工程力学梁的弯曲应力与强度计算

合集下载

第36节 梁的应力计算与强度校核(一)

第36节 梁的应力计算与强度校核(一)
王晓平
梁的应力计算及强度校核
纯弯梁截面上的应力分布规律: 梁横截面上的正应力沿截面高度成线性分布,在中性轴处 正应力等于零,在截面的上、下边缘应力值最大。
王晓平
梁的应力计算及强度校核
梁横截面上任意点正应力的计算公式为
公式表明:纯弯曲梁横截面上任意点的正应力与截面上的 弯矩和该点到中性轴的距离成正比,与截面对中性轴的惯 性矩成反比。
王晓平
ቤተ መጻሕፍቲ ባይዱ
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
能力目标:
1.纯弯曲与横力弯曲的区别,中性轴的确定。 2.应力分布图的绘制,横截面上任意点弯曲正应力的 计算。 3.应用强度条件解决梁的强度计算问题。
王晓平
梁的应力计算及强度校核
一般情况下在梁的横截面上会同时存在由剪力FQ引起的剪 应力τ及由弯矩M引起的正应力σ。
在发生平面弯曲的梁中,将只有弯矩没有剪力的弯曲称为 纯弯曲,将既有剪力又弯矩的弯曲称为横力弯曲。
王晓平
梁的应力计算及强度校核
一、纯弯曲梁横截面上的正应力 纯弯曲梁的变形现象:
当梁体下弯时 (1)原来相互平行的纵向直线均成 为仍相互平行的曲线,且梁轴线 以上部分曲线缩短,梁轴线以下 部分曲线伸长。
(2)所有原来与纵向直线垂直的 横向线仍保持与纵向线垂直的直 线,即横截面不变形。

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式在工程力学中,梁是一种常见的结构元素,用于支撑和承载荷载。

在设计和分析梁的时候,我们需要考虑到梁的弯曲和剪切力。

本文将重点讨论梁的弯曲计算和剪力计算公式,帮助读者更好地理解和应用这些公式。

梁的弯曲计算公式。

在梁的弯曲计算中,我们需要考虑梁的受力情况以及梁的几何形状。

弯曲时梁的受力情况可以用弯矩来描述,弯矩的大小和位置取决于梁的荷载和支撑条件。

在弯曲计算中,我们通常使用以下公式来计算梁的弯矩:M = -EI(d^2y/dx^2)。

其中,M表示弯矩,E表示梁的弹性模量,I表示梁的惯性矩,y表示梁的挠度,x表示梁的位置。

这个公式描述了梁在弯曲时的受力情况,可以帮助我们计算梁的弯曲应力和挠度。

梁的剪力计算公式。

除了弯曲力之外,梁在受荷载时还会产生剪切力。

剪切力是梁上各点间的内力,它的大小和位置取决于梁的荷载和支撑条件。

在剪力计算中,我们通常使用以下公式来计算梁上各点的剪切力:V = dM/dx。

其中,V表示剪切力,M表示弯矩,x表示梁的位置。

这个公式描述了梁上各点的剪切力分布情况,可以帮助我们计算梁的剪切应力和剪切变形。

梁的弯曲和剪力计算实例。

为了更好地理解梁的弯曲和剪力计算,我们可以通过一个实例来说明。

假设有一根长度为L,截面为矩形的梁,受均布荷载w作用。

我们可以根据梁的受力情况和几何形状,计算出梁的弯矩和剪切力分布情况。

首先,我们可以计算出梁的弯矩分布情况。

根据梁的受力情况和几何形状,我们可以得到梁的挠度y(x)的表达式。

然后,我们可以通过弯矩公式M = -EI(d^2y/dx^2)来计算出梁上各点的弯矩分布情况。

接着,我们可以计算出梁上各点的剪切力分布情况。

根据梁的弯矩分布情况,我们可以通过剪切力公式V = dM/dx来计算出梁上各点的剪切力分布情况。

通过以上计算,我们可以得到梁在受均布荷载作用时的弯矩和剪切力分布情况。

这些计算结果可以帮助我们更好地了解梁的受力情况,指导我们设计和分析梁的结构。

梁的弯曲应力

梁的弯曲应力

Iz=πD4/64 Iz=π(D4-d4)/64 若设圆环的直径比d/D=α,则相
应的截面抗弯系数为
Wz
=
π D3 32
Wz
=
π D3 32
(1−α 4 )
y 第10章 梁的弯曲应力 C Dz
y
O
z
d D
工程力学
q=60kN/m
A
1m
C
l = 3m
FS 90kN
(+ ) (− )
M ql2 / 8 = 67.5kN⋅ m
T形截面外伸梁尺寸及受载如图,截面对形心轴z的惯性矩
Iz=86.8cm4,yl=3.8cm。求梁横截面上的最大拉应力和最大压应力。
解 1)由静力平衡
2kN
0.8kN
y1 y2 6cm
方程求出梁的支反力
FA=0.6kN,FB=2.2kN A
C
BD
zC
作弯矩图。 得最大正弯矩在截面
1m 1m 1m
FA
FB
=

