函数解析式的几种基本方法及例题

合集下载

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。

本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。

1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。

通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。

例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。

2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。

通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。

例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。

3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。

例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。

根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。

4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。

通过观察差分序列之间的规律,可以尝试找到函数的解析式。

例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。

5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。

通过寻找函数性质和限制条件的推理,可以得到函数解析式。

例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。

因此,猜测函数解析式为f(x) = ax^2。

通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。

求正弦函数解析式的基本方法及练习题

求正弦函数解析式的基本方法及练习题

求正弦函数解析式的基本方法及练习题
引言
正弦函数(sine function)是一种常见的三角函数,用于描述一条光滑的周期曲线。

本文将介绍求解正弦函数解析式的基本方法,并提供一些练题供读者练。

求解正弦函数解析式的基本方法
1. 确定基本参数:首先,确定正弦函数的振幅(amplitude)、周期(period)、相位(phase)和纵向平移量(vertical shift)。

这些参数将影响最终的解析式。

2. 构建通用解析式:基于已知参数,构建正弦函数的通用解析式。

通用解析式的形式为:A * sin(Bx + C) + D,其中 A 是振幅,B 是周期的倒数,C 是相位,D 是纵向平移量。

3. 根据具体问题进行修正:根据具体问题的要求,对通用解析式进行修正。

例如,若要求解析式经过某个特定点,可以通过代入该点的值来确定修正项。

4. 检验解析式:最后,通过验证解析式是否满足正弦函数的性质,如周期性、对称性等,来确认解析式的正确性。

练题
1. 已知正弦函数的振幅为 2,周期为π,相位为π/2,纵向平移量为 3,求解对应的解析式。

2. 若正弦函数的解析式为 3 * sin(2x + π) + 4,求解该函数经过的一个满足条件的点。

3. 给定一个未知正弦函数 f(x),已知 f(0) = 1,f(π/2) = 0,求解该正弦函数的解析式。

请根据上述方法思考并解答练题,以加深对正弦函数解析式的理解。

---
注:本文提供的方法和练习题仅为基础参考,实际问题中可能存在更复杂的情况,需具体问题具体分析。

在使用本文提供的技巧时,请始终独立做出决策,并确保所引用的内容可以确认。

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。

下面将详细介绍这四种方法。

方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。

对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。

1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。

其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。

所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。

方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。

1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题一、常见的函数解析式的求法。

1. 一次函数,一次函数的一般形式为y=ax+b,其中a和b为常数,通过两点法、斜率法、解方程法等可以求得一次函数的解析式。

2. 二次函数,二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。

通过配方法、求顶点法、根的性质等方法可以求得二次函数的解析式。

3. 指数函数,指数函数的一般形式为y=a^x,其中a为常数且a>0且a≠1。

通过观察法、对数法、取对数法等方法可以求得指数函数的解析式。

4. 对数函数,对数函数的一般形式为y=loga(x),其中a为常数且a>0且a≠1。

通过观察法、指数法、换底公式等方法可以求得对数函数的解析式。

5. 三角函数,三角函数包括正弦函数、余弦函数、正切函数等,它们的解析式可以通过周期性、对称性、变换公式等方法求得。

二、函数解析式的例题。

1. 求一次函数y=2x+3的解析式。

解,由于一次函数的一般形式为y=ax+b,所以y=2x+3的解析式为y=2x+3。

2. 求二次函数y=x^2+3x-2的解析式。

解,通过配方法或求顶点法可以求得y=x^2+3x-2的解析式为y=(x+2)(x-1)。

3. 求指数函数y=2^x的解析式。

解,观察法可得y=2^x的解析式为y=2^x。

4. 求对数函数y=log2(x)的解析式。

解,换底公式可得y=log2(x)的解析式为y=log(x)/log(2)。

5. 求正弦函数y=sin(x)的解析式。

解,通过周期性和对称性可得y=sin(x)的解析式为y=sin(x)。

以上就是关于求函数解析式的方法和例题的介绍,希望对大家有所帮助。

在学习过程中,要灵活运用各种方法,多加练习,提高解析式求解的能力。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题在数学中,我们经常会遇到需要求解函数解析式的问题。

