数列与不等式的综合-高中数学知识点讲解

合集下载

[高一数学]不等式知识点归纳与总结

[高一数学]不等式知识点归纳与总结

授课教案教学标题 期末复习(三) 教学目标 1 、不等式知识点归纳与总结 教学重难点重点:不等式基础知识点的熟练掌握难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习1 等差数列(1)性质:a n =an+b ,即a n 是n 的一次性函数,系数a 为等差数列的公差;(2) 等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 即S n 是n 的不含常数项的二次函数;若{a n },{b n }均为等差数列,则{a n ±n n },{∑=k1i ka},{ka n +c}(k ,c 为常数)均为等差数列;当m+n=p+q 时,a m +a n =a p +a q ,特例:a 1+a n =a 2+a n-1=a 3+a n-2=…;当2n=p+q 时,2a n =a p +a q ; ① 等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ② 若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;()n m a a n m d =+-q a a n n 1-=;m n m n q a a -= 通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(*,,0n k N n k ∈>>))0( k n k n k n k n a a a a G +-+-±=(*,,0n k N n k ∈>>)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≠--=--==)1(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1-=n n S S 偶奇 (4)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nna .2 等比数列 (1)性质当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2=a p a q ,数列{ka n },{∑=k1i ia}成等比数列。

高中数学数列知识点归纳

高中数学数列知识点归纳

高中数学数列知识点归纳在高中数学的学习中,数列是一个非常重要的知识点,它不仅在数学学科中有着广泛的应用,也是高考中的重点考查内容。

为了帮助同学们更好地掌握数列这一板块,下面将对高中数学数列的相关知识点进行详细归纳。

一、数列的概念数列是按照一定顺序排列的一列数。

例如:1,3,5,7,9 就是一个数列。

数列中的每一个数称为数列的项,排在第一位的数称为首项,记为\(a_1\),第\(n\)个数称为第\(n\)项,记为\(a_n\)。

数列可以用通项公式来表示,通项公式是一个用\(n\)表示\(a_n\)的式子。

例如,数列 1,3,5,7,9 的通项公式为\(a_n = 2n 1\)。

二、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

这个常数称为等差数列的公差,通常用\(d\)表示。

2、通项公式\(a_n = a_1 +(n 1)d\),其中\(a_1\)为首项,\(d\)为公差。

3、前\(n\)项和公式\(S_n =\frac{n(a_1 + a_n)}{2} = na_1 +\frac{n(n 1)d}{2}\)4、性质(1)若\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。

(2)\(a_n\)是关于\(n\)的一次函数,\(S_n\)是关于\(n\)的二次函数且常数项为 0 。

三、等比数列1、定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数称为等比数列的公比,通常用\(q\)表示(\(q ≠ 0\))。

2、通项公式\(a_n = a_1q^{n 1}\)。

3、前\(n\)项和公式当\(q = 1\)时,\(S_n = na_1\);当\(q ≠ 1\)时,\(S_n =\frac{a_1(1 q^n)}{1 q}\)。

4、性质(1)若\(m + n = p + q\),则\(a_m × a_n = a_p × a_q\)。

高一数列和不等式知识点

高一数列和不等式知识点

高一数学数列知识总结一、看数列是不是等差数列有以下三种方法:①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法:①)0,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值.在解含绝对值的数列最值问题时,注意转化思想的应用。

四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S . 总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示.题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----② 1122332211a a a a a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法: ①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a . 例4已知数列{}n a 中,n n n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为:“q pa a n n +=+1”或“n n n n f a a )(1+=+求解. 例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式.小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。

高中数学数列、解三角形、不等式综合复习

高中数学数列、解三角形、不等式综合复习

本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。

在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。

考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。

(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。

(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。

分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。

通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。

再对m取特值验证。

也可利用二次函数的图像解决。

(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。

或取特值验证。

(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。

解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。

(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。

故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。

首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。

(4)由方程得:-(4+a)=.故此命题错误。

考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。

高三数列不等式知识点总结

高三数列不等式知识点总结

高三数列不等式知识点总结数列不等式是数学中的重要概念,也是高中数学中的一个重要知识点。

在高三数学学习中,数列不等式常常作为数列章节的延伸和拓展,对于学生来说是一个较为复杂的内容。

下面将从不等式基本概念、解不等式的方法以及解决实际问题等几个方面对高三数列不等式进行总结。

一、不等式基本概念1. 不等式的定义:不等式是表示两个数之间的大小关系的数学式子,其形式通常为a < b、a ≤ b、a > b、a ≥ b等。

2. 不等式的性质:不等式具有传递性、对称性、加法性和乘法性等性质。

学生需要熟练掌握这些性质,以便在解不等式时能够合理运用。

二、解不等式的方法1. 穷举法:对于一些简单的不等式,可以通过列举出数值的方式来得到不等式的解集。

2. 图像法:对于一些简单的不等式,可以用数轴上的点来表示不等式中的数,通过观察数轴上的点的位置关系,判断不等式的解集。

3. 对称性法:当不等式中含有绝对值符号时,可以利用对称性来求解不等式。

4. 区间法:对于一些复杂的不等式,可以利用区间的概念,将数轴分为若干段,然后通过每个区间上符号的变化情况来求解不等式。

5. 函数法:通过对不等式进行等价变形,转化为函数的性质,然后利用函数的性质来解不等式。

三、解决实际问题1. 关于数列的不等式问题:在数列中常常会出现一些不等式问题,例如求数列的最大值、最小值、数列元素的范围等,这些问题都可以通过对数列不等式的分析和求解来得到答案。

2. 关于应用问题的不等式问题:不等式在实际生活中有着广泛的应用。

例如金融领域中的利润和损失、生活中的成本问题等,都可以通过建立不等式模型来解决。

3. 关于优化问题的不等式问题:在一些最优化问题中,不等式常常作为约束条件来限制优化问题的解集,通过解不等式可以得到最优解。

综上所述,高三数列不等式作为数列章节的重要延伸内容,对于学生来说是一项重要且复杂的知识点。

学生需要充分了解不等式的基本概念、掌握解不等式的方法以及能够应用不等式解决实际问题。

高中数列数学知识点

高中数列数学知识点

高中数列数学知识点一、知识概述《高中数列数学知识点》①基本定义:数列呢,简单说就是按照一定次序排列的一列数。

就好比你们班同学按学号排好队,每个同学就像数列里的一个数。

②重要程度:数列在高中数学里那可相当重要。

它可是函数关系的离散体现,在高考中是必考内容,而且是很多数学思想方法的载体,像归纳推理啥的。

③前置知识:你得对函数有一定了解,因为数列可以看作是定义域为正整数集的函数。

还有数的运算需要很熟练,毕竟数列中涉及不少数与数之间的运算。

④应用价值:在实际生活中,像银行算利息这种按一定周期计算收益的就涉及数列知识。

再比如说,计算一些有规律的资源分配或者物体堆积层数等问题也能用得上。

二、知识体系①知识图谱:数列在高中数学知识体系里处于代数部分一个很关键的位置。

它和函数、方程等知识点都有所关联。

②关联知识:数列和函数密切相关,我们可以用函数的观点去研究数列的性质。

和不等式的联系也很紧密,经常会遇到求数列中的最值问题。

③重难点分析:- 重点是数列的通项公式和求和公式。

通项公式就像数列这个队伍里每个成员的编号规则,能根据规则找到对应的成员。

求和公式呢,就是把这个队伍里的数加起来的方法。

- 难点我觉得是根据数列的规律求出通项公式和一些特殊数列求和的方法。

④考点分析:数列在考试中那肯定是重点中的重点。

从小题到解答题都有可能出现。

考查方式有求数列通项公式、求和,或者是结合函数、不等式考察数列的性质等。

三、详细讲解【理论概念类】①概念辨析:- 数列分为有穷数列和无穷数列。

有穷数列就是这个队伍人数是有限的,无穷数列就是人数无限。

- 等差数列就是后一个数减去前一个数差都相等,这个相等的差叫公差。

打个比方,就像我们上楼梯,每个台阶高度一样,那这个高度就相当于公差。

调和数列和等比数列也类似。

等比数列是后一个数除以前一个数比值都相等,这个比值为这个等比数列的公比。

②特征分析:- 等差数列特点就是相邻两项差固定。

比如数列1,3,5,7,9,相邻两项差都是2。

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。

高中数学数列与不等式(解析版)

