最新初中数学反比例函数单元检测

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学反比例函数单元检测

一、选择题

1.如图,过反比例函数()0k y x x

=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )

A .2

B .3

C .4

D .5

【答案】C

【解析】

【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号. 【详解】

解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆=

= 又因图象过第一象限, 122

AOB S k ∆=

=,解得4k = 故选C

【点睛】

本题考查了反比例函数系数k 的几何意义.

2.如图,是反比例函数3y x =和7y x

=-在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点,A B ,点P 在x 轴上.则点P 从左到右的运动过程中,APB △的面积是( )

A .10

B .4

C .5

D .从小变大再变小

【答案】C

【解析】

【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解.

【详解】

连接AO 、BO ,设AB 与y 轴交于点C .

∵AB ∥x 轴,

∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522

ABO BOC AOC S S S -=+=

+=V V V , ∴APB △的面积是:5.

故选C .

【点睛】

本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.

3.如图, 在同一坐标系中(水平方向是x轴),函数

k

y

x

=和3

y kx

=+的图象大致是

()

A.B.

C.

D.

【答案】A

【解析】

【分析】

根据一次函数及反比例函数的图象与系数的关系作答.【详解】

解:A、由函数y=k

x

的图象可知k>0与y=kx+3的图象k>0一致,正确;

B、由函数y=k

x

的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;

C、由函数y=k

x

的图象可知k<0与y=kx+3的图象k<0矛盾,错误;

D、由函数y=k

x

的图象可知k>0与y=kx+3的图象k<0矛盾,错误.

故选A.【点睛】

本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.

4.如图,在平面直角坐标系中,点A 是函数()0k y x x

=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x

=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )

A .不变

B .逐渐变大

C .逐渐变小

D .先变大后变小

【答案】A

【解析】

【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -.

【详解】 ∵点A 是函数(0k y x x =

>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,

∴矩形ACOB 的面积为k ,

∵点E 、F 在函数1y x =

的图象上, ∴BOE S V COF S =V 12

=, ∴四边形OFAE 的面积11122k k =-

-=-, 故四边形OFAE 的面积为定值1k -,保持不变,

故选:A .

【点睛】

本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.

5.在平面直角坐标系中,分别过点(),0A m ,()2,0B m

﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x = 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交

B .当m =1时,两条直线与双曲线的交点到原点的距离相等

C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧

D .当两直线与双曲线都有交点时,这两交点的最短距离是2

【答案】D

【解析】

【分析】

根据题意给定m 特定值、非特定值分别进行讨论即可得.

【详解】

当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,

当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;

当m 1=时,两交点分别是(1,3),(3,1),到原点的距离都是10,所以B 正确,不符合题意;

当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;

两交点分别是33m (m 2m m 2++,和,),两交点的距离是()2364m m 2+⎡⎤+⎣⎦

,当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意,

故选D.

【点睛】

本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.

6.如图,点A 是反比例函数y =k x

(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )

A .8

B .﹣8

C .4

D .﹣4

【答案】B

相关文档
最新文档