函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。

那么,如何求函数的解析式呢?接下来,我们将介绍一些常见的方法和例题,希望能帮助你更好地理解和掌握这一内容。

一、根据函数图像求解析式。

对于一些简单的函数,我们可以通过观察其图像来推导出函数的解析式。

例如,对于一次函数y=kx+b,我们可以根据函数图像上的两个点来确定k和b的值,进而得到函数的解析式。

同样地,对于二次函数、指数函数等,也可以通过观察函数图像来求解析式。

例题1,已知一次函数的图像经过点(1,3)和(2,5),求函数的解析式。

解:设函数为y=kx+b,代入已知的两个点得到方程组:3=k1+b。

5=k2+b。

解方程组得到k=2,b=1,因此函数的解析式为y=2x+1。

二、根据函数性质求解析式。

有些函数具有特定的性质,我们可以利用这些性质来求解析式。

例如,对于指数函数y=a^x,我们知道指数函数经过点(0,1),因此可以利用这一性质求解析式。

又如,对于对数函数y=loga(x),我们知道对数函数的定义域为正实数,可以利用这一性质来确定函数的解析式。

例题2,已知指数函数经过点(1,2),求函数的解析式。

解,设函数为y=a^x,代入已知的点(1,2)得到方程a^1=2,解得a=2,因此函数的解析式为y=2^x。

三、根据函数的变化规律求解析式。

有些函数的变化规律是已知的,我们可以根据这一规律来求解析式。

例如,对于等差数列an=a1+(n-1)d,我们知道等差数列的通项公式是已知的,可以直接利用这一公式求解析式。

同样地,对于等比数列、等差数列等,也可以根据其变化规律来求解析式。

例题3,已知等差数列的首项为3,公差为4,求第n项的表达式。

解,根据等差数列的通项公式an=a1+(n-1)d,代入已知的首项和公差得到an=3+(n-1)4,化简得到an=4n-1,因此第n项的表达式为4n-1。

求函数解析式的四种常用方法例题

求函数解析式的四种常用方法例题

求函数解析式的四种常用方法例题1. 引言嘿,朋友们,今天咱们来聊聊求函数解析式的那些事儿!很多人觉得这玩意儿可难了,心里老是七上八下的。

其实,求函数解析式就像做一道美味的菜,只要掌握了几种方法,咱们也能轻松搞定。

让我们一起来揭开这个神秘面纱,看看怎样能让这些函数变得活灵活现吧!2. 常用方法概述在求函数解析式的过程中,咱们通常会用到四种常用方法。

你别看它们名字听起来挺复杂,其实用起来就是那么简单。

好啦,咱们一个个来捋捋。

2.1. 代入法首先,咱们说说代入法。

这个方法就像是给你一个拼图,里面有块儿缺失的,咱们把已知的先代进去。

比如说,假设你知道了一个点(2, 3),而且这个点在你求的函数上,那你可以把x=2代入到函数的表达式里,得出y=3。

只要这样一来,缺失的部分就能一点点填上去。

再比如说,给你个一元二次方程,你可以通过代入法,逐步求解出它的系数,嘿,这不是轻松解决问题的最佳捷径吗?2.2. 图像法接下来,我们聊聊图像法。

说白了,就是拿个画笔,给你的函数画个图。

这就像咱们做个草图,先把大概的轮廓给勾勒出来。

通过图像,可以很直观地看出函数的趋势,甚至能猜测出解析式。

如果你看到图像有个明显的拐点,嘿,那就说明你得考虑一下二次函数或者其他高阶函数的可能性了。

画画可不是小儿科,越细致,越能洞察真相。

3. 数据拟合法然后是数据拟合法。

这是个数据控的最爱,简直就是量化分析的金钥匙。

你拿到一堆数据,就像在河里捡了宝,接下来用拟合的办法,把它们转换成函数。

简单说,就是找个合适的函数,让它尽量贴合这些数据点。

比如,使用最小二乘法,这个名字听上去复杂,其实就是最小化偏差,让点儿和函数之间的距离最短。

想象一下,像一位细心的裁缝,量体裁衣,缝合出最完美的曲线,谁能不爱?3.1. 线性拟合这里再具体讲讲线性拟合。

线性拟合就像是在为你的数据找到一条直线,傻傻的认为这个直线能代表你所有的点。

虽然不是每次都能完美,但如果数据呈现出一条明显的趋势,线性拟合就能帮你找到一条合适的直线方程。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题一、常见的求函数解析式的方法。

