C_6^4。
2. 增减性与最大值。
- 当n是偶数时,中间一项(第(n)/(2)+1项)的二项式系数C_n^(n)/(2)取得最大值;当n是奇数时,中间两项(第(n + 1)/(2)项和第(n+3)/(2)项)的二项式系数C_n^(n - 1)/(2)=C_n^(n+1)/(2)相等且取得最大值。
- 二项式系数先增大后减小,其增减性由frac{C_n^k}{C_n^k - 1}=(n - k+1)/(k)来判断。
当(n - k + 1)/(k)>1,即k<(n + 1)/(2)时,二项式系数逐渐增大;当(n -k+1)/(k)<1,即k>(n + 1)/(2)时,二项式系数逐渐减小。
二项式定理知识点总结

二项式定理知识点总结一、二项式的定义:二项式是指两个数的和或差,可以用如下形式表示:(a+b)^n或(a-b)^n其中,a和b是常数,n是正整数,n称为指数。
二、二项式的展开:1.二项式定理(加法形式):(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-2)a^2b^(n-2)+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中,C(n,k)表示从n个不同元素中取出k个元素的组合数,也称为二项系数。
2.二项式定理(减法形式):(a-b)^n=C(n,0)a^nb^0-C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2-...+(-1)^(n-2)C(n,n-2)a^2b^(n-2)-(-1)^(n-1)C(n,n-1)a^1b^(n-1)+(-1)^nC(n,n)a^0b^n注意,在减法形式的展开中,减号和负号交替出现。
三、二项式的性质:1.二项式展开的项数为n+1个;2.二项式展开的项之和为2^n;3.二项式展开式中各项的指数和为n;4.二项式展开式中各项的系数为C(n,k)。
四、二项式系数的计算:使用组合数的性质可以计算二项系数:C(n,k)=n!/(k!*(n-k)!)其中,!表示阶乘。
五、二项式定理的应用:另外,二项式展开还可以用于解决数学中的各种问题,如排列组合、概率论、代数等等。
在组合数学中,二项式系数有很多应用,例如计算排列数、二项式系数的性质等。
六、帕斯卡三角形与二项式系数:帕斯卡三角形是由二项式系数构成的一种数列,其性质如下:1.三角形的第n行有n+1个数;2.三角形的边界数都是1;3.三角形的每个数等于它上方两个数之和;4.三角形的第n行第k个数等于C(n,k)。
通过帕斯卡三角形可以方便地计算二项系数,也可以获得二项式展开的各项系数。
综上所述,二项式定理是数学中的重要概念,它描述了二项式的展开形式,可以方便地计算逐项系数和整个展开式。
第一讲 计数原理、二项式定理

专题七概率与统计、推理与证明、算法初步、框图、复数第一讲计数原理、二项式定理1.分类加法计数原理.完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法;那么完成这件事共有N=m1+m2+m3+…+m n 种不同的方法.2.分步乘法计数原理.完成一件事需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N= m1×m2× m3× …×m n种不同的方法.1.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(阶乘形式).2.组合数公式:C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(阶乘形式).1.二项式定理.(1)定理:(a+b)n C0n a n+C1n a n-1b1+…+C k n a n-k b k+…+C n nb n(n∈N*,k=0,1,…,n).(2)通项与二项式系数.二项展开式的通项为T k+1=C k n a n-k b k,其中C k n(k=0,1,2,…,n)叫做二项式系数.2.二项式系数的性质.(1)对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C0n=C n n,C1n=C n-1n ,C2n=C n-2n,…,C r n=C n-rn.判断下面结论是否正确(请在括号中打“√”或“×”).(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)C k n a n-k b k是二项展开式的第k项.(×)(4)二项展开式中,系数最大的项为中间一项或中间两项.(×)(5)(a+b)n的展开式中某一项的二项式系数与a,b无关.(√)1.(2014·全国大纲卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(C) A.60种B.70种C.75种D.150种解析:由已知可得不同的选法共有C26C15=75.