高中数学数列与不等式(解析版)

数列与不等式在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以数列极限和等差等比数列为主,大题考察位置21题,题型可以是多条件选择的开放式的题型。

由于三角函数与数列属于解答题第二题或第五题的位置,三角函数考查的内容相对比较简单,这一部分属于必得分。

数列大题属于压轴题难度较高。

对于小题部分,一般分布为一题简单题一道中等难度题目。

对于不等式主要考察不等式性质和基本不等式和线性规划。

基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。

专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。

请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。

【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。

2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。

3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。

4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。

【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:120分钟)1.(2020•上海卷)已知2230x yyx y+≥⎧⎪≥⎨⎪+-≤⎩,则2z y x=-的最大值为【答案】-12.(2020•上海卷)下列不等式恒成立的是()A 、222a b ab +≤B 、22-2a b ab +≥C 、2a b ab +≥-D 、2a b ab +≤【答案】B3.(2020•上海卷)已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【答案】2784.(2020·上海大学附属中学高三三模)已知O 是正三角形ABC 内部的一点,230OA OB OC ++=,则OAC ∆的面积与OAB ∆的面积之比是A .32B .23C .2D .1【答案】B试题分析:如下图所示,D 、E 分别是BC 、AC 中点,由230OA OB OC ++=得()2OA OC OB OC +=-+即2OE OD =-,所以2OE OD =,设正三角形的边长为23a ,则OAC ∆底边AC 上的高为13AC h BE a ==,OAB ∆底边AB 上的高为1322AB h BE a ==,所以123221332322ACOACOABAB AC h S a a S AB h a a ∆∆⋅⨯===⋅⨯,故选B .考点:1.向量的几何运算;2.数乘向量的几何意义;3.三角形的面积. 5.(2020·上海高三二模)设12,z z 是复数,则下列命题中的假命题是() A .若120z z -=,则12z z = B .若12z z =,则12z z = C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =【答案】D试题分析:对(A ),若120z z -=,则12120,z z z z -==,所以为真;对(B )若12z z =,则1z 和2z 互为共轭复数,所以12z z =为真; 对(C )设111222,z a b z a i b i =+=+,若12=z z 22221122a b a b +=+,222211112222,z z a b z z a b ⋅=+⋅=+,所以1122z z z z ⋅=⋅为真;对(D )若121,z z i ==,则12=z z 为真,而22121,1z z ==-,所以2212z z =为假.故选D .考点:1.复数求模;2.命题的真假判断与应用.6.(2020·上海杨浦区·高三二模)设z 是复数,则“z 是虚数”是“3z 是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】B【分析】根据充分必要条件的定义及复数的概念进行判断.可取特例说明一个命题为假. 【详解】充分性:取132z =-+,故31z =是实数,故充分性不成立;必要性:假设z 是实数,则3z 也是实数,与3z 是虚数矛盾,∴z 是虚数,故必要性成立. 故选:B ..【点睛】本题考查充分必要条件的判断,考查复数的概念,属于基础题. 7.(2020·上海松江区·高三其他模拟)若复数z =52i-,则|z |=( ) A .1 B 5C .5D .5【答案】B【分析】利用复数的模的运算性质,化简为对复数2i -求模可得结果 【详解】|z |=5||2i -=5|2i|-5 故选:B.【点睛】此题考查的是求复数的模,属于基础题8.(2020·上海高三一模)设12,z z 为复数,则下列命题中一定成立的是( ) A .如果120z z ->,那么12z z >B .如果12=z z ,那么12=±z zC .如果121z z >,那么12z z > D .如果22120z z +=,那么12 0z z ==【答案】C【分析】根据复数定义,逐项判断,即可求得答案.【详解】对于A,取13z i =+,21z i =+时,120z z ->,即31i i +>+,但虚数不能比较大小, ,故A 错误; 对于B,由12=z z ,可得2222+=+a b c d ,不能得到12=±z z ,故B 错误;对于C ,因为121z z >,所以12z z >,故C 正确; 对于D ,取11z =,2z i =,满足22120z z +=,但是12 0z z ≠≠,故D 错误. 故选:C.【点睛】本题解题关键是掌握复数定义,在判断时可采用特殊值法检验,考查了分析能力,属于基础题. 9.(2020·上海高三二模)关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是( ) A .{}5 B .{}1- C .()0,1 D .(){}0,11-【答案】D【分析】根据条件分别设四个不同的解所对应的点为ABCD ,讨论根的判别式,根据圆的对称性得到相应判断.【详解】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B , 得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m , 故此圆的圆心为(﹣m ,0),半径122x x r -====,又圆心O 1到A 的距离O 1A =,解得m =﹣1,综上:m ∈(0,1)∪{﹣1}. 故选:D.【点睛】本题考查方程根的个数与坐标系内点坐标的对应,考查一元二次方程根的判别式,属于难题. 10.(2020·上海徐汇区·高三一模)已知x ∈R ,条件p :2x x <,条件q :11x>,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】分别求两个命题下的集合,再根据集合关系判断选项. 【详解】201x x x <⇔<<,则{}01A x x =<<,1101x x>⇔<<,则{}01B x x =<<,因为A B =, 所以p 是q 的充分必要条件. 故选:C11.(2020·上海市建平中学高三月考)数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线22322():16C x y x y =+为四叶玫瑰线,下列结论正确的有( )(1)方程22322()16x y x y +=(0xy <),表示的曲线在第二和第四象限; (2)曲线C 上任一点到坐标原点O 的距离都不超过2; (3)曲线C 构成的四叶玫瑰线面积大于4π;(4)曲线C 上有5个整点(横、纵坐标均为整数的点); A .(1)(2) B .(1)(2)(3) C .(1)(2)(4) D .(1)(3)(4)【答案】A【分析】因为0xy <,所以x 与y 异号,仅限与第二和四象限,从而判断(1).利用基本不等式222x y xy +即可判断(2);将以O 为圆心、2为半径的圆的面积与曲线C 围成区域的面积进行比较即可判断(3);先确定曲线C 经过点,再将x <y <(1,1),(1,2)和(2,1)逐一代入曲线C 的方程进行检验即可判断(4);【详解】对于(1),因为0xy <,所以x 与y 异号,仅限与第二和四象限,即(1)正确.对于(2),因为222(0,0)x yxy x y +>>,所以222x y xy +,所以22222322222()()16164()4x y x y x y x y ++=⨯=+, 所以224x y +,即(2)正确;对于(3),以O 为圆点,2为半径的圆O 的面积为4π,显然曲线C 围成的区域的面积小于圆O 的面积,即(3)错误;对于(4),只需要考虑曲线在第一象限内经过的整点即可,把(1,1),(1,2)和(2,1)代入曲线C 的方程验证可知,等号不成立,所以曲线C 在第一象限内不经过任何整点,再结合曲线的对称性可知,曲线C 只经过整点(0,0),即(4)错误; 故选:A.【点睛】本题考查曲线的轨迹方程,涉及特殊点代入法、均值不等式、圆的面积等知识点,有一定的综合性,考查学生灵活运用知识和方法的能力,属于中档题.12.(2020·上海市七宝中学高三其他模拟)已知F 为抛物线24y x =的焦点,A 、B 、C 为抛物线上三点,当0FA FB FC ++=时,则存在横坐标2x >的点A 、B 、C 有( ) A .0个 B .2个 C .有限个,但多于2个 D .无限多个【答案】A【分析】首先判断出F 为ABC 的重心,根据重心坐标公式可得2312313,x x x y y y +=-+=-,结合基本不等式可得出()2221232y y y ≤+,结合抛物线的定义化简得出12x ≤,同理得出232,2x x ≤≤,进而得出结果.【详解】设()()()112233,,,,,A x y B x y C x y ,先证12x ≤,由0FA FB FC ++=知,F 为ABC 的重心, 又131132(1,0),1,033x x x y y yF ++++∴==,2312313,x x x y y y ∴+=-+=-, ()()222222323232322y y y y y y y y ∴+=++≤+,()2221232y y y ∴≤+, 2223122444y y y ⎛⎫∴≤+ ⎪⎝⎭,()1232x x x ∴≤+,()1123x x ∴≤-12x ∴≤, 同理232,2x x ≤≤, 故选:A.【点睛】本题主要考查了抛物线的简单性质,基本不等式的应用,解本题的关键是判断出F 点为三角形的重心,属于中档题.13.(2020·上海杨浦区·高三二模)不等式102x x -≤-的解集为( ) A .[1,2] B .[1,2)C .(,1][2,)-∞⋃+∞D .(,1)(2,)-∞⋃+∞【答案】B【分析】把分式不等式转化为整式不等式求解.注意分母不为0.【详解】原不等式可化为(1)(2)020x x x --≤⎧⎨-≠⎩,解得12x ≤<.故选:B .【点睛】本题考查解分式不等式,解题方法是转化为整式不等式求解,转化时要注意分式的分母不为0. 