E ρ
I
z
1 ρ
=
Mz EIz
重要公式 σ = − Mz y Iz
工程力学
σ = − My Iz
第10章 梁的弯曲应力
M AZ y
x
y 横截面上正应力分布规律: (1)中性轴是过横截面形心的一条直线。中性轴上,正应力为零。 (2)以中性轴为界,横截面上的一侧受拉,一侧受压。 (3)离中性轴越远,正应力的绝对值越大。在横截面上离中性轴 最远的边或点上有最大的拉应力和最大的压应力。
几何关系 ( 平截面假定 )
正应变与中性层曲率间的关系
物理关系 ( Hooke 定律 )
正应力与中性层曲率间的关系

工程力学第九章

工程力学第九章

下一页 返回
9.4

梁的弯曲变形与刚度
2.
挠度和转角
(1) 挠度 是指梁轴线上的一点在垂直于轴线方向上的位移, 通常用y表示。

一般规定向上的挠度为正,向上的挠度为负。它的单位是mm。 (2) 转角 是指梁的各截面相对原来位置转过的角度,用θ 表
示。

一般规定,逆时针方向的转角为正,顺时针的转角为负。它 的单位是弧度(rad)或度(º)。
远的边缘处。其计算公式为
max

(2) 梁的正应力强度条件为
M max y max M max Iz Wz
M max ≤[σ ] Wz
下一页 返回
max




max
* FQ S z
(3) 梁横截面上的切应力与切应力强度条件 对矩形截面梁,横截面上的切应力计算公式为 其最大切应力在截面的中性轴上,计算公式为 梁的切应力强度条件为τ max≤[τ ]
上一页 返回
9.2


梁弯曲时正应力强度计算
梁弯曲时正应力强度计算
9.2
为了保证梁在载荷作用下能够正常工作,必须使梁具备足够 的强度。也就是说,梁的最大正应力值不得超过梁材料在单 向受力状态(轴向拉、压情况)下的许用应力值[σ ],即 M max max ≤[σ ] (9.10) Wz 式(9.10)就是梁弯曲时的正应力强度条件。需要指出的是, 式(9.10)只适用于许用拉应力[σ l]和许用压应力[σ y]相等 的材料。如果两者不相等(例如铸铁等脆性材料),为保证梁 的受拉部分和受压部分都能正常工作,应该按拉伸式
上一页 下一页 返回
My Iz
(9.4)

工程力学 9弯曲

工程力学 9弯曲

O
讨论: 惯性矩大于零
z
§A.3 惯性矩的平行移轴公式
组合截面的惯性矩
1.惯性矩的平行移轴公式 yc y 设有面积为A的任意形状的截面。 x xc dA C为其形心,Cxcyc 为形心坐标 yc xc 系。与该形心坐标轴分别平行 C 的任意坐标系为Oxy ,形心C在 y Oxy坐标系下的坐标为(a , b) 任意微面元dA在两坐标系 x 下的坐标关系为: O b
20
③计算静矩Sz(ω)和SzC(ω)
Sz ( ) A y C (0.1 0.02 0.14 0.02 0.103 0.494m 3 )
S zc ( ) Ai y C 0.1 0.02 0.047 - 0.02 0.14 0.033 1.6 10 6 m 3
(f)
纵向线应变在横截面范围内的变化规律
图c为由相距d x的两横截面取出的梁段在梁弯曲后的情
况,两个原来平行的横截面绕中性轴相对转动了角d。梁的 横截面上距中性轴 z为任意距离 y 处的纵向线应变由图c可知 为

B1B B1 B y d AB1 O1O2 dx
(c)
令中性层的曲率半径为(如图c),则根 1 d 据曲率的定义 有 dx y
切应力。
F
FS
M
F
M
C

C
F
A

Ⅰ. 纯弯曲时梁横截面上的正应力
计算公式的推导 (1) 几何方面━━ 藉以找出与横截面上正应力相对应 的纵向线应变在该横截面范围内的变化规律。 表面变形情况 在竖直平面内发生纯弯曲的梁(图a):
(a)
1. 弯曲前画在梁的侧面上相邻横向线mm和nn间的纵 向直线段aa和bb(图b),在梁弯曲后成为弧线(图a),靠近梁

工程力学第9章 梁弯曲时的刚度计算

工程力学第9章 梁弯曲时的刚度计算
挠曲线

w

x
qx
F
x
9.1 挠曲线近似微分方程
9.1.2 挠度和转角的关系
◆挠曲线方程 : w f x
w
挠曲线

w

x
qx
F
x
tan dw
dx
dw
dx
9.1.3 挠曲线近似微分方程
一、挠曲线的曲率公式
1M EI

1
x

M x
EI
d2w

1
x


6EI 2l
l 2
2l 2


l 2
2



11Fl3 96EI
未知约束力单独作用引起的B处挠度
wB FB

FB 2l 3
48EI

FBl 3 6EI
将上述结果代入式(b),得到补充方程
11Fl3 FBl3 0 96EI 6EI
w Mex x2 l2 6EIl
(c)
Me 3x2 l2 6EIl
(d)
(4)计算最大挠度与截面的转角
作出梁的弯矩图如下图所示,全梁弯矩为正。其最大 挠度处的转角为零。故由式(c)有
dw Me 3x2 l2 0 dx 6EIl
从而得最大挠度所在截面的坐标为
2
在集中力 F 单独作用下,大梁跨度中点C的挠度由教材表
7–1第5栏中查出为
wC
F