1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。

例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。

2. 图像法,通过观察函数的图像特征,推导出函数的解析式。

例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。

3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。

例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。

4. 反函数法,有些函数的解析式可以通过求解其反函数得到。

例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。

二、求函数解析式的例题。

1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。

解:根据已知条件,我们可以列出方程组:a1+b=3。

a2+b=5。

通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。

2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。

解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。

a(-1)^2+b(-1)+c=3。

通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。

3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。

解:根据已知条件,我们可以列出方程组:a^2=16。

a^3=64。

通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。

以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。

通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题在数学学习中,求函数解析式是一个非常重要的问题。

函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和特点,进而解决各种与函数相关的问题。

那么,我们该如何求函数的解析式呢?下面,我将介绍几种常见的方法和通过例题来帮助大家更好地理解。

一、根据函数图像求解析式。

我们知道,函数的图像可以直观地反映函数的性质和规律。

因此,当给定函数的图像时,我们可以通过观察图像的特点来求解析式。

以一元一次函数为例,当我们给定了函数图像上的两个点坐标时,我们可以通过这两个点的坐标来求解析式。

具体的求解步骤是,首先计算出斜率,然后利用其中一个点的坐标和斜率来写出函数解析式。

例如,给定一元一次函数的图像上的两个点坐标分别为(1,3)和(2,5),我们可以先计算出斜率为2,然后利用其中一个点的坐标(比如(1,3))和斜率来写出函数解析式,y=2x+1。

二、根据函数的性质求解析式。

有些函数具有一些特殊的性质,我们可以通过这些性质来求解析式。

比如,对于一元二次函数y=ax^2+bx+c,我们知道它的图像是一个抛物线,而抛物线的开口方向取决于a的正负。

因此,当我们给定了抛物线的开口方向和顶点坐标时,我们可以通过这些性质来求解析式。

例如,给定一元二次函数的抛物线开口向上,顶点坐标为(1,2),我们可以利用这些信息来求解析式。

首先,根据顶点坐标可以得到c=2,然后根据抛物线开口向上可以得到a>0,进而写出函数解析式,y=ax^2+bx+2。

三、根据函数的定义求解析式。

有些函数是根据一定的规则或定义而得到的,我们可以通过这些规则或定义来求解析式。

比如,对于阶梯函数,我们知道它在不同的区间有不同的取值,因此可以根据这些规则来写出函数解析式。

例如,给定一个阶梯函数在区间[0,2)上的取值为1,在区间[2,4)上的取值为3,我们可以根据这些规则来写出函数解析式,f(x)=1, 0≤x<2;f(x)=3, 2≤x<4。

函数解析式的七种求法

函数解析式的七种求法

函数解析式的七种求法一、通过给定的输入和输出求解析式。

这是最简单直接的方法,当给定了函数的输入和输出时,可以利用这些已知信息求解析式。

例如,如果一个函数在输入为1时输出为3,在输入为2时输出为5,我们可以直接写出函数解析式为f(x)=2x+1二、基于已知函数的变换求解析式。

对于已知的一些基本函数,例如线性函数、多项式函数、指数函数、对数函数等,我们可以通过对它们进行变换得到其他函数的解析式。

例如,如果已知函数f(x)=x^2,我们可以通过对f(x)进行变换得到f(x)=(x-1)^2+1三、利用函数的性质和特点求解析式。

对于一些特殊函数,例如奇函数、偶函数、周期函数等,可以利用它们的性质和特点来求解析式。

例如,如果一个函数是奇函数,那么它的解析式中只包含奇次幂项,可以利用这个特点来求解析式。

四、利用已知函数的级数展开求解析式。

对于一些复杂的函数,可以利用已知函数的级数展开进行逼近,从而得到函数的解析式。

例如,可以利用泰勒级数展开求得函数的解析式,只需要计算到足够高的阶数即可。

五、利用已知函数的导数和积分求解析式。

对于一些函数,可以通过对它们的导数和积分进行运算得到其他函数的解析式。

例如,如果已知一个函数的导数或积分,可以通过对这个导数或积分进行逆运算来求得函数的解析式。

六、基于已知函数的函数逼近求解析式。

对于一些复杂的函数,可以利用一些已知的简单函数进行逼近,从而得到函数的解析式。

例如,可以利用多项式函数对一个非多项式函数进行逼近,从而得到函数的解析式。

七、利用差分方程或微分方程求解析式。

对于一些具有差分方程或微分方程性质的函数,可以通过求解这些方程来得到函数的解析式。

例如,可以利用差分方程或微分方程求解线性递推函数的解析式。

以上是七种常用的求解函数解析式的方法。

不同方法适用于不同情况,根据具体的问题和已知信息选择合适的方法可以更高效地求解函数的解析式。

函数解析式的几种基本方法及例题

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

此法较适合简单题目。

例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f , 21≥+xx2)(2-=∴x x f )2(≥x2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x xx x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。