14.(2020·上海市南洋模范中学高三期中)下列不等式恒成立的是( ) A .222a b ab +≤ B .222a b ab +≥-C .a b +≥-D .a b +≤【答案】B【分析】根据基本不等式即可判断选项A 是否正确,对选项B 化简可得()20a b +≥,由此即可判断B 是否正确;对选项C 、D 通过举例即可判断是否正确.【详解】A.由基本不等式可知222a b ab +≥,故A 不正确;B. 2222220a b ab a b ab +≥-⇒++≥,即()20a b +≥恒成立,故B 正确; C.当1,0a b =-=时,不等式不成立,故C 不正确;D.当3,1a b ==时,不等式不成立,故D 不正确. 故选:B.【点睛】本题主要考查了基本不等式的应用以及不等式大小的比较,属于基础题.15.(2020·上海崇明区·高三一模)设{}n a 为等比数列,则“对于任意的*2,m m m N a a +∈>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】对于任意的*2,m m m N a a +∈> ,即()210m a q >﹣.可得:2010m a q ⎧⎨-⎩>>,2010m a q ⎧⎨-⎩<<,任意的*m N ∈,解出即可判断出结论.【详解】解:对于任意的*2,m m m N a a +∈>,即()210m a q >﹣. ∴2010m a q ⎧⎨-⎩>>,2010m a q ⎧⎨-⎩<<,任意的*m N ∈, ∴01m a q ⎧⎨⎩>>,或001m a q ⎧⎨⎩<<<. ∴“{}n a 为递增数列”,反之也成立.∴“对于任意的*2,m m m N a a +∈>”是“{}n a 为递增数列”的充要条件.故选:C.【点睛】本题考查等比数列的单调性,充分必要条件,是基础题.16.(2020·上海高三其他模拟)已知数列{}n a 的前n 项和为n S ,则“()1n n a a n *+<∈N ”是“()11n n S S n n n *+<∈+N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【分析】先证明充分性,由条件1n n a a +<,可得121n n a a a na +++⋅⋅⋅+<,通过变形得到11n n S S n n +<+,再由条件11n n S S n n +<+,列举特殊数列,说明是否成立. 【详解】充分性:若1n n a a +<,则有121n n a a a na +++⋅⋅⋅+<,即()1n n n S n S S +<-,得()11n n n S nS ++<,于是有()11n n S S n n n *+<∈+N 成立,故充分性成立. 必要性:若()11n n S S n n n *+<∈+N 成立,取数列{}n a 为0,1,1,1,⋅⋅⋅,但推不出()1n n a a n *+<∈N ,故必要性不成立. 故选:A【点睛】本题考查判断充分不必要条件,数列的递推公式和前n 项和公式的综合应用,重点考查转化与化归的思想,逻辑推理能力,属于中档题型.17.(2020·上海交大附中高三其他模拟)已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且20,2,n n n n a S a a n >=+∈*N ,1121(2)(2)n n n n n n b a a +++=++,对任意的*,n n N k T ∈>恒成立,则k 的最小值是( ) A .13B .12C .16D .1【答案】A【分析】由22n n n S a a =+可得21112n n n S a a ---=+,两式相减整理后可知11n n a a --=,则{}n a 首项为1,公差为1的等差数列,从而可得n a n =,进而可以确定111221n n n b n n +=-+++,则可求出121111 (3213)n n n T b b b n +=+++=-<++,进而可求出k 的最小值. 【详解】解:因为22n n n S a a =+,所以当2,n n N *≥∈时,21112n n n S a a ---=+,两式相减得22112n n n n n a a a a a --=+-- ,整理得,()()1101n n n n a a a a --+--=,由0n a > 知, 10n n a a -+≠,从而110n n a a ---=,即当2,n n N *≥∈时,11n n a a --=,当1n =时,21112a a a =+,解得11a =或0(舍),则{}n a 首项为1,公差为1的等差数列,则()111n a n n =+-⨯=.所以112111(2)(21)221n n n n n n b n n n n +++==-++++++,则1211111111111 (366112213213)n n n n n T b b b n n n ++=+++=-+-++-=-<+++++,所以13k ≥.则k 的最小值是13. 故选:A【点睛】本题考查了由递推数列求数列通项公式,考查了等差数列的定义,考查了裂项相消法求数列的和.一般如果已知了,n n S a 的关系式,一般地代入11,1,2,n n n S n a S S n n N*-=⎧=⎨-≥∈⎩ 进行整理运算.求数列的和常见的方法有,公式法、分组求和法、错位相减法、裂项相消法等.18.(2020·上海大学附属中学高三三模)已知0a b >>,若12lim 25n n n nn a b a b ++→∞-=-,则( )A .25a =-B .5a =-C .25b =-D .5b =-【答案】D【分析】由0a b >>,可得01ab<<,将原式变形,利用数列极限的性质求解即可 【详解】因为0a b >>,且12lim 25n n n nn a b a b ++→∞-=-,所以01ab<<, 可得12limn n n nn a b a b ++→∞-=-2220lim 25011nn n a a b b b b a b →∞⎛⎫⋅- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭, 5b ∴=-,故选:D.【点睛】本题主要考查数列极限的性质与应用,属于基础题.19.(2020·上海市七宝中学高三其他模拟)如图,已知函数()y f x =与y x =的图象有唯一交点()1,1,无穷数列{}()*n a n N∈满足点()1,n n n P a a +()*n N ∈均落在()y f x =的图象上,已知()13,0P ,()20,2P ,有下列两个命题:(1)lim 1n n a →∞=;(2){}21n a -单调递减,{}2n a 单调递增;以下选项正确的是( )A .(1)是真命题,(2)是假命题B .两个都是真命题C .(1)是假命题,(2)是真命题D .两个都是假命题【答案】B【分析】根据函数()y f x =的图象和()11f =可得出n a 的取值范围,再根据函数()y f x =的单调性判断{}21n a -和{}2n a 的单调性,结合数列各项的取值范围和单调性可得数列的极限值.【详解】()1n n a f a +=,当01n a <<时,由图象可知,112n a +<<;当13n a <<时,101n a +<<.13a =,20a =,32a =,401a ∴<<,512a <<,601a <<,712a <<,,因为函数()y f x =在区间()0,3上单调递减,因为5302a a <<=,()()53f a f a ∴>,即64a a >,()()64f a f a <,即75a a <,()()75f a f a >,即86a a >,,以此类推,可得1357a a a a >>>>,数列{}21n a -单调递减,2468a a a a <<<<,数列{}2n a 单调递增,命题(2)正确;当2n ≥时,2112n a -<≤,201n a <<,且数列{}21n a -单调递减,{}2n a 单调递增,所以,lim 1n n a →∞=,命题(1)正确. 故选:B.【点睛】本题考查数列单调性的判断以及数列极限的求解,考查推理能力,属于难题. 二、填空题20.(2019·上海高考真题)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ⋅≤,则1F P 与2F Q 的夹角范围为____________【答案】1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【分析】通过坐标表示和121F P F P ⋅≤得到[]21,2y ∈;利用向量数量积运算得到所求向量夹角的余弦值为:222238cos 322y y y θ-==-+++;利用2y 的范围得到cos θ的范围,从而得到角的范围.【详解】由题意:()1F,)2F设(),P x y ,(),Q x y -,因为121F P F P ⋅≤,则2221x y -+≤ 与22142x y +=结合 224221y y ⇒--+≤,又y ⎡∈⎣ []21,2y ⇒∈(22221212cos F P F Q F P F Qθ⋅===⋅与22142x y +=结合,消去x ,可得:2222381cos 31,223y y y θ-⎡⎤==-+∈--⎢⎥++⎣⎦所以1arccos ,3θππ⎡⎤∈-⎢⎥⎣⎦本题正确结果:1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量坐标运算、向量夹角公式应用,关键在于能够通过坐标运算得到变量的取值范围,将问题转化为函数值域的求解.21.(2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】-3【分析】据题意可设E (0,a ),F (0,b ),从而得出|a ﹣b|=2,即a=b +2,或b=a +2,并可求得2AE BF ab ⋅=-+,将a=b +2带入上式即可求出AE BF ⋅的最小值,同理将b=a +2带入,也可求出AE BF ⋅的最小值. 【详解】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=; ∴a=b+2,或b=a +2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b +2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.【点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.22.(2020·上海高三三模)设点O 为ABC 的外心,且3A π=,若(),R AO AB AC αβαβ=+∈,则αβ+的最大值为_________. 【答案】23【分析】利用平面向量线性运算整理可得()1OA OB OC αβαβ+-=+,由此得到1αβ+<;由3A π=可求得cos BOC ∠,设外接圆半径为R ,将所得式子平方后整理可得()213αβαβ+=+,利用基本不等式构造不等关系,即可求得所求最大值. 