Fl 3 48EI
将以上结果叠加,即得在均布载荷 和q 集中力 的F 共同作用
下,大梁跨度中点C的挠度

工程力学5

工程力学5

B
l Fl
| M |max Fl 1.2 F N m
查附录型钢表3,
x
4 3
Wz 185cm 1.85 10 m
3
M
由: 得: 故:
M max Wz
1.2F (1.85 104 ) (170 106 )
[ F ]max
185 170 26.2kN 1.2
* N2 * N1
* * 得 dFS=FN F 2 N1
其中 dFS= bdx
* FN 2 dA Ay
* FN 1
M dM y1dA Ay Iz M dM y1dA Ay Iz
Ay
* FN 2
M dM Sz Iz
M F Sz Iz
* N1
dFS
p
(4)由于y、z轴就是横截面的形心主轴,从而可得到启示:当横 截面没有对称轴时,只要外力偶作用在形心主轴之一(例如 y轴)所构成的纵向平面内,上述公式仍适用。 (5)对于用铸铁、木材以及混凝土等材料制成的梁,在应用上述
公式时,都带有一定的近似性。
例5-1 T形截面外伸梁尺寸及受力如图所示。已知横截面对中性轴
§5-2
横力弯曲时梁的正应力及其强度条件 梁的合理截面
q
一.横力弯曲时梁的正应力及其强度条件
q b
M ( x)
z h
l
y
b
Fs ( x)
由于τ的存在,横截面发生翘曲(§5-3)。平面假设不成立, 且还有沿y的挤压正应力。 由弹性力学结果表明,当l/h≥5时,用(5-2)式计算跨中截面的 最大正应力,其误差≤1.07%。所以工程中仍用纯弯曲时的正应 力公式,计算横力弯曲时的正应力。但要注意,横力弯曲时, 弯矩是x的函数,所以

工程力学-弯曲应力

工程力学-弯曲应力

6 弯曲应力1、平面弯曲梁横截面上的正应力计算。

正应力公式是在梁纯弯曲情况下导出的,并被 推广到横力弯曲的场合。

横截面上正应力公式为j zM y I σ=横截面上最大正应力公式为 max zM W σ=2、横力弯曲梁横截面上的切应力计算,计算公式为*2z QS I bτ= 该公式是从矩形截面梁导出的,原则上也适用于槽形、圆形、工字形、圆环形截面梁横截面切应力的计算。

3、非对称截面梁的平面弯曲问题,开口薄壁杆的弯曲中心。

4、梁的正应力强度条件和切应力强度条件为[]max σσ≤[]max ττ≤根据上述条件,可以对梁进行强度校核、截面设计和容许荷载的计算,与此相关的还要考虑梁的合理截面问题。

5、梁的极限弯矩6.1图6-6所示简支梁用其56a 号工字钢制成,试求此梁的最大切应力和同一截面腹板部分在与翼板交界处的切应力。

图 6.1[解] 作剪力图如图(c).由图可知,梁的最大剪力出现在AC 段,其值为max 7575000Q kN N ==利用型钢表查得,56a 号工字钢*247.7310z z S I m -=⨯,最大切应力在中性轴上。

由此得以下求该横截面上腹板与翼板交界处C 的切应力。

此时*z S 是翼板面积对中性轴的面积矩,由横截面尺寸可计算得*3435602116621()9395009.401022z S mm m -=⨯⨯-==⨯ 由型钢表查得465866z I cm =,腹板与翼板交界处的切应力为*max max max max23*max7500012600000126.47.731012.510z a z z z Q S Q MP I I dd S τ--=====⨯⨯⨯⨯a MP 6.12解题范例483750009.40108.6658661012.510fc a MP τ---⨯⨯==⨯⨯⨯6.2长为L 的矩形截面悬臂梁,在自由端作用一集中力F ,已知b =120mm ,h =180mm 、L =2m ,F =1.6kN ,试求B 截面上a 、b 、c 各点的正应力。