应用此法解题时往往需要解恒等式。

例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

求函数解析式的6种方法

求函数解析式的6种方法

求函数解析式的6种方法一、待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数,指数函数,对数函数、幂函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1 (1)已知二次函数()f x 满足(1)1f =,(1)5f -=,图象过原点,求()f x ;(2)已知二次函数()f x ,其图象的顶点是(1,2)-,且经过原点,()f x .(3)已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式 (4)已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:(1)由题意设 2()f x ax bx c =++, ∵(1)1f =,(1)5f -=,且图象过原点,∴150a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩ ∴320a b c =⎧⎪=-⎨⎪=⎩∴2()32f x x x =-.(2)由题意设 2()(1)2f x a x =++,又∵图象经过原点,∴(0)0f =,∴20a += 得2a =-, ∴2()24f x x x =--.(3)解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得 ax 2+(2a+b)x+a+b+c=ax 2+(b+1)x+c+1得 212211120011()22a ab b a bc c b c c f x x x⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+(4)解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ②由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 例2 (1)已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

求函数解析式的四种常用方法求函数解析式的四种常用方法: 1、设法化成一元一次方程,再通过检验判断一元一次方程的解的存在性;2、利用函数图像和单调性求函数解析式; 3、利用函数奇偶性来求解;4、利用“韦达定理”来求解。

2、根据图像的变化,利用“特殊值”求解。

例题:求抛物线的方程。

(1)已知抛物线y=mx+c的图象过点(-5, 5),且过原点(0, 0)。

(2)求y的最大值和最小值(3)若将抛物线y=mx+c上的点代入y=mx+c=x+m中,可得y的值为7,求x的取值范围。

例题:求圆的方程(1)已知直线y=4/x+6/y的图象与直线y=-3/2在坐标平面内的截距相等,且图象过点(0, 3)。

(2)求y的最大值。

(3)若将y=4/x+6/y上的点代入y=-3/2-x-8/3中,可得y的值为9,求x的取值范围。

3、利用奇偶性求解。

例题:已知函数y=5/6+12/13,当x=1时, y=-2/13;当x=5/6时, y=-7/23;当x=9时, y=-11/22。

试求y的解析式,并说明奇偶性。

4、利用“韦达定理”来求解。

例题:已知f(x) = x**2-12x+30.(1)若f(x) =0,求x的值; (2)已知f(x)的图象与y=8/5有两个不同的交点,且图象在y轴的第一、二象限,试求x的取值范围。

解析:(1)由f(x) =x**2-12x+30,即f(x)的图象为双曲线。

可设y=8/5;解得-6/5<y<-3/5,即-4/5≤y≤-3/5,由题意得-6/5≤y≤-3/5;解得-6/5≤y≤-3/5,则0<y≤-3/5;(2)将f(x)的图象移到(0, -1)之间,得到双曲线y=-1/4-4/3;在(-1, 1)内画出y=-1/4-4/3的图象,从而得到函数y=-1/4+4/3的图象;解得x≤1/3。

函数解析式求法例题及练习

函数解析式求法例题及练习

函数解析式求法例题及练习函数解析式的求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。

例如,设f(x)是一次函数,且f[f(x)] = 4x + 3,求f(x)。

解:设f(x) = ax + b(a ≠ 0),则f[f(x)] = af(x) + b = a(ax + b) + b= a^2x + ab + b。

根据题意,有a^2 = 4,即a = 2或a = -2.当a= 2时,b = 1;当a = -2时,b = 3.因此,f(x) = 2x + 1或f(x) = -2x + 3.二、配凑法:已知复合函数f[g(x)]的表达式,求f(x)的解析式,常用配凑法。