【详解】()()AO AB AC OB OA OC OA αβαβ=+=-+-()1OA OB OC αβαβ∴+-=+ 10αβ∴+-<,即1αβ+<,1cos 2A =1cos cos 22BOC A ∴∠==-, 设ABC 外接圆半径为R ,则()22222222222212cos R R R R BOC R R R αβαβαβαβαβ+-=++∠=+-,整理可得:()()22321313124αβαβαβαβ+⎛⎫+=+≤+⨯=++ ⎪⎝⎭, 解得:23αβ+≤或2αβ+≥(舍),当且仅当13时,等号成立, αβ∴+的最大值为23.故答案为:23.【点睛】本题考查利用基本不等式求解最值的问题,关键是能够利用平面向量线性运算和平方运算将已知等式化为与外接圆半径有关的形式,进而消去外接圆半径得到变量之间的关系.23.(2020·上海高三一模)已知非零向量a 、b 、c 两两不平行,且()a b c //+,()//b a c +,设c xa yb =+,,x y ∈R ,则2x y +=______.【答案】- 3【分析】先根据向量共线把c 用a 和b 表示出来,再结合平面向量基本定理即可求解. 【详解】解:因为非零向量a 、b 、c 两两不平行,且()//a b c +,()//b a c +,(),0a m b c m ∴=+≠, 1c a b m∴=- (),0b n a c n ∴=+≠ 1c b a n∴=-1111m n ⎧=-⎪⎪∴⎨⎪-=⎪⎩,解得11m n =-⎧⎨=-⎩c xa yb =+1x y ∴==- 23x y ∴+=-故答案为:3-.【点睛】本题考查平面向量基本定理以及向量共线的合理运用.解题时要认真审题, 属于基础题.24.(2020·上海高三一模)已知向量1,22AB ⎛= ⎝⎭,31,22AC ⎛⎫= ⎪ ⎪⎝⎭,则BAC ∠=________. 【答案】6π【分析】利用平面向量数量积的坐标运算计算出AB 、AC 的夹角的余弦值,进而可求得BAC ∠的大小.【详解】由平面向量的数量积的坐标运算可得3442AB AC ⋅=+=,1AB AC ==, 3cos 2AB AC BAC AB AC⋅∴∠==⋅, 0BAC π≤∠≤,6BAC π∴∠=.故答案为:6π 【点评】本题考查了向量坐标的数量积运算,根据向量的坐标求向量长度的方法,向量夹角的余弦公式,考查了计算能力,属于基础题.25.(2020·上海崇明区·高三二模)在ABC 中,()()3cos ,cos ,cos ,sin AB x x AC x x ==,则ABC面积的最大值是____________ 【答案】34【分析】计算113sin 22624ABC S x π⎛⎫=--≤ ⎪⎝⎭△,得到答案.【详解】()22211sin ,1cos,2ABCS AB AC AB AC AB ACAB AC=⋅=⋅-△()22212AB AC AB AC=⋅-⋅=2113sin cos sin 22624x x x x π⎛⎫=-=--≤ ⎪⎝⎭, 当sin 216x π⎛⎫-=- ⎪⎝⎭时等号成立.此时262x ππ-=-,即6x π=-时,满足题意.故答案为:34.【点睛】本题考查了三角形面积的最值,向量运算,意在考查学生的计算能力和综合应用能力.26.(2020·上海高三其他模拟)已知ABC 的面积为1,点P 满足324AB BC CA AP ++=,则PBC 的面积等于__________. 【答案】12【分析】取BC 的中点D ,根据向量共线定理可得,,A P D 共线,从而得到1122PBC ABC S S ∆∆==. 【详解】取BC 的中点D ,1()2AD AC AB ∴=+. 432()()AP AB BC CA AB BC CA AB BC AB AC AB =++=+++++=+,1()4AP AC AB ∴=+∴12AP AD =,即,,A P D 共线.1122PBC ABC S S ∆∆==.故答案为:12.【点睛】本题主要考查向量共线定理,中点公式的向量式的应用以及三角形面积的计算,属于基础题.27.(2020·上海大学附属中学高三三模)设11(,)x y 、22(,)x y 、33(,)x y 是平面曲线2226x y x y +=-上任意三点,则12A x y =-212332x y x y x y +-的最小值为________ 【答案】-40【分析】依题意看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,根据点所在曲线及向量数量积的几何意义计算可得;【详解】解:因为2226x y x y +=-,所以()()221310x y -++=,该曲线表示以()1,3-为圆心,10为半径的圆.12212332A x y x y x y x y =-+-,可以看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,因为点22(,)x y 在2226x y x y +=-上,点()33,y x -在2226x y y x +=+,点()11,y x -在2226x y y x +=--上,结合向量的几何意义,可知最小值为()()210102101040-+-=-,即()()()()2,64,22,62,440--+-=-故答案为:40-【点睛】本题考查向量数量积的几何意义的应用,属于中档题.28.(2020·上海浦东新区·华师大二附中高三月考)若复数z 满足i 1i z ⋅=-+,则复数z 的虚部为________ 【答案】1【分析】求解z 再得出虚部即可. 【详解】因为i 1i z ⋅=-+,故1111i iz i i i i i-+-==+=+=+,故虚部为1. 故答案为:1【点睛】本题主要考查了复数的运算与虚部的概念,属于基础题. 29.(2020·上海高三一模)复数52i -的共轭复数是___________. 【答案】2i -+【分析】由复数代数形式的除法运算化简复数52i -,求出z 即可. 【详解】解:55(2)5(2)22(2)(2)5i i i i i i ----===----+--, ∴复数52i -的共轭复数是2i -+ 故答案为2i -+【点睛】本题考查了复数代数形式的除法运算,是基础题.30.(2020·上海大学附属中学高三三模)已知复数22(13)(3)(12)i i z i +-=-,则||z =______【答案】【分析】根据复数乘法与除法运算法则化简,再根据共轭复数概念以及模的定义求解.【详解】22(13)(3)(13)(68)26(12)34i i i i z i i i +-++===-----|||26|z i ∴=-+==故答案为:【点睛】本题考查复数乘法与除法运算、共轭复数概念以及模的定义关系,考查基本分析求解能力,属基础题.31.(2020·上海高三其他模拟)若复数z 满足i 12i01z+=,其中i 是虚数单位,则z 的虚部为________【答案】1-【分析】根据行列式得到(12)0iz i -+=,化简得到复数的虚部.【详解】i 12i 01z +=即12(12)0,2iiz i z i i+-+===-,z 的虚部为1- 故答案为1-【点睛】本题考查了行列式的计算,复数的虚部,意在考查学生的计算能力.32.(2020·上海市建平中学高三月考)设复数z 满足||1z =,使得关于x 的方程2220zx zx ++=有实根,则这样的复数z 的和为________ 【答案】32-【分析】设z a bi =+,(,a b ∈R 且221a b +=),将原方程变为()()222220ax ax bx bx i +++-=,则2220ax ax ++=①且220bx bx -=②;再对b 分类讨论可得;【详解】解:设z a bi =+,(,a b ∈R 且221a b +=)则原方程2220zx zx ++=变为()()222220ax ax bx bx i +++-= 所以2220ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去; 从而1a =-,此时1x =-1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得14a =-,b =所以144z =-±综上满足条件的所以复数的和为113144442⎛⎛-+-++--=- ⎝⎭⎝⎭故答案为:32-【点睛】本题考查复数的运算,复数相等的充要条件的应用,属于中档题.33.(2020·上海高三其他模拟)从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,使得关于x 的方程2220x ax b ++=有两个虚根,则不同的选取方法有________种 【答案】3【分析】关于x 的方程x 2+2ax +b 2=0有两个虚根,即△<0,即a <b .用列举法求得结果即可. 【详解】∵关于x 的方程x 2+2ax +b 2=0有两个虚根,∴△=4a 2﹣4b 2<0,∴a <b . 所有的(a ,b )中满足a <b 的(a ,b )共有(1,2)、(1,3)、(2,3),共计3个, 故答案为3.【点睛】本题考查列举法表示满足条件的事件,考查了实系数方程虚根的问题,属于中档题.34.(2020·上海市七宝中学高三其他模拟)已知复数13z i =-+(i 是虚数单位)是实系数一元二次方程20ax bx c ++=的一个虚根,则::a b c =________.【答案】1:2:10【分析】利用求根公式可知,一个根为13i -+,另一个根为13i --,利用韦达定理即可求出a 、b 、c 的关系,从而可得 ::a b c【详解】利用求根公式可知,一个根为13i -+,另一个根为13i --,由韦达定理可得()()()13131313b i i a c i i a ⎧-++--=-⎪⎪⎨⎪-+--=⎪⎩ ,整理得:210bac a⎧=⎪⎪⎨⎪=⎪⎩所以2b a =,10c a =,所以:::2:101:2:10a b c a a a == 故答案为:1:2:10【点睛】本题主要考查了实系数一元二次方程的虚根成对的原理,互为共轭复数,考查了韦达定理,属于基础题.35.(2020·上海高三其他模拟)设复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,则pq =________【答案】20-【分析】由题意复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,利用一元二次方程根与系数的关系求出p q 、的值,可得答案.【详解】解:由复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,故2-i 是实系数一元二次方程20x px q ++=的一个虚数根,故2+2i i p +-=-,(2+)(2)i i q -=, 故4p =-,5q =,故20pq =-, 故答案为:20-.【点睛】本题主要考查实系数的一元二次方程虚根成对定理,一元二次方程根与系数的关系,属于基础题型.36.(2020·上海徐汇区·高三一模)已知函数()f x ax b =+(其中,a b ∈R )满足:对任意[]0,1x ∈,有()1f x ≤,则()()2121a b ++的最小值为_________.【答案】9-【分析】根据题意()0f b =,()1f a b =+,可得()0b f =,()()10a f f =-,且()101f -≤≤,()111f -≤≤,所以将()()2121a b ++用()0f 和()1f 表示,即可求最值. 