故选C.2.对于小于55的自然数n,积(55-n)(56-n)·…·(68-n)·(69-n)等于(B)A.A55-n69-nB.A1569-n C.A1555-n D.A1469-n3.(2015·广东卷)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1_560条毕业留言.(用数字作答)解析:A240=40×39=1 560.4.(2015·广东卷)在(x-1)4的展开式中,x的系数为6.解析:T r+1=C r4·(x)4-r·(-1)r.令r=2,则C24(-1)2=6.一、选择题1.把6名学生分配到3个校门值日,其中前门3人,侧门2人,后门1人,则不同的分配方案共有(A)A.C36C23种B.3C36C23种C.C36C23A33种 D.C36C23 A33种解析:分三步完成分配方案:第一步,从6人中选3人到前门值日,有C36种方法;第二步,从剩下的3人中选2人到侧门值日,有C23种方法;第三步,把剩下的1人派到后门值日,有1种方法.由乘法计数原理,不同的分配方案有C36C23种.2.(2014·辽宁卷)6把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为(D)A.144 B.120 C.72 D .24解析:将6把椅子依次编号为1,2,3,4,5,6,故任何两人不相邻的坐法,可安排:“1,3,5”;“1,3,6”;“1,4,6”;“2,4,6”号位置坐人,故总数由4A33=24.故选D.3.(2015·陕西卷)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=(C)A.4 B.5 C.6 D.7解析:(x+1)n=(1+x)n,(1+x)n的通项为T r+1=C r n x r,令r=2,则C2n=15,即n(n-1)=30.又n>0,得n=6.4.在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是(A)A.-15 B.85C.-120 D.274解析:从四个括号中取x,剩下的括号里取常数项,得到x4的系数,故x4的系数是(-1)+(-2)+(-3)+(-4)+(-5)=-15.5.若多项式x2+x10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a9等于(D)A.9 B.10C.-9 D.-10解析:根据等式左边x10的系数为1,易知a10=1,等式右边x9的系数为a9+a10C110=10+a9,等式左边x9的系数为0,故10+a9=0,所以a9=-10.6.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有(B) A.50种B.49种C.48种D.47种解析:对A中最大的数进行分类讨论:①若集合A中最大的数为1,则B的选择方法有C14+C24+C34+C44=15种;②若集合A中最大数为2,则B的选择方法有C13+C23+C33=7种;而A有2种选法,故共有14种;③若集合A中最大数为3,则B的选择方法有C12+C22=3种,而A有4种选法,故共有12种;④若集合A中最大数为4,则B的选择方法有1种,而A有8种选法,如下:4;1,4;2,4;3,4;1,2,4;1,3,4;2,3,4;1,2,3,4.故共有8种.所以一共有15+14+12+8=49种不同的选法.二、填空题7.(2015·新课标Ⅱ卷)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.解析:设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,得(a+1)×24=a0+a1+a2+a3+a4+a5.①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②,得16(a+1)=2(a1+a3+a5)=2×32,∴a=3.8.(2014·浙江卷)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).三、解答题9.有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.(1)共有几种放法?(2)恰有一个盒不放球,共有几种放法?(3)恰有一个盒放两个球,共有几种放法?(4)恰有两个盒不放球,共有几种放法?解析:(1)一个球一个球地放到盒子里,每个球都可有4种独立的放法.由分步计数原理,放法共有44=256种.(2)为保证“恰有一个盒子不放球”,先从4个盒子中任意拿出去1个;将4个球分为2,1,1三组,有C 24种分法;然后再从三个盒子中选一个放两个球,其余两个各放一个球,两个盒子全排列即可.由分步计数原理,共有C 14·C 24·C 13·A 22=144种放法.