工程力学中的应力和应变的计算方法

工程力学中的应力和应变的计算方法

工程力学中的应力和应变的计算方法在工程力学这一领域中,应力和应变是两个极其重要的概念。

它们对于理解材料在受力情况下的行为以及结构的稳定性和安全性起着关键作用。

接下来,让我们深入探讨一下应力和应变的计算方法。

应力,简单来说,就是单位面积上所承受的内力。

想象一下,我们有一根杆子,在它的横截面上受到一个力的作用。

这个力除以横截面的面积,得到的值就是应力。

应力的单位通常是帕斯卡(Pa)。

在计算应力时,我们需要先明确受力的类型。

如果是拉伸或压缩力,应力的计算公式为:应力=力/横截面面积。

例如,有一根横截面面积为 001 平方米的杆子,受到 1000 牛顿的拉力,那么应力= 1000/ 001 = 100000 帕斯卡。

如果是剪切力,应力的计算就稍微复杂一些。

对于矩形截面,剪切应力=剪力/(横截面面积 ×剪切面的距离)。

假设一个矩形截面的宽度为 b,高度为 h,受到的剪力为 V,那么剪切面上的平均剪切应力= 3V / 2bh 。

应变则是描述物体在受力时发生的变形程度。

它是相对变形量,没有单位。

应变分为线应变和角应变。

线应变是指物体在某一方向上长度的变化量与原始长度的比值。

如果一根杆子原来的长度是 L,受力后长度变成了 L',那么线应变=(L' L)/ L 。

角应变,也称为切应变,用于描述物体的角度变化。

例如,一个正方形在受力后变成了菱形,其角度的变化量就是角应变。

在实际工程中,应力和应变的关系通常通过材料的本构方程来描述。

对于线弹性材料,应力和应变之间存在线性关系,遵循胡克定律。

胡克定律在拉伸或压缩情况下可以表示为:应力=弹性模量 ×应变。

这里的弹性模量是材料的一个固有属性,反映了材料抵抗变形的能力。

不同的材料具有不同的弹性模量。

例如,钢材的弹性模量通常较大,这意味着它在受力时相对不容易发生变形;而橡胶的弹性模量较小,受力时容易产生较大的变形。

除了简单的拉伸和压缩情况,对于复杂的受力状态,如弯曲、扭转等,应力和应变的计算就需要运用更复杂的理论和方法。

第八章 弯曲内力、应力及强度计算

第八章 弯曲内力、应力及强度计算

例8-3 如图所示的悬臂梁上作用有均布载荷q,试画出该梁的 剪力图和弯矩图。
解:(1) 列剪力方程和弯矩方程,
将梁左端A点取作坐标原点。
剪力方程和弯矩方程
FQ (x) qx (0 x l) M (x) 1 qx2 (0 x l)
2
(2) 画剪力图和弯矩图
剪力图是一倾斜直线
弯矩图是一抛物线
解 (1)计算1-1截面上弯矩
M1 P 200 1.5103 200103 300N m
(2) 计算 1-1 截面惯性矩
Ix
bh2 12
1.8 32 12
4.05 10 3 m4
(3) 计算1-1截面上各指定点的正应力
A
M1 yA Ix
300 1.5 102 4.05102
111106 N/m2
拉应力
B
M1 yB Ix
300 1.5 102 4.05102
111106 N/m2
压应力
A
M1 yC Ix
M1 0 0N/m 2 Ix
D
M1 yD Ix
3001.5102 4.05102
74.1106 N/m2
压应力
例8-9 一简支木梁受力如图(a)所示。已知q=2kN/m,l=2m。试比 较梁在竖放(图(b))和平放(图(c))时横截面C处的最大正应力。
3、 画剪力图和弯矩图
FQ FQ
FQ
max
ql 2
ql 2 M max 8
例 4 简支梁AB,在C 点处受集中力P 作用, 如图所示。 试作此梁的弯矩图。
解 (1)求支座反力
M B 0 Pb FAl 0
FY 0 FA FB P 0
(2) 列弯矩方程

工程力学:第9章 弯曲应力及强度计算(新)

工程力学:第9章 弯曲应力及强度计算(新)

P1
例如:
P2
纵向对称面
aP
Pa
A
P FS P
B P
x
P Pa M
x
3、纯弯曲(Pure Bending): 某段梁的内力只有弯矩
没有剪力时,该段梁的变 形称为纯弯曲。
纯弯曲:AB段
三.两个概念 中性层:梁内一层纤维既不伸长也不缩短,因而纤维不
受拉应力和压应力,此层纤维称中性层。 中性轴:中性层与横截面的交线。
x
t max
1.5
FS max A
1.5 5400 0.12 0.18
qL
2
0.375MPa 0.9MPa [t ]
应力之比
x
s max M max 2 A L 16.7
t max Wz 3FS h
P1=9kN
A
C
P2=4kN
B
D
1m RA
1m 1m RB
2.5kNm
x
4
例3 T 字形截面的铸铁梁受力如
(sdA)z
A
Eyz dA E
A
yzdA EI yz 0
A
(对称面)
M z
(sdA) y
A
Ey 2 dA E
A
y2dA
A
EI z
MZ
A y2dA I Z
• IZ—横截面对中性轴的惯性矩
1 Mz
EI z
… …(3) EIz 杆的抗弯刚度。
sx
M y Iz
...... (4)
M(x)+d M(x) 在梁上取微段如图b;
z
t1
x
在微段上取一块如图c,平衡
sI
t

梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)

梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)
(2)对于一般的跨度与横截面高度的比值较大的梁, 通常只进行正应力强度计算,切应力强度能自然满足。
(3)几种特殊情况下必须进行梁的切应力强度计算。
短粗梁 自行焊接 木梁
梁的合理截面
max
M max Wz
(1) 将材料配置于离中性轴较远处
(2) 采用不对称于中性轴的截面
脆性材料
(3) 采用变截面梁
弯曲切应力及强度计算
弯曲
(内力图)
外力 —— 内力 —— 应力
弯曲变形 的条件
求约束反力
弯矩M 剪力Fs
My
Iz
Fs
S
* z
bI z
梁横截面上的切应力 矩形截面梁

S
* z
bI z
x
σ 分布规律 τ 分布规律
Fs
S
* z
不同形状截面梁的最大剪应力
bI z
矩形截面梁
B
A
C
A
C
B
max l max h
梁内的主要应力是正应力!
危险截面、危险点
E右到B左
z
y
危险点
危险截面 24
D右 28
24
My
Iz
Fs
S
* z
bI z
危险截面上的危险点
max ≤[ ]
max ≤[ ]
正应力强度条件 切应力强度条件
三类计算:①强度校核、②截面设计、③确定许用荷载
(1)在进行梁的强度计算时,必须同时满足正应力 和切应力两种强度条件。
“等强度梁”
Wz (x)
M ( x)
[ ]
工字形截面梁
max
3 2
Fs A
max

工程力学弯曲强度2(应力分析与强度计算

工程力学弯曲强度2(应力分析与强度计算

max
y
2
当中性轴是横截面的对称轴时:
IZ
max
IZ
y
y1 y2 y max
1
即对称截 面梁
max max max
y
Iz 简单截面的抗弯截面系数 Wz= ymax y
h z
y z
bh Iz bh 2 Wz= 12 h h 6 2 2
3
max - max -

i max

M z max max i = Wz i
一般非等直梁
M z x y x max = max x = I z x max
可利用函数求导的方法得到最大正应力数值
固定端处梁截面上的弯矩: M=Me 。 且这一梁的所有横截面上的弯矩都 等于外加力偶的力偶矩Me
中性轴通过 截面形心,因此z 轴就是中性轴。 据弯矩方向可知中性 轴以上均受压应力,以下 均受拉应力。 根据正应力公式,横截面上正应力沿截面高度(y) 按直线分布,在上、下边缘正应力最大。可画出固定 端截面上的正应力分布图。
M max y 2 0.253N m 10 3 15 10 3 m 2 0.842 10 3 Pa 84.2MPa Iz 4.5 10 -8 m 4
例题
C
FRA FRB
T形截面简支梁在中点承受集中力 FP =32kN, l=2m。 T形截面的形心坐标yC=96.4mm,横截面对于z 轴的惯性矩Iz =1.02108 mm4。求:弯矩最大截面上的 最大拉应力和最大压应力。 解: 根据静力学平衡可求得支座A和B处的约束力分别 为FRA=FRB=16 kN。据内力分析,知梁中点截面 上弯矩最大

工程力学 第九章 梁的应力及强度计算

工程力学 第九章 梁的应力及强度计算
平面弯曲时,如果某段梁的横截面上只有弯矩M,而无剪力Q = 0,这种弯曲称为纯弯曲。
1、矩形截面梁纯弯曲时的变形观察
现象:
(1)变形后各横向线仍为直线,只是相对旋转了一个角度,且与变形后的梁轴曲线保持垂直,即小矩形格仍为直角;
(2)梁表面的纵向直线均弯曲成弧线,而且,靠顶面的纵线缩短,靠底面的纵线拉长,而位于中间位置的纵线长度不变。
对剪应力的分布作如下假设:
(1)横截面上各点处剪应力均与剪力Q同向且平行;
(2)横截面上距中性轴等距离各点处剪应力大小相。
根据以上假设,可推导出剪应力计算公式:
式中:τ—横截面上距中性轴z距离为y处各点的剪应力;
Q—该截面上的剪力;
b—需求剪应力作用点处的截面宽度;
Iz—横截面对其中性轴的惯性矩;
Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。
应力σ的正负号直接由弯矩M的正负来判断。M为正时,中性轴上部截面为压应力,下部为拉应力;M为负时,中性轴上部截面为拉应力,下部为压应力。
第二节 梁的正应力强度条件
一、弯曲正应力的强度条件
等直梁的最大弯曲正应力,发生在最大弯矩所在横截面上距中性轴最远的各点处,即
对于工程上的细长梁,强度的主要控制因素是弯曲正应力。为了保证梁能安全、正常地工作,必须使梁内最大正应力σmax不超过材料的许用应力[σ],故梁的正应力强度条件为:
圆形截面横梁截面上的最大竖向剪应力也都发生在中性轴上,沿中性轴均匀分布。
其它形状的截面上,一般地说,最大剪应力也出现在中性轴上各点。
结合书P161-162 例8-3进行详细讲解。
五、梁的剪应力强度校核
梁的剪应力强度条件为:
在梁的强度计算时,必须同时满足弯曲正应力强度条件和剪应力强度条件。但在一般情况下,满足了正应力强度条件后,剪应力强度都能满足,故通常只需按正应力条件进行计算。