【详解】因为()f x ax b =+,对任意[]0,1x ∈,有()1f x ≤, 所以()0f b =,()1f a b =+,即()0b f =,()()10a f f =-,所以()()()()()()()21214214100211a b ab a b f f f f ++=+++=-⨯++⎡⎤⎣⎦()()()()()()2224040111211f f f f f f =-+-+++()()()()()22212011120f f f f f =--++≥--⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,当()11f =-,()01f =时()()2120f f -⎡⎤⎣⎦最大为9, 此时()()2120f f --⎡⎤⎣⎦最小为9-, 所以()()2121a b ++的最小值为9-, 故答案为:9-【点睛】关键点点睛:本题的关键点是根据[]0,1x ∈,有()1f x ≤,可知()101f -≤≤,()111f -≤≤,由()0f b =,()1f a b =+可得()0b f =,()()10a f f =-,所以()()2121a b ++可以用()0f 和()1f 表示,再配方,根据平方数的性质求最值. 37.(2020·上海高三其他模拟)设全集U =R ,若A ={x |21x x->1},则∁U A =_____. 【答案】{x |0≤x ≤1}【分析】先解得不等式,再根据补集的定义求解即可 【详解】全集U =R ,若A ={x |21x x->1}, 所以211x x ->,整理得10x x->,解得x >1或x <0, 所以∁U A ={x |0≤x ≤1} 故答案为:{x |0≤x ≤1}【点睛】本题考查解分式不等式,考查补集的定义38.(2020·上海市建平中学高三月考)在平面直角坐标系xOy 中,点集{(,)|(|||2|4)(|2|||4)0}K x y x y x y =+-+-≤所对应的平面区域的面积为________【答案】323【分析】利用不等式对应区域的对称性求出在第一象限的面积,乘以4得答案.【详解】解:(||2||4)(2||||4)0x y x y +-+-对应的区域关于原点对称,x 轴对称,y 轴对称,∴只要作出在第一象限的区域即可.当0x ,0y 时,不等式等价为(24)(24)0x y x y +-+-,即240240x y x y +-⎧⎨+-⎩或240240x y x y +-⎧⎨+-⎩,在第一象限内对应的图象为, 则(2,0)A ,(4,0)B ,由240240x y x y +-=⎧⎨+-=⎩,解得4343x y ⎧=⎪⎪⎨⎪=⎪⎩,即44(,)33C ,则三角形ABC 的面积1442233S =⨯⨯=,则在第一象限的面积48233S =⨯=,则点集K 对应的区域总面积832433S =⨯=.故答案为:323.【点睛】本题考查简单的线性规划,主要考查区域面积的计算,利用二元一次不等式组表示平面区域的对称性是解决本题的关键,属于中档题.39.(2020·上海高三其他模拟)已知()22log 2log a b ab +=4a b +的最小值是______.【答案】9【分析】根据对数相等得到111b a +=,利用基本不等式求解()114a b b a ⎛⎫++ ⎪⎝⎭的最小值得到所求结果. 【详解】因为22222log log log ab abab ==,所以()22l og og l a b ab +=,所以a b ab +=,所以111a b+=, ()1144414a ba b a b a b b a ⎛⎫∴+=++=+++ ⎪⎝⎭,由题意知0ab >,则0a b >,40b a >,则441459a b a b b a +=+++≥=,当且仅当4a b b a =,即2a b =时取等号,故答案为:9.【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到111b a+=的关系,从而构造出符合基本不等式的形式,属于中档题.40.(2020·上海高三二模)已知0,0x y >>,且21x y +=,则11x y+的最小值为________.【答案】3+【分析】先把11x y+转化为11112(2)()3y x x y x y x y x y +=++=++,然后利用基本不等式可求出最小值 【详解】解:∵21x y +=,0,0x y >>,∴11112(2)()33y x x y x y x y x y +=++=++≥+(当且仅当2y xx y=,即x =时,取“=”). 又∵21x y +=,∴11x y ⎧=⎪⎨=-⎪⎩∴当1x =,12y =-时,11x y +有最小值,为3+.故答案为:3+【点睛】此题考查利用基本不等式求最值,利用1的代换,属于基础题.41.(2020·上海高三月考)已知实数x 、y 满足条件01x y y x y -≥⎧⎪≥⎨⎪+≤⎩.则目标函数2z x y =+的最大值为______. 【答案】2【分析】作出约束条件所表示的可行域,当目标函数所表示的直线过点(1,0)A 时,目标函数取得最大值. 【详解】作出约束条件所表示的可行域,易得点(1,0)A ,当直线2y x z =-+过点A 时,直线在y 轴上的截距达到最大,∴max 2z =,故答案为:2【点睛】本题考查线性规划问题,考查数形结合思想,考查运算求解能力,求解时注意利用直线截距的几何意义进行求解.42.(2020·上海高三其他模拟)若()211,1nn N n x *⎛⎫-∈> ⎪⎝⎭的展开式中的系数为n a ,则23111lim n n a a a →∞⎛⎫+++⎪⎝⎭=____________. 【答案】2试题分析:由二项式定理知4x -的系数是2(1)2n n n n a C -==,12112()(1)1n a n n n n ==---,所以 231111lim()lim[2(1)]2n n n a a a n→∞→∞+++=-=.考点:二项式定理,裂项相消求和,数列极限.43.(2020·上海高三其他模拟)设正数数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项之积为n T ,且1n n S T +=,则lim n n S →∞=______. 【答案】1【分析】令1n =可得11112a S T ===,利用n T 的定义,1(2)n n n T S n T -=≥,可得n T 的递推关系,从而得1n T ⎧⎫⎨⎬⎩⎭是等差数列,求出n T 后可得n S ,从而可得lim n n S →∞.【详解】111T a S ==,∴121a =,112a =,即1112S T ==,1(2)n n n T S n T -=≥,∴11n n n T T T -+=,∴1111n n T T --=,即{}n T 是以2为首项,1为公差的等差数列, 故1211n n n T =+-=+,11n T n =+,1n n S n =+,112S =也符合此式,所以1n n S n =+, 所以lim limlim lim +1111111n n n n n n n S n n n →∞→∞→∞→∞-⎛⎫==-= ⎪++⎝⎭=,故答案为:1.【点睛】本题考查求数列的通项公式,解题中注意数列的和、数列的积与项的关系,进行相应的转化. 如对积n T 有1(2)nn n T S n T -=≥,对和n S 有1(2)n n n a S S n -=-≥,另外这种关系中常常不包括1n =的情形,需讨论以确定是否一致,属于较难题.三、解答题44.(2020·上海徐汇区·高三一模)设()x μ表示不小于x 的最小整数,例如(0.3)1,( 2.5)2μμ=-=-. (1)解方程(1)3x μ-=;(2)设()(())f x x x μμ=⋅,*n N ∈,试分别求出()f x 在区间(]0,1、(]1,2以及(]2,3上的值域;若()f x 在区间(0,]n 上的值域为n M ,求集合n M 中的元素的个数; (3)设实数0a >,()()2x g x x a xμ=+⋅-,2sin 2()57x h x x x π+=-+,若对于任意12,(2,4]x x ∈都有12()()g x h x >,求实数a 的取值范围.【答案】(1)34x <≤;(2)当(]0,1x ∈时,值域为{}1;当(]1,2x ∈时,值域为{}3,4;当(]2,3x ∈时,值域为{}7,8,9;(1)2n n +个;(3)(3,)+∞. 【分析】(1)根据()x μ的定义,列式解不等式;(2)根据定义分别列举()f x 在区间(]0,1、(]1,2以及(]2,3上的值域,和(1,]x n n ∈-时函数的值域,最后利用等差数列求和;(3)分别求两个函数的值域,并转化为()()max g x f x >,利用参变分离求实数a 的取值范围. 【详解】【解】(1)由题意得:213x <-≤,解得:34x <≤. (2)当(]0,1x ∈时,(]()1,()0,1x x x x μμ=⋅=∈,于是(())1x x μμ⋅=,值域为{}1当(]1,2x ∈时,(]()2,()22,4x x x x μμ=⋅=∈,于是(())3x x μμ⋅=或4,值域为{}3,4 当(]2,3x ∈时,(]()3,()36,9x x x x μμ=⋅=∈,于是(())7x x μμ⋅=或8或9,值域为{}7,8,9设*n N ∈,当(1,]x n n ∈-时,()x n μ=,所以()x x nx μ⋅=的取值范围为22(,]n n n -,-所以()f x 在(1,]x n n ∈-上的函数值的个数为n ,-由于区间22(,]n n n -与22((1)(1),(1)]n n n +-++的交集为空集, 故n M 中的元素个数为(1)1232n n n +++++=.- (3)由于2140573x x <≤-+,1sin 23x π≤+≤,因此()4h x ≤,当52x =时取等号,即即(2,4]x ∈时,()h x 的最大值为4,由题意得(2,4]x ∈时,()4g x >恒成立,当(2,3]x ∈时,223x a x >-恒成立,因为2max (2)33x x -=,所以3a >当(3,4]x ∈时,2324x a x >-恒成立,因为239244x x -<,所以94a ≥综合得,实数a 的取值范围是(3,)+∞.【点睛】关键点点睛:1.首先理解()x μ的定义,2.第三问,若对于任意12,(2,4]x x ∈都有12()()g x h x >,转化为()()max g x f x >,再利用参变分离求a 的取值范围.45.(2020·上海市建平中学高三月考)已知数列{}n a 满足:10a =,221n n a a =+,2121n n a a n +=++,*n ∈N .(1)求4a 、5a 、6a 、7a 的值; (2)设212n n na b -=,212333nn n S b b b =++⋅⋅⋅+,试求2020S ;(3)比较2017a 、2018a 、2019a 、2020a 的大小关系. 【答案】(1)3、5、5、8;(2)202120204037398S ⋅+=;(3)2017201820202019a a a a ==<. 【分析】。