(3)“恰有一个盒内有2个球”,即另外的三个盒子共放2个球,每个盒子至多放1个球,即另外三个盒子中恰有一个空盒,因此,“恰有一个盒内有2个球”与“恰有一个盒子不放球”是一回事,故也有144种放法.(4)先从四个盒子中任意拿走两个,问题转化为:“4个球,两个盒子,每个盒子必放球,有几种放法?”从放球数目看,可分为3,1和2,2两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有C 34C 12种放法;第二类:有C 24种放法.因此共有C 34C 12+C 24=14种.由分步计数原理得“恰有两个盒内不放球”的放法有:14C 24=84种.10.已知(a +1)n展开式中的各项系数之和等于⎝⎛⎭⎪⎫165x 2+1x 5展开式的常数项,而(a +1)n 展开式中的二项式系数最大的项等于54,求a 的值.解析:⎝ ⎛⎭⎪⎫165x 2+1x 5的展开式的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫165x 25-r ·⎝ ⎛⎭⎪⎫1x r =⎝ ⎛⎭⎪⎫1655-r C r5x 20-5r 2,令20-5r 2=0,得r =4,∴常数项为T 5=C 45·165=16.又∵(a+1)n的展开式的各项系数之和等于2n.∴2n=16,∴n=4.由二项式系数的性质知,(a+1)4展开式中二项式系数最大的项是中间项即第3项,T3=C24a2=54,解得a=±3.。
第十一篇 计数原理第3讲 二项式定理

第3讲 二项式定理【2013年高考会这样考】1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.【复习指导】二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用.基础梳理1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n an -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式.其中的系数C r n (r =0,1,…,n )叫二项式系数.式中的C r n an -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即C r n =C n -r n .(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n是偶数时,中间一项C n2n取得最大值;当n是奇数时,中间两项C n-12n,Cn+12取得最大值.(3)各二项式系数和:C0n+C1n+C2n+…+C r n+…+C n n=2n;C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.一个防范运用二项式定理一定要牢记通项T r+1=C r n a n-r b r,注意(a+b)n与(b+a)n虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n,而后者是字母外的部分.前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续.两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等.三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和;以上性质可通过观察杨辉三角进行归纳总结.双基自测1.(2011·福建)(1+2x)5的展开式中,x2的系数等于().A.80 B.40 C.20 D.10解析T r+1=C r5(2x)r=2r C r5x r,当r=2时,T3=40x2.答案 B2.若(1+2)5=a+2(a,b为有理数),则a+b=().A.45 B.55 C.70 D.80解析(1+2)5=1+2+10(2)2+10(2)3+5(2)4+(2)5=41+29 2由已知条件a=41,b=29,则a+b=70.答案 C3.(人教A版教材习题改编)若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为().A.9 B.8 C.7 D.6解析令x=1,则a0+a1+a2+a3+a4=0令x=-1,则a0-a1+a2-a3+a4=16∴a0+a2+a4=8.答案 B4.(2011·重庆)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=().A.6 B.7 C.8 D.9解析T r+1=C r n(3x)r=3r C r n x r由已知条件35C5n=36C6n即C5n=3C6nn!5!(n-5)!=3n!6!(n-6)!整理得n=7答案 B5.