中考状元数学笔记知识点汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考状元数学笔记知识点汇总
中考状元数学笔记知识点汇总一、实数(一)有理数1、有理数分类:①整数→正整数/0/负整数②分数→正分数/负分数2、数轴:画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴3、相反数如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

4、倒数如果两个数之积为1,则称这两个数为倒数5、绝对值①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他本身/负数的绝对值是它的相反数/0的绝对值是0。

(二)实数1、实数分类:①有理数→整数/分数②无理数(无限不循环小数)2、平方根:①如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

②一个正数有2个平方根/0的平方根为0/负数没有平方。

③求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

3、算术平方根如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根4、立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

②正数的立方根是正数/0的立方根是0/负数的立方根是负数。

③求一个数a的立方根的运算叫开立方,其中a叫做
被开方数。

5、乘方性质正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

6、实数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

混合顺序①先算乘方,再算乘除,最后算加减②同级运算,按照从左至右的顺序进行;③如果有括号,先小再中后大运算律:① a+b=b+a ②(a+b)+c=a+(b+c) ③ab=ba ④(ab)c=a(bc) ⑤(a+b)c=ac+bc7、科学记数法: 把一个整数或有限小数表示成±a×10n 的形式,其中n是整数。

8、近似数①四舍五入法②进一法③去尾法9、有效数字从左边第一个不是0的数学起,到末位数字为止,所有的数字都叫这个数的有效数字。

如:28.70万有4个有效数字;0.30120有5个有效数字。

10、非负数
11、零指数次幂、负指数次幂
二、代数式1、分类:代数式→有理式与无理式;有理式→
整式\分式;整式→单项式\多项式。

2、整式概念①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

3、整式运算:(1)整式的加减:如果遇到括号先去括号,再合并同类项。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

乘法公式:①(a+b)(a-b)=a2-b2 ②(a±b) 2=a2 ±2ab+b2 整式的除法:①单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

l幂的运算公式:①·=;②÷=;③=;④=;⑤4、分解因式:(1)概念:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式(2)方法:提公因式法/运用公式法/分组分解法/十字相乘法(一提二套三分组)5、分式概念及性质:①整式A除以整式B,如果除式B中含有分母,那么
这个就是分式,(注意:对于任何一个分式,分母不为0)
②性质10基本性质:20符号法则:
6、分式的运算:①加减法:同分母的分式相加减,分母不变,把分子相加减;异分母的分式先通分,化为同分母的分式,再加减。

②乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

③除法:除以一个分式等于乘以这个分式的倒数。

7、二次根式①性质
②运算加减:化成同类二次根式,再合并。

乘法除法:③最简二次根式:被开方数不含分母;被开方数中不含能开得尽的因数或因式。

④同类二次根式:化成最简二次根式后,被开方数相同的二次根式。

⑤有理化因式:两个含有二次根式的代数式相乘积不含有二次根式,则他们互为有理化因式。

如:⑥分母有理化:把分母中的根号化去。

(方法:分子分母同乘以分母的有理化因式)三、方程(一)一次方程1、概念①等式:用等号连接的两个式子叫等式②方程:含有未知量的等式叫做方程。

③方程的解:能够使得方程左右两边相等的未知数的值叫方程的解。

④一元一次方程:方程化为最简形式后,只含有一个未知数,并且未知数的次数是1的整式方程叫一元一次方程。

⑤二元一次方程:含有两个未知数,并且未知数的次数是1的整式方程叫二元一次方程。

⑥二元一次方程组的
解:能使二元一次方程两边的值相等的未知数的一组值,叫这个二元一次方程的一组解。

2、等式性质①等式左右两边都加上或减去同一个数或同一个整式,结果仍然是等式②等式左右两边都乘以或除以同一个不为零的数,结果仍然是等式。

3、一元一次方程的解法:去分母,去括号,移项,合并同类项,系数化为1(注意:去分母最小公倍数;移项变号)4、二元一次方程组的解法:①代入消元法②加减消元法。

5、列方程解应用题:(1)步骤:审、设、找、列、解、答(2)类型:①和差倍分问题②等积变形问题③行程问题→相遇问题/追及问题/顺逆流问题④劳力调配问题⑤工程问题⑥利润率问题⑦数字问题⑧储蓄问题⑨比例分配问题⑩日历中的问题(二)二次方程1、概念①一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程2、一元二次方程的解法:①直接开平方方法②因式分解法③配方法④公式法3、一元二次方程根与系数的关系:一元二次方程ax2+bx+c=0(a≠0) 的两个实数根为x1,x2 则有
如:x12+x22=(x1+x2)2-2 x1x2
4、根的判别式△=b2-4ac ①△>0时,方程有两个不相等的实数根②△=0时,方程有两个相等的实数根③△(三)分式方程1、定义:分母里含有未知数的方程2、分式方程的解法:(1)思路:将分式方程转化为整式方程,
解之并代入公分母中验根。