高中数学数列知识点归纳

高中数学数列知识点归纳

高中数学数列知识点归纳摘要:一、数列的定义与性质二、等差数列的定义与性质三、等比数列的定义与性质四、求数列通项公式的常用方法五、求数列前n 项和的常用方法六、数列知识点在高考中的应用正文:高中数学数列知识点归纳数列是高中数学中的一个重要知识点,也是历年高考的重点考查内容之一。

数列试题通常会出现在数列的知识、函数知识、不等式的知识和解析几何知识等的交汇点处命题,从而使数列试题呈现综合性强、立意新、角度新、难度大的特点。

在此,我们将对高中数学数列知识点进行归纳总结。

一、数列的定义与性质数列是一种特殊的函数,其定义域和值域均为正整数集。

数列可以看作一个定义域为正整数集n 或其有限子集1,2,3,,n 的函数,其中的1,2,3,,n 不能省略。

数列的性质包括:有界性、单调性、凸性、凹性等。

二、等差数列的定义与性质等差数列是指一个数列,其中任意两项之差等于一个常数d。

等差数列的定义可以用如下公式表示:an - an-1 = d。

等差数列的性质包括:公差为常数、通项公式为等差数列的定义与性质、前n 项和公式为:sn = n/2 * (a1 + an) 等。

三、等比数列的定义与性质等比数列是指一个数列,其中任意两项之比等于一个常数q。

等比数列的定义可以用如下公式表示:an / an-1 = q。

等比数列的性质包括:公比为常数、通项公式为:an = a1 * q^(n-1)、前n 项和公式为:sn = a1 * (1 -q^n) / (1 - q) 等。

四、求数列通项公式的常用方法求数列通项公式的常用方法包括:观察法、公式法、数学归纳法等。

观察法是根据数列的特征直接猜出通项公式;公式法是利用数列的性质和公式推导出通项公式;数学归纳法是利用数学归纳法证明通项公式的正确性。

五、求数列前n 项和的常用方法求数列前n 项和的常用方法包括:求和公式法、分组求和法、裂项相消法等。

求和公式法是根据数列的性质和公式直接求出前n 项和;分组求和法是将数列分组求和,从而简化求和过程;裂项相消法是将数列中的项进行裂项处理,以消除某些项,从而简化求和过程。