(2011·安徽)设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________. 解析T r+1=C r21x21-r(-1)r=(-1)r C r21x21-r由题意知a10,a11分别是含x10和x11项的系数,所以a10=-C1121,a11=C1021,∴a10+a11=C1021-C1121=0.答案0考向一二项展开式中的特定项或特定项的系数【例1】►已知在⎝ ⎛⎭⎪⎪⎫3x -33x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.[审题视点] 准确记住二项展开式的通项公式是解此类题的关键.解 通项公式为T r +1=C r n x n -r 3(-3)r x -r 3=(-3)r C r n x n -2r 3. (1)∵第6项为常数项, ∴r =5时,有n -2r 3=0,解得n =10. (2)令n -2r 32,得r =12(n -6)=2, ∴x 2的项的系数为C 210(-3)2=405.(3)由题意知⎩⎪⎨⎪⎧ 10-2r 3∈Z ,0≤r ≤10,r ∈Z .令10-2r 3=k (k ∈Z ),则10-2r =3k ,即r =5-32k ,∵r ∈Z ,∴k 应为偶数,∴k =2,0,-2,即r =2,5,8.∴第3项,第6项,第9项为有理项,它们分别为405x 2,-61 236,295 245x -2.求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.【训练1】 (2011·山东)若⎝ ⎛⎭⎪⎫x -a x 26展开式的常数项为60,则常数a 的值为________. 解析 二项式⎝ ⎛⎭⎪⎫x -a x26展开式的通项公式是T r +1=C r 6x 6-r (-a )r x -2r =C r 6x 6-3r (-a )r ,当r =2时,T r +1为常数项,即常数项是C 26a ,根据已知C 26a =60,解得a =4.答案 4考向二 二项式定理中的赋值【例2】►二项式(2x -3y )9的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和.[审题视点] 此类问题要仔细观察,对二项式中的变量正确赋值.解 设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9.(1)二项式系数之和为C 09+C19+C 29+…+C 99=29.(2)各项系数之和为a 0+a 1+a 2+…+a 9=(2-3)9=-1(3)由(2)知a 0+a 1+a 2+…+a 9=-1,令x =1,y =-1,得a 0-a 1+a 2-…-a 9=59,将两式相加,得a 0+a 2+a 4+a 6+a 8=59-12,即为所有奇数项系数之和.二项式定理给出的是一个恒等式,对a ,b 赋予一些特定的值,是解决二项式问题的一种重要思想方法.赋值法是从函数的角度来应用二项式定理,即函数f (a ,b )=(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n .对a ,b 赋予一定的值,就能得到一个等式.【训练2】 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093. (4)∵(1-2x )7展开式中,a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.考向三 二项式的和与积【例3】►(1+2x )3(1-x )4展开式中x 项的系数为________.[审题视点] 求多个二项式积的某项系数,要会转化成二项式定理的形式.解析 (1+2x )3(1-x )4展开式中的x 项的系数为两个因式相乘而得到,即第一个因式的常数项和一次项分别乘以第二个因式的一次项与常数项,它为C 03(2x )0·C 14(-x )1+C 13(2x )1·C 0414(-x )0,其系数为C03·C 14(-1)+C 13·2=-4+6=2. 答案 2对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.二项式定理研究两项和的展开式,对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解.【训练3】 (2011·广东)x ⎝ ⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是________(用数字作答). 解析 原问题等价于求⎝ ⎛⎭⎪⎫x -2x 7的展开式中x 3的系数,⎝ ⎛⎭⎪⎫x -2x 7的通项T r +1=C r 7x 7-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 7x 7-2r ,令7-2r =3得r =2,∴x 3的系数为(-2)2C 27=84,即x ⎝ ⎛⎭⎪⎫x -2x 7的展开式中x 4的系数为84. 