但要注意所求函数f(x)的定义域不是原复合函数的定义域,而是g(x)的值域。

例如,已知f(x + 1) = x^2 + 2(x ≥ -1),求f(x)的解析式。

解:由题意可得f(x + 1) = (x + 1)^2 - 2,即f(x) = x^2 - 2(x ≥ -2)。

三、换元法:已知复合函数f[g(x)]的表达式时,还可以用换元法求f(x)的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例如,已知f(x + 1) = x + 2x,求f(x + 1)。

解:令t= x + 1,则t ≥ 1,x = (t - 1)^2.由题意可得f(x + 1) = x + 2x,即f(t) = (t - 1)^2 + 2(t - 1) = t^2 - 1,因此f(x) = x^2 - 1(x ≥ 1)。

四、函数性质法:已知函数奇偶性及部分解析式,求f(x)解析式。

本类问题的解题思路是“一变”、“二写”、“三转化”。

例如,已知定义在R上的偶函数f(x),当x ≥ 2时,f(x) = x -2x^2,求f(x)解析式。

解:当x。

0,依题有f(-x) = (-x) + 2x^2 = x + 2x^2.又因为f(x)是定义在R上的偶函数,故f(-x) = f(x)。

(完整版)求函数解析式常用的方法

(完整版)求函数解析式常用的方法

求函数解析式常用的方法求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。

以下主要从这几个方面来分析。

(一)待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。

解析:设2()f x ax bx c =++ (a ≠0)由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++整理得22(2)()1ax a b x a b c ax b c x c +++++=++++得 212211120011()22a ab b a bc c b c c f x x x ⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。

类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x(k≠0);f(x)为二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0)(二)换元法换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。

它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

例2:已知1)1,f x =+求()f x 的解析式。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题在数学学习中,我们经常会遇到需要求解函数解析式的问题。

函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。

那么,如何求函数解析式呢?接下来,我将介绍一些常见的方法和例题,希望能帮助大家更好地掌握这一内容。

一、常见的求函数解析式的方法。

1. 根据函数图像求解析式,当已知函数的图像时,我们可以通过观察图像的性质来推导函数解析式。

例如,对于一元一次函数y=kx+b,我们可以根据函数的斜率k和截距b来确定函数解析式。

同样地,对于二次函数、指数函数、对数函数等,也可以通过观察图像的特点来求解析式。

2. 根据函数性质求解析式,有些函数具有特定的性质,我们可以利用这些性质来求解析式。

例如,对于奇偶函数、周期函数、对数函数等,我们可以根据其性质来确定函数解析式。

3. 根据已知条件求解析式,有时候,我们会遇到一些特定的条件,例如函数的零点、极值点、导数等,我们可以利用这些已知条件来求解析式。

通过建立方程组,我们可以求解未知的函数解析式。

二、求函数解析式的例题。

1. 已知一元一次函数的图像经过点(2,3),斜率为4,求函数解析式。

解,根据一元一次函数的一般形式y=kx+b,我们可以利用已知的斜率和点的坐标来求解析式。

首先,斜率为4,即k=4;其次,函数经过点(2,3),代入x=2,y=3,得到3=4×2+b,解得b=-5。

因此,函数解析式为y=4x-5。

2. 已知函数f(x)满足f(1)=2,f'(x)=3x^2,求函数f(x)的解析式。

解,根据已知条件f(1)=2,我们可以利用这一条件来求解析式。

由导数的定义可知,f'(x)=3x^2,对f(x)进行积分得到f(x)=x^3+C,其中C为积分常数。

代入f(1)=2,得到2=1+C,解得C=1。

因此,函数f(x)的解析式为f(x)=x^3+1。

通过以上例题,我们可以看到,求解函数解析式的关键在于利用已知条件和函数的性质来建立方程,进而求得未知的函数解析式。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题一、常见的求函数解析式的方法:1. 图像法,通过观察函数的图像特点,可以推测出函数的解析式。