不等式的综合-高中数学知识点讲解

不等式的综合-高中数学知识点讲解

不等式的综合1.不等式的综合【知识点的知识】1、不等式的性质2、不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.3、利用重要不等式求函数最值:“一正二定三相等,和定积最大,积定和最小”.4、常用不等式1/ 35、证明不等式的方法:比较法、分析法、综合法和放缩法.比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与的大小,然后作出结论.1常用的放缩技巧有:6.常系数一元二次不等式的解法:判别式﹣图象法步骤:(1)化为一般形似:,其中;ax2 bx c 0 a>0能否因式分解(2)求根的情况:ax2 bx c=0 →V>(0 =0,<0);(3)由图写解集:考虑图象得解.y=ax2 bx (c a>0)7.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根右上方依次通过每一点画曲线(奇穿偶回);(3)根据曲线显现的符号变化规律,写出不等式的解集.8.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解.解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母.9.绝对值不等式的解法:(了解)(1)分域讨论法(最后结果应取各段的并集)(2)利用绝对值的定义;(3)数形结合;(4)两边平方.10、含参不等式的解法:通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意:①解完之后要写上:“综上,原不等式的解集是…”.②按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.含参数的一元二次不等式的解法:三级讨论法.2/ 3一般地,设关于的含参数的一元二次形式的不等式为:.x a(1)第一级讨论:讨论二次项系数是否为零;(f a)(2)第二级讨论:若时,先观察其左边能否因式分解,否则讨论△的符号;(f a) 0(3)第三级讨论:若时,时,先观察两根,大小是否确定,否则讨论两根的大小.(f a) 0 V>0 x x1 2注意:每一级的讨论中,都有三种情况可能出现,即“>”,“=”,“<”,应做到不重不漏.11.不等式的恒成立、能成立、恰成立等问题常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法.1)恒成立问题若不等式在区间上恒成立,则等价于在区间上,(f x)>A D D (f x)>Amin若不等式在区间上恒成立,则等价于在区间上.(f x)<B D D (f x)<Bmax3/ 3。

高中数学基础知识点总结归纳整理

高中数学基础知识点总结归纳整理

高中数学基础知识点总结归纳整理高中数学是中学阶段的重要课程之一,对于学生的数学素养以及日后的学业发展具有至关重要的作用。

掌握高中数学的基础知识点是打好数学基础的关键。

本文将对高中数学基础知识点进行总结归纳整理,旨在帮助学生系统梳理知识框架,更加全面地掌握高中数学。

一、数列与数列的极限1. 递推数列递推数列是一种按照规律逐项确定下一项的数列。

常见的递推数列有等差数列和等比数列。

2. 数列的通项公式通项公式是指数列中任意一项与项数之间的关系式。

通过找到数列的通项公式,可以方便地求出数列中任意一项的值。

3. 数列的极限数列的极限是指当项数趋向于无穷大时,数列中的项逐渐接近某一固定值。

掌握数列的极限有助于理解无穷级数和数列的和的概念。

二、函数与方程1. 函数的定义与性质函数是一种映射关系,它将一个集合的元素映射到另一个集合的元素。

掌握函数的定义、性质以及函数的运算规律是解题的基础。

2. 一元二次方程一元二次方程是指最高次数为二次的一元方程。

解一元二次方程可以通过配方法、因式分解法、求根公式等方法进行。

3. 不等式不等式是表示两个数之间的关系的数学表达式。

掌握不等式的性质、解法以及不等式组的求解是数学问题求解的重要一环。

三、几何与三角学1. 二维几何掌握平面几何中的点、线、面等基本概念,以及射影、垂线、相似等几何性质。

熟悉平行线、垂直线等线段的性质,并能运用这些性质解决几何问题。

2. 三角学理解三角函数的定义与性质,包括正弦、余弦和正切函数。

能够运用三角函数解决直角三角形和一般三角形相关的计算问题。

四、概率与统计1. 概率的基本概念理解概率的基本概念,包括样本空间、随机事件、事件的概率等。

掌握事件之间的运算法则,并能够运用概率模型解决实际问题。

2. 统计分析掌握常见的统计图表的制作与解读方法,包括条形图、折线图、饼图等。

熟悉常见的统计指标,如均值、中位数、众数等,并能够对数据进行统计分析。

五、解析几何1. 空间几何空间几何是研究三维空间中点、线、面及其相关性质的数学学科。

高考数学复习知识点讲解教案第38讲 数列的综合问题

高考数学复习知识点讲解教案第38讲 数列的综合问题
◆ 索引:数列实际问题的易错点为项数.
4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .

高三数列与不等式知识点

高三数列与不等式知识点

高三数列与不等式知识点在高中数学中,数列和不等式是数学学科中非常重要的知识点。

它们在解题过程中经常出现,具有广泛的应用价值。

本文将详细介绍高三数列与不等式的相关知识点,帮助读者更好地理解和应用这些知识。

一、数列数列是按照一定顺序排序的一组数。

我们常见的数列包括等差数列、等比数列和递推数列等。

接下来将依次介绍这些数列的特点和求解方法。

1. 等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列的首项为a₁,公差为d,则等差数列的通项公式为:an = a₁ + (n - 1)d其中,an表示数列的第n项。

对于等差数列,我们常常需要求其前n项和Sn。

求解方法有两种常见的方式:一种是利用求和公式,如果数列的首项为a₁,末项为an,共有n项,则等差数列前n项和Sn的计算公式为:Sn = (a₁ + an) * n / 2另一种是利用递推关系式,通过依次累加求得:S₁ = a₁S₂ = a₁ + a₂S₃ = a₁ + a₂ + a₃...Sn = a₁ + a₂ + ... + an2. 等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列的首项为a₁,公比为q,则等比数列的通项公式为:an = a₁ * q^(n - 1)等比数列的前n项和Sn的计算公式为:Sn = (a₁ * (q^n - 1)) / (q - 1)需要注意的是,当公比q为1时,等比数列将退化为等差数列。

3. 递推数列递推数列是一种通过前一项或前几项直接得到下一项的数列。

递推数列无法使用通项公式表示,但可以根据题目给出的递推关系式逐步求解。

以斐波那契数列为例,斐波那契数列的递推关系式为:Fn = Fn−1 + Fn−2其中,F₁ = 1,F₂ = 1为斐波那契数列的前两项。

二、不等式不等式是数学中用于表示数之间大小关系的一种符号组合。

常见的不等式包括一元一次不等式、二次不等式和绝对值不等式等。

下面将分别介绍这些不等式的解集表示法和求解方法。

数列与不等式

数列与不等式


①×② 得
Tn2 (t1tn2 ) (t2tn1) (tn1t2 ) (tn2t1) ,
100n2 102(n2)
故 Tn 10n2 ,
所以 an lg Tn n 2, n 1.
第(Ⅱ)问:设 bn tan an tan an1, 求数列{bn} 的前 n 项和 Sn .
an
n
4
2
-
n 1 =
4
1 4
,故数列 an 是等差数列

第(Ⅲ)问:令 bn
4 4an
1
,
Tn
b12 + b22 +…+ bn2 ,
Sn
32
16 , n
试比较Tn 与 S n 的大小.
解:(Ⅲ) bn
4 4an 1
4. n
故 Tn
b12
+
b22
+…+
bn2
=16(1+
1 22
+1 32
+…+ 1 n2
一、核心考点分析 二、典型问题精讲 三、本讲总结提升
一、核心考点分析
数列与不等式是高中数学的重要 内容之一,也是历年高考必考的重点 内容之一.核心考点是:数列通项与
前 n 项和的关系,等差数列和等比数
列的定义,等差数列和等比数列的通
项公式及前 n 项和的公式,不等式的
性质和证明,不等式的求解和应用.
例 2 等比数列 an 中, a1, a2 , a3 分别是下表第一、
二、三行中的某一个数,且 a1, a2 , a3 中的任何两个数不
在下表的同一列.
第一列 第二列 第三列
第一行
3