答案 84难点突破23——排列组合在二项展开式中的应用(a +b )n 展开式可以由次数、项数和系数来确定.(1)次数的确定从n 个相同的a +b 中各取一个(a 或b )乘起来,可以构成展开式中的一项,展开式中项的形式是ma p b q ,其中p ∈N ,q ∈N ,p +q =n .(2)项数的确定满足条件p +q =n ,p ∈N ,q ∈N 的(p ,q )共n +1组.即将(a +b )n 展开共2n 项,合并同类项后共n +1项.(3)系数的确定展开式中含a p b q (p +q =n )项的系数为C q n (即p 个a ,q 个b 的排列数)因此(a +b )n 展开式中的通项是T r+1=C r n a n-r b r(r=0,1,2,…,n)(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C n n b n这种方法比数学归纳法推导二项式定理更具一般性和创造性,不仅可二项展开,也可三项展开,四项展开等.【示例】►若多项式x3+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=().A.9 B.10 C.-9 D.-10。
计数原理及二项式定理概念公式总结

计数原理及二项式定理概念公式总结计数原理和二项式定理是组合数学中的基本概念之一,被广泛应用于概率统计、离散数学、组合数学等领域。
下面将对这两个概念进行详细的解释和总结。
一、计数原理计数原理是组合数学中的一种基本原理,用于求解离散数学中的计数问题。
计数原理包括基本计数原理、乘法原理、加法原理和排列组合原理。
1.基本计数原理:基本计数原理是运用数学归纳法来解决计数问题的基本方法。
它的核心思想是将一个计数问题分解为若干个互相独立的子问题,再对子问题求解,最后将子问题的解累加得到原问题的解。
2.乘法原理:乘法原理是计数原理的一种特殊形式,用于解决多阶段决策类计数问题。
乘法原理的关键是将决策问题分解为多个阶段的决策子问题,然后通过求解每个子问题在相应阶段的可选项个数,再将各阶段的可选项个数相乘得到问题的解。
3.加法原理:加法原理是计数原理的另一种特殊形式,适用于解决分情况计数问题。
加法原理的核心思想是将计数问题分解为若干个情况,然后分别计算每种情况下的计数结果,最后将各种情况下计数结果相加得到问题的解。
4.排列组合原理:排列组合原理是计数原理的核心概念,描述了从给定元素集合中选取若干元素进行排列或组合的方法。
排列组合分为无重复元素的排列组合和有重复元素的排列组合两种情况。
-无重复元素的排列组合:若从n个不同元素中选取r个元素进行排列,称为排列数,用符号P(n,r)表示,排列数的计算公式为P(n,r)=n*(n-1)*...*(n-r+1)=n!/(n-r)。
若从n个不同元素中选取r个元素进行组合,称为组合数,用符号C(n,r)表示,组合数的计算公式为C(n,r)=P(n,r)/r!=n!/(r!*(n-r)。
-有重复元素的排列组合:若从n个相同元素中选取r个元素进行排列,称为重复排列,用符号P(n;r₁,r₂,...,r_k)表示,重复排列的计算公式为P(n;r₁,r₂,...,r_k)=n!/(r₁!*r₂!*...*r_k!),其中r₁,r₂,...,r_k分别表示重复元素的个数。
排列组合二项式定理

3 C 3 C 3 C 3C 1024
4 6 10 3 7 10 2 8 10 9 10
⑶求证: 3 2
n
n 1
(n 2)(n N , n 2)
例、 从6个学校中选出30名学生参加数学竞赛,每 校至少有1人,这样有几种选法?
分析:问题相当于把个30相同球放入6个不同盒子(盒 子不能空的)有几种放法?这类问题可用“隔板法”处 5 理. C29 4095 解:采用“隔板法” 得:
混合问题,先“组”后“排”
例:对某种产品的6件不同的正品和4件不同的次品, 一一进行测试,至区分出所有次品为止,若所有次 品恰好在第5次测试时全部发现,则这样的测试方法 有种可能? 解:由题意知前5次测试恰有4次测到次品,且第5 次测试是次品。故有: 3C 1 A4 576 种可能。 C
1.3:二项式定理
奇数项二项式系数和 偶数项二项式系数和: C C C C C C 2
0 n 2 n 4 n 1 n 3 n 5 n n 1
赋值法
x 2 5 1.求: ( ) 的有理项 2 x
4 3 2 ( 2.化简:x 1) 4( x 1) 6( x 1) 4( x 1) 1
A 6(种)
3 3
涂色问题
例3:如图,要给地图A、B、C、D四个区域 分别涂上3种不同颜色中的某一种,允许同一种 颜色使用多次,但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
若用2色、4色、5色 等,结果又怎样呢?