梁的弯曲应力与强度计算

梁的弯曲应力与强度计算

虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正
应力计算公式来计算横力弯曲时的正应力,所得结果误差不大,
足以满足工程中的精度要求。且梁的跨高比 l/h 越大,其误差越小。

My Iz
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
例: 已知 l=1m,q=6kN/m,10号槽 钢。求最大拉应力和压应力。 解:(1)作弯矩图
28 . 8 MPa t
y2

( 2 . 5 10 N m )( 88 10 763 10
8
3
m)
Iz
m
4
故该梁满足强度条件。
8 梁的弯曲应力与强度计算 8.3.1 梁的弯曲剪应力
8.3 梁的剪应力及其强度条件
1. 矩形截面梁的弯曲剪应力
关于横截面上剪应力的分布
M
max

2F 3W z
Wz




3 2
( 237 10
6
)( 160 10 ) N 56 . 9 kN
6
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
例:一矩形截面木梁,已知 F =10 kN,a =1.2 m。木材的许用应力
=10MPa。设梁横截面的高宽比为h/b=2,试选梁的截面尺寸。

bh 6
2
对于直径为 D 的圆形截面
Wz Iz y max

D / 64
4

D
32
3
D /2
对于内外径分别为 d 、D 的空心圆截面
Wz Iz y max

D (1 ) / 64

建筑力学梁承受力计算公式

建筑力学梁承受力计算公式

建筑力学梁承受力计算公式在建筑工程中,梁是一种常见的结构元件,用于承担横向荷载和弯矩。

梁的设计和计算是建筑工程中非常重要的一部分,其中梁的承受力计算是其中的关键步骤之一。

在本文中,我们将讨论建筑力学梁承受力计算的公式和方法。

梁的承受力计算涉及到多个因素,包括梁的几何形状、材料特性、荷载情况等。

在进行承受力计算时,通常需要考虑梁的弯曲、剪切、挠曲等多种受力情况。

下面我们将分别介绍这些受力情况下的承受力计算公式和方法。

1. 弯曲。

当梁受到集中力或均布力作用时,会产生弯曲。

在弯曲情况下,梁的受力状态可以用弯矩来描述。

根据弯矩的定义,我们可以得到梁的弯曲应力和弯曲应变的公式。

在一般情况下,梁的弯曲应力和弯曲应变可以用以下公式来计算:弯曲应力σ = M y / I。

弯曲应变ε = σ / E。

其中,M为弯矩,y为受力点到截面重心的距离,I为截面惯性矩,E为材料的弹性模量。

通过这些公式,我们可以计算出梁在弯曲情况下的应力和应变,从而评估其受力情况。

2. 剪切。

除了弯曲外,梁在受到横向力作用时还会产生剪切。

剪切力会导致梁产生剪切应力和剪切变形。

在计算剪切力时,我们可以使用以下公式:剪切应力τ = V Q / (I b)。

其中,V为剪切力,Q为截面偏心距,b为截面宽度。

通过这个公式,我们可以计算出梁在剪切情况下的应力,从而评估其受力情况。

3. 挠曲。

除了弯曲和剪切外,梁在受到荷载作用时还会产生挠曲。

挠曲会导致梁产生挠曲变形和挠曲应力。

在计算挠曲时,我们可以使用以下公式:挠曲应力σ = M y / W。

其中,M为弯矩,y为受力点到截面重心的距离,W为截面模量。

通过这个公式,我们可以计算出梁在挠曲情况下的应力,从而评估其受力情况。

在实际工程中,梁通常会同时受到多种受力情况的作用,因此需要综合考虑这些受力情况下的影响。

在进行梁的承受力计算时,我们通常会根据实际情况综合考虑弯曲、剪切、挠曲等多种受力情况,并采用适当的方法进行计算。

弯曲的强度计算.

弯曲的强度计算.
工程力学
弯曲的强度计算
主 讲 人: 张翌娜 黄河水利职业技术学院 2014.09
工程力学
弯曲变形
弯曲的强度计算条件,可解决梁中的三类强度计算问题 1.强度校核
已知梁的横截面形状及尺寸、材料的许用应力及所受荷载,校 核梁是否满足正应力强度条件。
max
M z max Wz
山西水利职业技术学院 长江工程职业技术学院 重庆水利电力职业技术学院
工程力学
弯曲的强度计算
3.确定许可荷载
已知梁的横截面尺寸及材料的许用应力,根据强度条件计算 梁所能承受的最大弯矩
M z max Wz
再由最大弯矩与荷载之间的关系,计算梁所能承受的最大荷载
工程力学
主持单位: 黄河水利职业技术学院
福建水利水电职业技术学院
湖南水利水电职业技术学院
参建单位: 四川水利职业技术学院
应当指出,如果工作应力超过了许用应力,但只要不超过
工程力学
许用应力的5%,在工程计算中仍然是允许的。
弯曲的强度计算
2.截面设计
已知梁所承受的荷载及材料的许用应力,设计梁所需的横截面 尺寸,即利用强度条件计算所需的抗弯截面系数。
Wz
M z max

