圆周运动-圆盘模型
圆周运动-圆盘模型精编版

圆周运动——圆盘模型1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:2、(1)转盘的角速度为时绳中的张力T1;(2)转盘的角速度为时绳中的张力T2。
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20 cm,B离轴心r2=30 cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B 与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度为5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(g=10m/s2)6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A.两物体均沿切线方向滑动B.两物体均沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为rA =10 cm,rB=40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。
高考物理模型之圆周运动模型【范本模板】

第二章 圆周运动解题模型:一、水平方向的圆盘模型1. 如图1。
01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。
(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr.(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。
(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。
2. 如图2。
02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B 两个小物块.A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0。
5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。
ω再增大,AB 间绳子开始受到拉力。
由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。
六种圆周运动模型 ppt课件

F合
mg
tan
F心
F心
mv2 r
mw2r
解得:
v gr
tan
w g
tan r
规律:稳定状态下,小球所处的位置越高,半径r越
大,角速度越小,线速度越大,而小球受到的支持
力和向心力并不随位置六的种圆变周运化动而模型变化。
4
三、火车转弯模型:
六种圆周运动模型
5
四、汽车过桥模型:
F向
ma
ห้องสมุดไป่ตู้
mv2 R
F向
ma
mv2 R
FN
G mv2 R
六种圆周运动模型
6
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
gR
:绳子或外轨道对物体的弹力:
v2 F m G
R
方向竖直向下
v = g R :绳子或外轨道对物体的弹力:F=0
v< gR:物体不能过最高点!!!
v = g R 是物体所六种受圆周弹运力动模方型 向变化的临界速度。 7
六种圆周运动模型分析
六种圆周运动模型
1
一、圆盘模型:
F合f F心mr2vm2w r
当f最大值时: f mg 线速度有最大值:v gr
g
角速度有最大值:w r
六种圆周运动模型
2
二、圆锥摆模型: 由拉力F和重力G的合力提供向心力
六种圆周运动模型
3
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力
高考物理模型之圆周运动模型

第二章 圆周运动解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=gr 时,细绳的拉力F T 1。
(2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr 。
(1)因为ωμω102=<gr ,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。
(2)因为ωμω2032=>g r,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。
2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。
ω再增大,AB 间绳子开始受到拉力。
由F m r fm =1022ω,得:ω011111055===F m r m g m r rad s fm./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。
高考物理模型之圆周运动模型

第二章 圆周运动之欧侯瑞魂创作创作时间:贰零贰壹年柒月贰叁拾日解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。
(2)当转盘的角速度ωμ232=g r时,细绳的拉力F T 2。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。
(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。
(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。
2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A 的质量为m kg A =2,离轴心r cm 120=,B的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。
ω再增大,AB 间绳子开始受到拉力。
由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超出B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。
专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。
此时,圆盘上该点所受的向心力最大,达到极限值。
热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。
球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。
单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。
这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。
球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。
双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。
这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。
热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。
热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。
在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。
圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。
在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。
车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。
高考物理解题模型 第二章 圆周运动

高考物理解题模型第二章 圆周运动解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。
(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。
(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。
(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。
2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/) 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。
圆周运动的几个模型

圆周运动的几个模型一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度时,细绳的拉力。
(2)当转盘的角速度时,细绳的拉力。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。
(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。
(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。
2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A 的质量为,离轴心,B 的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?角速度为多大?()图2.02 (1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。
再增大,AB间绳子开始受到拉力。
由,得:(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。
如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。
设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3.如图2.03所示,两个相同材料制成的靠摩擦传动的轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。
最全圆周运动模型

圆周运动模型一、匀速圆周运动模型 1.随盘匀速转动模型1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。
轻绳长度为L 。
现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求:(1)物体运动一周所用的时间T ;(2)绳子对物体的拉力。
3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。
圆盘上的小球A 作匀速圆周运动。
问(1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止?(2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止?4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。
当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)( )A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。
高考物理模型之圆周运动模型之欧阳歌谷创编