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结高中数学中,不等式是一个重要的内容,它是解决数学问题的一种有力工具。

不等式是一种用于描述数值的大小关系的数学语句,它包含“大于”、“小于”、“大于等于”、“小于等于”等符号。

在数学考试中,不等式问题常常出现在基础知识和综合应用的部分,所以对不等式的学习是非常必要的。

下面我将为大家总结一下高中数学中关于不等式的知识点。

一、不等式的基本概念1. 不等式的定义:不等式是数值之间大小关系的表达式,由关系符号和数值构成。

2. 关系符号的含义:- 大于:表示前面的数比后面的数要大,如a>b。

- 小于:表示前面的数比后面的数要小,如a<b。

- 大于等于:表示前面的数比后面的数大或相等,如a≥b。

- 小于等于:表示前面的数比后面的数小或相等,如a≤b。

二、不等式的性质及常用规则1. 不等式的性质:- 若a>b,则-a<-b。

- 若a>b,则a+c>b+c。

- 若a>b,则ac>bc(当c为正数时)。

- 若a>b,则ac<bc(当c为负数时)。

- 若a>b,且c>0,那么a/c>b/c。

- 若a>b,且c<0,那么a/c<b/c。

2. 不等式的常用规则:- 加法规则:若a>b,则a+c>b+c。

- 减法规则:若a>b,则a-c>b-c。

- 乘法规则:若a>b(c>0),则ac>bc;若a<b(c<0),则ac<bc。

- 除法规则:若a>b(c>0),则a/c>b/c;若a<b(c<0),则a/c<b/c。

- 对称性:若a>b,则-b<-a。

三、一元一次不等式1. 一元一次不等式的解集表示法:- 解集用区间表示。

- 开区间:解集中的数不包括端点。

- 闭区间:解集中的数包括端点。

2. 不等式的性质应用举例:- 若a>0,则-1/a<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列与不等式的综合1.数列与不等式的综合
【知识点的知识】
证明与数列求和有关的不等式基本方法:
(1)直接将数列求和后放缩;
(2)先将通项放缩后求和;
(3)先将通项放缩后求和再放缩;
(4)尝试用数学归纳法证明.
常用的放缩方法有:
2푛1 1
2푛―12푛2푛+1
2푛<,
2푛+12푛
2푛―1>,
2푛+1<2푛,
11
푛3<
푛(푛2―1)=11
2[푛(푛―
1)―
1
푛(푛+1)]
1푛―
1
푛+1=
111
푛(푛―1)
=
푛(푛+1)<푛2<
1
푛―
1―
1
(n≥2),

11
푛2<
푛2―1=11
(푛―
1―
2
1
)(n≥2),
푛+1
1푛2=
441
4푛2<4푛2―1=
2(2푛―1―
4푛2―1=2(2푛―
1―
1
2푛+1),
2(푛+1―푛)=
2
푛+1―
푛<
1
푛=
2
2푛<
2
푛+푛―1= 2(푛―푛―
1).
1
푛+1+
1
푛+2+⋯+
1
2푛≥
1
2푛+
1
2푛+⋯+
1
2푛=

2푛=
1
2
푛+(푛+1)
푛(푛+1)<

2
【解题方法点拨】
证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求
解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:
1/ 4
(1)添加或舍去一些项,如: 푎2 + 1>|a |; 푛(푛 + 1)>n ;
(2)将分子或分母放大(或缩小);
푛 + (푛 + 1)
(3)利用基本不等式; 푛(푛 + 1)<

2
(4)二项式放缩;
(5)利用常用结论;
(6)利用函数单调性.
(7)常见模型:
①等差模型;②等比模型;③错位相减模型;④裂项相消模型;⑤二项式定理模型;⑥基本不等式模型.
【典型例题分析】
题型一:等比模型
푎1 ― 1 典例 1:对于任意的 n ∈N *,数列{a n }满足 21 + 1 +
푎2 ― 2 22 + 1 +⋯ + 푎푛 ― 푛 2푛 + 1 = n +1. (Ⅰ)求数列{a n }的通项公式;
2 (Ⅱ)求证:对于 n ≥2, 푎2 +
2 푎
3 +⋯ + 2 푎푛+1<1 ― 1 2푛. 푎1 ― 1 解答:(Ⅰ)由 21 + 1 +
푎2 ― 2 22 + 1 +⋯ + 푎푛 ― 푛 2푛 + 1 = 푛 + 1①, 푎1 ― 1 当 n ≥2 时,得 21 + 1 +
푎2 ― 2 22 + 1 +⋯ + 푎푛―1 ― (푛 ― 1) 2푛―1 + 1 = 푛②, 푎푛
― 푛 ①﹣②得2푛 + 1 = 1(푛 ≥ 2).
∴푎푛
= 2푛 +1 + 푛(푛 ≥ 2). 푎1 ― 1
又 1=7 不适合上式.
21 + 1 = 2,得 a
综上得푎푛
= {
7 ,푛 = 1
2푛 + 1 + 푛,푛 ≥ 2;
2 (Ⅱ)证明:当 n ≥2 时,푎푛 =
2 2 2푛 + 1 + 푛< 2푛 = 1 2푛―1.
2/ 4
2 ∴ 푎2 + 2 푎
3 +⋯ + 2 1 2 + 푎푛+1< 1 22 +⋯ + 1 2푛 = 1 1 2 (1 ― 2푛 1 ― 1 2
) = 1 ― 1 2푛. 2 ∴当 n ≥2 时,푎2 + 2 푎3 +⋯ + 2 푎푛
+1<1 ―
1 2푛. 题型二:裂项相消模型
典例 2:数列{a n }的各项均为正数,S n 为其前 n 项和,对于任意 n ∈N *,总有 a n ,S n ,a n 2 成等差数列.
(1)求数列{a n }的通项公式;
(2)设푏푛 = 1 푛
푎2푛,数列{b n }的前 n 项和为 T n ,求证:푇푛
> 푛 + 1.
分析:(1)根据 a n =S n ﹣S n ﹣1,整理得 a n ﹣a n ﹣1=1(n ≥2)进而可判断出数列{a n }是公差为 1 的等差数列,根 据等差数列的通项公式求得答案.
(2)由(1)知푏푛 = 1 1 1 푛2,因为 푛(푛 + 1) = 푛2> 1 푛 ―
1 1 ,所以푏푛
> 푛 ―
푛 + 1
1
,从而得证. 푛 + 1 解答:(1)由已知:对于 n ∈N *,总有 2S n =a n +a n 2①成立
∴2푆푛―1 = 푎푛―1 + 푎푛―12(n ≥2)②
①﹣②得 2a n =a n +a n 2﹣a n ﹣1﹣a n ﹣12,∴a n +a n ﹣1=(a n +a n ﹣1)(a n ﹣a n ﹣1)
∵a n ,a n ﹣1 均为正数,∴a n ﹣a n ﹣1=1(n ≥2)∴数列{a n }是公差为 1 的等差数列
又 n =1 时,2S 1=a 1+a 12,解得 a 1=1,∴a n =n .(n ∈N *)
(2)解:由(1)可知푏푛 = 1 1 1 푛2∵ 푛(푛 + 1) = 푛
2>푛2∵ 푛(푛 + 1) =
1 푛 ― 1 푛 + 1 ∴푇푛>(1 ― 1 1 2) + (
2 ― 1 1 3) + +(푛 ―
1 푛 + 1) = 푛 푛 + 1 【解题方法点拨】
(1)放缩的方向要一致.
(2)放与缩要适度.
(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项).
3/ 4
(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象.所以对放缩法,只需要了解,不宜深入.
4/ 4。

相关文档
最新文档