根据梁的截面形状,再由进一步确定截面的具体尺寸或型钢号

工程力学 第九章 梁的强度刚度计算

工程力学 第九章 梁的强度刚度计算

由结果知,梁的强度不满足要求。
返回 下一张 上一张
y2
z
例9-6 试为图示钢轨枕木选择矩形截面。已知矩形截面尺寸的比 例为b:h=3:4,枕木的弯曲许用正应力[]=15.6MPa,许用剪应力 P P 0 0 .2 m 1 .6 m []=1.7MPa,钢轨传给枕木的压力P=49KN。 .2 m
a
M D ya Iz
返回 下一张 上一张
10.7
第二节 梁横截面上的剪应力
一、矩形截面梁:
矩形截面剪应力计算公式: τ沿截面高度按抛物线规律变化:
2Iz 4
3
QS
* z
I zb
bh
4
τ m ax
2 3
y
h 2
, 0 ; y 0 , max
6 Qh 4 bh
校核梁的正应力强度。
解:(1) 内力及抗弯截面模量计算: MC=3.0KN.m; MD=-4.8KN.m
W1 W2
P1
A
a C a
P2
D
a B
y1

z

763 5 .2
146 . 7 cm
3
y1

z

763 8 .8
86 . 7 cm
3
4 .8 k N m
y2
(2)C截面的正应力强度校核:
4 Q 3 A1
max 2
Q A2
返回 下一张 上一张
例9-3 矩形截面简支梁如图,已知:l=2m,h=15cm,b=10cm, h1=3cm,q=3kN/m。试求A支座截面上K点的剪应力及该截面的最 b q 大剪应力。 解:1.求剪力:QA=3kN