例如,对于一次函数y=kx+b,可以通过观察函数的图像特点来确定k和b的值。

2. 常数法,对于一些特殊的函数,可以通过代入不同的自变量值,利用函数的性质和已知条件来求解函数的解析式。

例如,对于指数函数y=a^x,可以通过代入x=0、x=1等值来求解a的值。

3. 反函数法,对于已知函数的反函数,可以通过求解反函数来得到原函数的解析式。

例如,对于对数函数y=loga(x),可以通过求解反函数来得到对数函数的解析式。

4. 组合函数法,对于复杂的函数,可以通过将函数进行分解,然后分别求解各个部分函数的解析式,最后组合得到原函数的解析式。

例如,对于复合函数y=f(g(x)),可以先求解g(x)和f(x),然后将其组合得到y的解析式。

二、求函数解析式的例题:例题1,已知一次函数y=2x+3,求函数的解析式。

解,根据一次函数的一般形式y=kx+b,可以得到k=2,b=3,因此函数的解析式为y=2x+3。

例题2,已知指数函数y=2^x,且y(1)=4,求函数的解析式。

解,代入x=1,得到2^1=2,因此a=2,所以函数的解析式为y=2^x。

例题3,已知对数函数y=log2(x),求函数的解析式。

解,对数函数的底数为2,因此函数的解析式为y=log2(x)。

例题4,已知复合函数y=(x+1)^2,求函数的解析式。

解,将函数进行分解,得到g(x)=x+1,f(x)=x^2,因此函数的解析式为y=(x+1)^2。

以上就是关于求函数解析式的方法和例题的介绍。

希望对大家有所帮助,也希望大家在学习数学的过程中能够灵活运用这些方法,提高数学解题能力。

高中数学求解函数解析式方法(附例题)

高中数学求解函数解析式方法(附例题)

求解函数解析式基本方法(附例题)一、求解函数解析式 1、换元法汇总,切记定义域综上所述:新元代换旧元可化作:则取值范围换元,立刻确定新元的则令变形由解:由题意可知:的解析式求已知11,1)(f t 1f(t)①1t 1,cos t 1sin cos ①cos 1)(cos )(f ,sin )(cos f 222222≤≤--=-=≤≤-==+-==x x x x x x x x f x x x 练习一:)的解析式(答案见文末求已知)(,2)1(2x f x x x f -=+2、凑配法汇总,切记定义域求解定义域又运用完全平方公式解:的解析式求已知2,2)(21,02)1()1()(,0,1)1(2222≥-=∴≥+∴>-+=+>+=+x x x f xx x xx x x f x f x x x x x f练习二:解析式求已知)(,45)2(2x f x x x f ++=+换元法和凑配法在实际运用过程中,以计算简单、准确为原则,根据题目恰当选择。

3、待定系数法5)1(5)(505)10()0(0,05)1()(5,15,1)()()(5,1)(2222+--=-==+-=∴+-===+-=x x f a a f x a x f h k hk x a x f x f x f 综上所述,解得:)点,代入计算图像过(图像过原点又故值根据物理意义,直接赋)可得,由顶点为(数顶点式根据题意,选择二次函解:由题意可设:的解析式),且经过原点,求(是二次函数,其顶点为已知练习三:的解析式(求且是二次函数,已知),3)0(,12)()1()(x f f x x f x f x f =+=-+4、构造方程组法:),(联立方程组,求解:)式联立方程组,解得)、(将(合适替换元得:替换用注意定义域,选取),(,且解:的解析式(求满足)上的函数,定义在(∞+∈--==-∴∞+∈=-=-∞+0,323)(21)2(1)(2)1(,10)1()1(2)(),)1(2)()(0x xx x f x x f x f x xx x xf x f x f x xf x f x f 练习四:的解析式求满足)上的函数定义在()(,1)1(2)()(,0x f x xf x f x f -⋅=+∞求解函数解析式,一般出填空题,或者大题的第一小问。

高中数学:求函数解析式的10种常见方法

高中数学:求函数解析式的10种常见方法

求函数解析式的几种常用方法一、配凑法:例1:设23)1(2+-=+x x x f ,求)(x f .练1:设函数()23,(2)()f x x g x f x =++=,求()g x 。

练2:设21)]([++=x x x f f ,求)(x f .练3:设33221)1(,1)1(xx x x g x x x x f +=++=+,求)]([x g f .二、待定系数法:例1:如果反比例函数的图象经过点(1,2)-,那么这个反比例函数的解析式为 。