1.3:二项式定理
1、二项定理: 一般地,对于n N*有
计数原理

计数原理一、公式:1、计数公式表:①分类计数:N=m 1+m 2+m 3+......+m n②分步计数:N=m 1.m 2m 3......m n③全排列列:n n A =n!;④排列数公式:⑤2、组合数的性质:(10=n C )③④⑤ ()()()⎪⎩⎪⎨⎧=±是偶数是奇数n C n C x n n n n n C ,max 2213、二项式定理(1)二项式展开公式:(a+b)n =Cn0a n +Cn 1a n-1b+…+Cn k a n-kb k +…+Cn n b n ;(2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=Cn k a n-k b k二、常规题型:1、5名运动员参加军事三项赛,射击、游泳、越野长跑,各设一名冠军,三项冠军获得者的结果有多 少种?2、3枚1分硬币,6枚1角硬币,4张10元 纸币,共有多少种零币值(无重复)3、8人排对照象,按如下要求各有多少种排法:1121...++++=++++m n m n m m m m m m C C C C C(1)甲、乙、丙三人必须相邻,丁、戊两人不相邻;(2)甲、乙、两人必站中间,丙、丁两人不站两端;(3)甲不在左端且不在乙且不在乙的右侧任何位置;(4)8个人中4男4女做到同性别不相邻;(5)8个人中3个大人,5个小孩,要求每个大人右边相邻的必是小孩;(6)甲、乙两人中甲不在左端,乙不在右端;4、有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种 B.70种C.75种 D.150种5、用0,1,2,3,4,5,6,7,8,9这十个数字组成无重复数字的自然数(1)可组成多少个四位偶数;(2)可组成多少个被25整除的四位数;(3)将组成的所有四位数按从大到小排列,第1010个数是哪个四位数6、用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数()A、144B、120C、96D、727、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言。
计数原理与二项式定理

计数原理与二项式定理一、计数原理计数原理是数学中的一种基本方法,用于计算事件发生的可能性和计数问题。
这一原理主要包括排列、组合和分配原理。
1.排列原理排列是指在一组元素中取出若干个元素按照一定顺序排列的方法。
排列原理是指,对于一个有n个元素的集合,从中取出m个元素进行排列时,可以得到的不同排列数为:P(n,m)=n!/(n-m)!其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*…*3*2*12.组合原理组合是指在一组元素中取出若干个元素,不考虑顺序的方法。
组合原理是指,对于一个有n个元素的集合,从中取出m个元素进行组合时,可以得到的不同组合数为:C(n,m)=n!/(m!(n-m)!)3.分配原理分配原理是指,将n个物体分配给r个不同的盒子中去,每个盒子中可以有0个或多个物体,要求所有物体都要分完的方法。
分配原理可以用斯特林数或简单的计算方法得到。
二项式定理是数学中的一个重要定理,描述了一个二项式的乘积的展开式。
具体表述如下:对于任意实数a和b,以及正整数n,有以下的等式成立:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+…+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中C(n,m)表示从n个元素中取出m个元素的组合数。
二项式定理的展开式被称为二项式展开式,展开后的每一项被称为二项式系数,可以由组合数的形式表示。
二项式定理的表述非常简洁,但具有广泛的应用。
它可以用于计算多项式的幂、二项式系数的求解、概率论等多个领域。
总结:计数原理是一种重要的数学方法,用于解决计数问题。
它包括排列原理、组合原理和分配原理。
排列原理用于计算在有限集合中从中取出若干元素进行排列的不同可能性。
组合原理用于计算在有限集合中从中取出若干元素进行组合的不同可能性。
分配原理用于将若干物体分配给一组盒子中,每个盒子可以为空或包含多个物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)排列数公式:
或
= = =n(n-1)!规定0!=1
5.组合:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
(1)组合数:从 个不同元素中取出 个元素的所有组合的个数,用 表示
(2)增减性与最大值:当 时,二项式系数逐渐增大,由对称性知它的后半部分是逐渐减小的,且在中间取得最大值。
当 是偶数时,在中间一项 取得最大值;
当 是奇数时,在中间两项 , 取得最大值.
9.各二项式Βιβλιοθήκη 数和:(1)(2)
10.各项系数之和:(采用赋值法)
例:求 的各项系数之和
解:
令 ,则有 ,
故各项系数和为-1
(2)组合数公式: 或
(3)组合数的性质:
.规定: ; = + .
6.二项式定理及其特例:
(1)二项式定理
展开式共有n+1项,其中各项的系数 叫做二项式系数。
(2)特例: .
7.二项展开式的通项公式: (为展开式的第r+1项)
8.二项式系数的性质:
(1)对称性:在 展开式中,与首末两端“等距”的两个二项式系数相等即 ,直线 是图象的对称轴.
排列组合及二项式定理概念及公式总结
1.分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有 种不同的方法,在第二类办法中有 种不同的方法,……,在第n类办法中有 种不同的方法 那么完成这件事共有N=m1+m2+……+mn种不同的方法
2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事有N=m1×m2×……mn种不同的方法
分类要做到“不重不漏”,分步要做到“步骤完整”
3.两个计数原理的区别:
如果完成一件事,有n类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.
4.排列:从n个不同的元素中取出m个(m≤n)元素并按一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.