(2)步骤:去分母、去括号、移项、合并同类项、解一元一次方程、验根。

3、列分式方程解决实际问题的步骤:审、设、找、列、解、验、答。

(不仅要验根还要验是否符合题意)四、不等式及不等式组(一)一元一次不等式1、不等式的定义:用“”、“>”、“≥”、“≤”、“≠”等不等号连接的式子。

2、不等式的基本性质:①如a>b,c为实数则a+c>b+c;如a>b,c为实数则a-c>b-c ②如a>b,c>0则ac>bc;如a>b,c>0则
③如a>b,c则ac;如a>b,c则3、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,不等式的左右两边都是整式的不等式。

4、不等式的解集:一个含有未知数的不等式的所有解。

5、解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化成1(二)一元一次不等式组1、定义:同一未知数的几个一元一次不等式合在一起,组成一个一元一次不等式组2、一元一次不等式组的解集:一元一次不等式组中的各个不等式的解集的公共部分。

3、解一元一次不等式组(1)步骤:先分别求出不等式组中各个不等式的解集、在数轴上分别表示、找公共部分(2)确定法则:同大取大、同小取小、大小小大取中间、大大小小是无解。

4、应用:审、设、列、解、择、答。

(择:从解集中根据实际情况选择符合题意的解或解集)五、函数及其图象(一)平面直角坐标系1、有序实
数对:有顺序的两个实数a和b组成的实数对。

(利用它可以准确表示平面内一个点的位置)2、平面直角坐标系:平面内两条互相垂直、零点重合的数轴,组成平面直角坐标系。

水平的数轴x轴,取向右为正;竖直的数轴叫y轴,取向上为正;两坐标轴的交点为平面直角坐标系的原点。

3、象限:坐标平面被x轴、y轴分割成四个象限,分别称为第一、二、三、四象限。

(x轴、y轴与坐标原点不属于任何象限)4、坐标:P(a,b)表示由点P向x轴作垂线,垂足对应着x轴上的一个实数a;由点P向y轴作垂线,垂足对应着y轴上的一个实数b;a 为横坐标,b为纵坐标。

5、平面内点的坐标特征:可从各象限内的点、坐标轴上的点、角平分线上的点、平行线上的点来归纳。

6、关于坐标轴对称的点的坐标:P(a,b)→(关于x轴) Px(a,-b);P(a,b)→(关于y轴) Py(-a, b);P(a,b)→(关于原点) Po(-a,-b);P(a,b)→(关于直线y=x) P1(-a, b)7、两点间的距离公式:A(x1,y1)、
B(x2,y2)的距离为(二)函数概念1、变量与常量:在一个变化过程中,数值发生变化的量叫做变量,始终不变的量叫做常量。

2、函数:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个值,y都有一个唯一确定的值与其对应,那么就说x是自变量,y是x的函数。

3、函数中自变量的取值范围
4、函数值:对于自变量在取值范围内的一个确定的值,该函数有唯一确定的对应值,
此对应值为函数值。

5、函数的表示方法:解析法、列表法、图象法。

6、描点法画函数图象的步骤:列表、描点、连线(有等号画实心,无等号画空心)(三)一次函数1、正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x 的正比例函数;其图象是过点(0,0)与(1,k)的一条直线。

2、一次函数:如果y=kx+b(k、b是常数,k≠0)那么y叫做x的一次函数。

其图象是过点(0,b)、( ,0)的一条直线。

3、正比例函数、一次函数的图象与性质:解析式
y=kx(k≠0)y=kx+b(k≠0)kk>0kk>0k>0kkbb=0b=0b>0bb>0 b图象与x轴交点(0,0)(0,0)负半轴正半轴正半轴负半轴与y轴交点(0,0) (0,0)正半轴负半轴正半轴负半轴与y轴截距00bbbb增减性y随x的增大而增大y随x的增大而减小y随x的增大而增大y随x的增大而增大y随x的增大而减小y随x的增大而减小图象经过象限一、三二、四一、二、三一、三、四一、二、四二、三、四。

相关文档
最新文档