高中物理复合场专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课一 带电粒子在匀强磁场中的运动
一、带电粒子在直线边界磁场中的运动 1.基本问题
【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300
.求: (1)电子的质量m
(2)电子在磁场中的运动时间t
【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径)
3、 求时间(t=
0360θ
×T或t=
v
s )
注意:带电粒子在匀强磁场中的圆周运动具有对称性。
① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
2.应用对称性可以快速地确定运动的轨迹。
【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比
m
q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。
【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L sin θ=
12
①
带电粒子在磁场中作圆周运动,由
qv B mv R
00
2
=
解得R mv qB
=
②
①②联立解得
q m v LB
=
20sin θ
【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。
2qBd m v
=
303603d t T v
π=
=
二、带电粒子在圆形边界磁场中的运动
【例题3】电视机的显像管中,电子(质量为m ,带电量为e )束的偏转是用磁偏转技术实现的。电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图9-6所示,磁场方向垂直于圆面,磁场区的中心为O ,半径为r 。当不加磁场时,电子束将通过O 点打到屏幕的中心M 点。为了让电子束射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B 应为多少?
【审题】本题给定的磁场区域为圆形,粒子入射方向已知,则由对称性,出射方向一定沿径向,而粒子出磁场后作匀速直线运动,相当于知道了出射方向,作入射方向和出射方向的垂线即可确定圆心,构建出与磁场区域半径r 和轨迹半径R 有关的直角三角形即可求解。
【解析】如图9-7所示,电子在匀强磁场中做圆周运动,圆周上的两点a 、b 分别为进入和射出的点。做a 、b 点速度的垂线,交点O 1即为轨迹圆的圆心。
设电子进入磁场时的速度为v ,对电子在电场中的运动过程有:2mv eU 2
=
对电子在磁场中的运动(设轨道半径为R )有:R
v m evB 2
=
由图可知,偏转角θ与r 、R 的关系为:R
r 2tan =θ 联立以上三式解得:2
tan e mU 2r 1B θ
=
【总结】本题为基本的带电粒子在磁场中的运动,题目中已知入射方向,出射方向要由粒子射出磁场后做匀速直线运动打到P 点判断出,然后根据第一种确定圆心的方法即可求解。
三、带电粒子在磁场中运动的极值问题 寻找产生极值的条件: ① 直径是圆的最大弦;
② 同一圆中大弦对应大的圆心角; ③ 由轨迹确定半径的极值。
【例题4】如图半径r =10cm 的圆形区域内有匀强磁场,其边界跟y 轴在坐标原点O 处相切;磁场B =0.33T 垂直于纸面向内,在O 处有一放射源S 可沿纸面向各个方向射出速率均为v=×106
m/s 的α粒子;
已知α粒子质量为m=×10-27kg ,电量q=×10-19
c ,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t 各多少?
【审题】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O 进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。 【解析】α粒子在匀强磁场后作匀速圆周运动的运动半径:r 2m 2.0qB
mv
R ===
α粒子从点O 入磁场而从点P 出磁场的轨迹如图圆O /
所对应的圆弧所示,该弧所对的圆心角即为最大偏转角θ。
由上面计算知△SO /
P 必为等边三角形,故θ=60°
此过程中粒子在磁场中运动的时间由即为粒子在磁场中运动的最长时间。
【总结】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。
四、带电粒子在磁场中运动的多解问题
【例题5】长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图所示,磁感应强度为B ,今有质量为m 、带电量为q 的正离子从平行板左端中点以平行于金属板的方向射入磁场。欲使离子不打在极板上,入射离子的速度大小应满足的条件是 ( )
A.m qBL v 4<
B.m qBL
v 45> C.m qBL v >
D.m
qBL
v m qBL 454<< 解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某
值r 1时粒子可以从极板右边穿出,而半径小于某值r 2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r 的最小值r 1以及粒子在左边穿出时r 的最大值r 2,由几何知识得:
粒子擦着板从右边穿出时,圆心在O 点,有: r 12=L 2+(r 1-L /2)2得r 1=5L /4,
又由于r 1=mv 1/Bq 得v 1=5BqL /4m ,∴v >5BqL /4m 时粒子能从右边穿出。
粒子擦着上板从左边穿出时,圆心在O '点,有r 2=L /4,又由r 2=mv 2/Bq =L /4 得v 2=BqL /4m
∴v 2 【总结】本题只问带电粒子在洛伦兹力作用下飞出有界磁场时,由于粒子运动轨迹是圆弧状,因此, 它可能穿过去了,也可能转过180o 从入射界面这边反向飞出,于是形成多解,在解题时一定要考虑周全。 【练习】如图所示,足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,现从ad 边的中心O 点处,垂直磁场方向射入一速度为v 0的带正电粒子,v 0与ad 边的夹角为30°.已知粒子质量为m ,带电量为q ,ad 边长为L ,不计粒子的重力. (1)求要使粒子能从ab 边射出磁场,v 0的大小范围.