练1:在反比例函数k y x=的图象上有一点P ,它的横坐标m 与纵坐标n 是方程2420t t --=的两个根,求反比例解析式。

练2:已知二次函数()x f 满足()00=f ,()()821++=+x x f x f ,求()x f 的解析式。

练3:已知1392)2(2+-=-x x x f ,求)(x f .三、换元(或代换)法: 例1:已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式练1:已知1)f x =+()f x 及2()f x ;练2:已知22111(),x x f x x x++=+求()f x .四、消去法:例1:设函数()f x 满足()x x f x f =⎪⎭⎫ ⎝⎛+12,()0≠x ,求()f x .练1:已知1()2()32f x f x x-=+,求()f x .练2:已知定义在R 上的函数()f x 满足()()12+=+-x x f x f ,()0≠x ,求()f x .练3:已知()3()21f x f x x +-=+,求()f x .练4:设函数()f x 满足1()()af x bf cx x+=(其中,,a b c 均不为0,且a b ≠±),求()f x .五、反函数法:例1:已知2)(21+=-x af x ,求)(x f .练1:已知函数1ln +=x y ,()0>x ,求它的反函数六:函数性质法例1:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.练1:已知()f x 是定义在R 上的奇函数,当0<x 时,()13-=x x f ,求()f x 的解析式.例1:设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均xy y x f y f x f -+=+)()()(,求)(x f .练1:设定义在R 上的函数)(x f ,且满足()10=f ,并且对于任意实数y x ,均有()()()12+--=-y x y x f y x f ,求)(x f .练2:设定义在R 上的函数)(x f ,对于任意实数y x ,均有()()()()1232++-+=-y x x y f x f y x f ,求)(x f .练3:已知偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.例1:已知a f N x x f x f =*∈+=+)1()(),(212)1(且,求)(x f .综合运用 例1:(1)已知3311()f x x x x+=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求函数解析式的几种基本方法及例题:
1、凑配法:
已知复合函数[()]f g x 的表达式,求()f x 的解析式。

(注意定义域) 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).
(2) 已知221)1
(x
x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3.
(2) 2)1()1(2-+=+x x x x f , 21≥+x
x
2)(2-=∴x x f )2(≥x 2、换元法:
已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

(注意所换元的定义域的变化)
例2 (1) 已知x x x f 2)1(+=+,求)1(+x f
(2)如果).(,,)(x f x x
x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2
)1(-=t x
x x x f 2)1(+=+
∴,1)1(2)1()(22-=-+-=t t t t f
1)(2-=∴x x f )1(≥x
x x x x f 21)1()1(22+=-+=+∴ )0(≥x
(2)设.)(,,,1111111
11-=∴-=-===x x f t t
t f t x t x t )(代入已知得则
3、待定系数法:
当已知函数的模式求解析式时适合此法。

应用此法解题时往往需要解恒等式。

例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,
则应有.)(1212102242222--=∴⎪⎩
⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a
四、构造方程组法:
已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例4 设,)1(2)()(x x f x f x f =-满足求)(x f
解 x x f x f =-)1(2)( ①
显然,0≠x 将x 换成x
1,得: x
x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:
x
x x f 323)(--=
五、赋值法:
当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

例5 已知:1)0(=f ,对于任意实数x 、y ,等式
)12()()(+--=-y x y x f y x f 恒成立,求)(x f 解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,
不妨令0x =,则有1)1(1)1()0()(2
+-=-+=+--=-y y y y y y f y f 再令 x y =- 得函数解析式为:1)(2++=x x x f 课堂练习:
1、已知f(x+1)=x 2-2x,求f(x)及f(x-2).
2、已知f (x +1)=x+2x +1,求f(x)的解析式。

3、已知f(x)为二次函数,f(x+1)+f(x-1)=2x 2-2x+4.求f(x)的解析式。

4、已知f(x)=2x+a,ϕ(x)=
4
1(x 2+3),且ϕ[f(x)]=x 2+x+1,则a= .
5、如果函数f(x)满足方程,0,)1()(≠∈=+x R x ax x f x af 且a 为常数,且a ≠±1,求f(x)的解析式。

解:∵af(x)+f(x 1)=ax ① 将x 换成x 1,x
1换成x 得, af(x 1)+f(x)=x a
② 由①、②得f(x)=).()()(01112222≠∈--=--
x R x x a ax a a x a
ax 且 6、已知函数f(x)对任意正数m,n 均有f(mn)=f(m)+f(n)成立,且f(8)=3,试求f(2)的值。

相关文档
最新文档