《工程力学》第十章 弯曲应力

《工程力学》第十章 弯曲应力

• 三、静力学关系
• 自纯弯曲的梁中截开一个横截
面来分析,如图10-5所示,图
中y轴为横截面的对称轴;z轴
为中性轴,z轴的确切位置待
定。在截面中取一微面积dA,
作用于其上的法向内力元素为
σdA,截面上各处的法向内力
图10-5
元素构成了一个空间平行力系。
• 由于梁弯曲时横截面上没有轴向外力,所以
这些内力元素的合力在x方向的分量应等于
• 图10-3所示。
图10-3
图10-4的对称轴,z轴与截面的中性轴重 合,如图10-4所示,至于中性轴的确切位 置,暂未确定。现研究距中性层y处纵向 纤维ab
• 由平截面规律知,在梁变形后该微段梁两
端相对地旋转了一个角度d ,如果以ρ代
表梁变曲后中性层
《工程力学》第十章 弯曲应力
§10-1梁弯曲时的正应力 设一简支梁如图10-1(a)所示,其上作用两个对称的集中 力P。此时在靠近支座的AC,DB两段内,各横截面上同 时有弯矩M和剪力Q,这种情况的弯曲,称为剪切变曲; 在中段CD内的各横截面上,则只有弯矩M,而无剪力Q, 这种情况的弯曲,称为纯弯曲。为了更集中地分析正应力
(10-15) • Wz称为抗弯截面模量,它是衡量横截面抗
弯强度的一个几何量,其值与横截面的形 状和尺寸有关,单位为米3(m3)或厘米 3(cm3)。对于矩形截面(图10-9)
(10-16)
• 对于圆形截面(图10-10(a)), (10-17)
• 对于空心圆形截面(图10-10(b)),
(10-18)
• (1)若梁较短或载荷很靠近支座,这时梁的最大 弯矩Mmax可能很小,而最大剪应力Qmax却 相对地较大,如果按这时的Mmax来设计截面 尺寸,就不一定能满足剪应力的强度条件;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程力学
8 梁的弯曲应力与强度计算
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。 称为纯弯曲。
8.2 弯曲正应力的强度条件
横力弯曲时,弯矩随截面位置变化。一般情况下,最大正应
力 ? max 发生在弯矩最大的截面上,且离中性轴最远处。即
引用记号 则
? max
?
M max ymax Iz
Wz ?
Iz ymax
? max
?
M max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为 m3。
成正比。
在中性轴上:y=0, σ =0。
8.1 梁弯曲时横截面上的正应力
静力学关系
? FN ?
? dA
A
? ? M y ?
z? dA
? dA ? 0
A
(c)
? M y ?
z? dA ? 0
A
(d)
? M z ?
y?
A
dA ?
Me
(e)
将式 ? ? E y 代入式(c),得 ?
单向受力假设:各纵向纤维之间相互不挤压。
8.1 梁弯曲时横截面上的正应力
设想梁由平行于轴线的众 多纵向纤维组成,由底部纤维 的伸长连续地逐渐变为顶部纤 维的缩短,中间必定有一层纤 维的长度不变。
中性层:中间既不伸长也 不缩短的一层纤维。 中性轴:中性层与梁的横截面的交线,垂直于梁的纵向对称 面。(横截面绕中性轴转动) 中性轴垂直于纵向对称面。
? ? My
Iz
8.1 梁弯曲时横截面上的正应力
例: 已知 l=1m,q=6kN/m,10号槽 钢。求最大拉应力和压应力。
解:(1)作弯矩图
M max
?
1 ql 2 2
?
3000N ?m
(2)由型钢表查得,10号槽钢
Iz ? 25.6cm4 b ? 4.8cm y1 ? 1.52cm
(3)求最大应力
?
t ,max
?
M max y1 Iz
?
(3000 N ?m)(1.52 ? 10 ?2 m)
25.6 ? 10-8 m 4
? 178.1MPa
? ? ? c,max
?
M max y2 Iz
?
(3000 N ?m) (4.8 ? 1.52) ? 10 ?2 m 25.6 ? 10-8 m 4
?
384.4MPa
8.2 弯曲正应力的强度条件
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
Wz ?
Iz ymax
?
bh3 /12 h/2
?
bh 2 6
对于直径为 D 的圆形截面
Wz
?
Iz ymax
?
?D4 / 64
D/2
?
?D3
32
对于内外径分别为 d 、D 的空心圆截面
Wz
?
Iz ymax
?
?D4 (1? ? 4 ) / 64 ?
8.1 梁弯曲时横截面上的正应力
? ? ?? ? y?d? ? ? d? ? y
(a)
? d?
?
物理关系:
因为纵向纤维之间无正应力,每一纤维都是单向拉伸或压缩。
当应力小于比例极限时,由胡克定律知
? ? E?
将 (a) 代入上式,得
? ?Ey
(b)
?
式(b)表明横截面上任意一点的正应力σ 与该点到中性轴的距离 y
8.1 梁弯曲时横截面上的正应力
8.1.1 纯弯曲时横截面上的正应力 实验观察变形
纵向线(aa、bb):变为弧线,凹侧 缩短,凸侧伸长。 横向线(mm、nn): 仍保持为直线, 发生了相对转动,仍与弧线垂直。
平面假设:梁的横截面在弯曲变形后仍然保持平面,且与变 形后的轴线垂直,只是绕截面的某一轴线转过了一个角度。
8.1 梁弯曲时横截面上的正应力
变形几何关系: 设横截面的对称轴为y 轴,向下为 正,中性轴为 z 轴(位置未定)。
bb ? ?? ? y ?d?
bb ? dx ? OO ? OO ? ? d?
? ? ?? ? y?d? ? ? d? ? y (a)
? d?
?
式(a)表明线应变ε与它到中性层的距
离 y 成正比。
EIz 称为梁的弯曲刚度。
8.1 梁弯曲时横截面上的正应力
? ?Ey
(b)
?
1M ?
? EIz
由上面两式,得纯弯曲时正应力的计算公式:
My
??
Iz
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为
正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。
以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
D/2
?D3 (1? ? 4 )
32
8.2 弯曲正应力的强度条件
如果梁的最大工作应力,不超过材料的许用弯曲应力,梁就 是安全的。因此,梁弯曲时的正应力强度条件为
? ? ? max
?
M max Wz
?
?
对于抗拉和抗压强度相等的材料 (如炭钢),只要绝对值最大 的正应力不超过许用弯曲应力即可。
对于抗拉和抗压不等的材料 (如铸铁),则最大的拉应力和最 大的压应力分别不超过各自的许用弯曲应力。
A
(e)
? ? z? dA ? E y z dA ? 0
A
?A
? ? A y z dA ? I yz ? 0
(自然满足)
y 轴为对称轴,必然有Iyz=0。
将式(b)代入式(e),得
? ? M ? y? dA ? E y2 dA
A
?A
?
M
?
E
?
Iz
式中1/ρ为梁弯曲后轴线的曲率。
1M ??
? EI z
?A?
dA ?
?A
Ey
?
dA ?
0
? E =常量,
?
E y dA ? 0
?A
?
Sz ? 0 ?
z 轴(中性轴)通 过截面形心。
梁的轴线在中性层内,其长度不变。
8.1 梁弯曲时横截面上的正应力
? ?Ey
(b)
?
将式(b)代入式(d),得
? M y ?
z? dA ? 0
A
(d)
? M z ?
y? dA ? M
只要梁有一纵向对称面,且载荷作用于这个平面内,上面的
公式就可适用。
8.1 梁弯曲时横截面上的正应力
8.1.2 横力弯曲时横截面上的正应力 在工程实际中,一般都是横力弯曲,此时,梁的横截面上不
但有正应力还有剪应力。因此,梁在纯弯曲时所作的平面假设和 各纵向纤维之间无挤压的假设都不成立。
虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正 应力计算公式来计算横力弯曲时的正应力,所得结果误差不大, 足以满足工程中的精度要求。且梁的跨高比 l/h 越大,其误差越小。
相关文档
最新文档