第二章 圆周运动欧阳歌谷(2021.02.01)解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。
(2)当转盘的角速度ωμ232=g r时,细绳的拉力F T 2。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。
(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。
(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。
2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A 的质量为m kg A =2,离轴心r cm 120=,B的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。
ω再增大,AB 间绳子开始受到拉力。
由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。
圆周运动_圆盘模型

圆周运动——圆盘模型1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:2、(1)转盘的角速度为时绳中的张力T1;(2)转盘的角速度为时绳中的张力T2。
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20 cm,B离轴心r2=30 cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B 与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度为5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(g=10m/s2)6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A.两物体均沿切线方向滑动B.两物体均沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为rA =10 cm,rB=40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。
六种圆周运动模型公开课获奖课件

五、轻绳模型
1、安全通过最高点临界条件:
v临 = gR
2、对最高点分析:
v> gR :绳子或外轨道对物体弹力:
v2 F m G
R
方向竖直向下
v= gR :绳子或外轨道对物体弹力:F=0
v< gR:物体不能过最高点!!!
v = gR 是物体所受弹力方向变化临界速度。
第7页
六、轻杆模型
1、安全通过最高点临界条件:
F心
mv 2 r
mw2r
解得:
v gr
tan
w g
tan r
规律:稳定状态下,小球所处位置越高,半径r越大, 角速度越小,线速度越大,而小球受到支持力和向心 力并不随位置变化而变化。
第4页
三、火车转弯模型:Байду номын сангаас
第5页
四、汽车过桥模型:
F向
ma
mv2 R
FN
G
mv2 R
F向
ma
mv2 R
第6页
六种圆周运动模型分析
第1页
一、圆盘模型:
F合
f
F心
mv 2 r
mw2r
当f最大值时: f mg
线速度有最大值:v gr
角速度有最大值:w g
r
第2页
二、圆锥摆模型: 由拉力F和重力G合力提供向心力
第3页
倒置圆锥摆模型:
1.假如内壁光滑,由重力和支持力合力提供向心力
mg
F合 tan F心
v临 = gR
2、对最高点分析:
v> gR :绳子或轨道对物体弹力:
F m v2 G R
方向竖直向下
v= gR :轻杆或管道对物体弹力:F=0
高中物理圆周运动模型

圆周运动模型解题思路①明确研究对象进⾏受⼒分析画出受⼒示意图②分析向⼼为来源③列⽅程in aim Fmuim筘mwo④解⽅程⽔平圆周模型-圆盘模型gwiv问缓慢增机求滑块相对滑动的⼼弱⼥䳸f充当向⼼⼒finnair wi閒fif当ffmaing时W达到最⼤ynmgmwr w⼈越⼩r越⼤越容易滑动与m⽆关0⽐ 时滑块未滑动癌-1⾼⼆muir⼼愿时相对滑动所需知后ing例已知A13C质量分别为mnmn meAǒc们半径分别为r r2⼦从相同0恰好相对圆盘静⽌求A13受到的fEt国国对ciyimcgmuizr⽐㯚Ii MA Wir fimBW ir2半径为r A13之间从⼀13与圆盘之间㥘遯13谁先滑动0W A从啊MAW irtB Mziniig m gHmng mBg ui i临界值Wi㦡Wpi㦡随着必IMA 喖w_w A先滑州州3WFWB⼀起滑州以3WPWB13先AB⼀起3已知物块质量为in r判断绳中是否有拉⼒cowmgmw ir w㾚0was fjnuir TOrǖw_w Fīymgmwr4已知Mmg W RA RB闻绳内何时产⽣⼒何时滑动同侧0W MMg mw in WB原A BOW WB静提供向⼼⼒绳⽆拉⼒国国Wiwa Wa绳产⽣拉⼒B Mmg t Em winA静⼀Em winW_w A⻢上滑动BMgtEmwirBAmg F mw in⺕15已知A13质量分别为m M动摩擦因 13相对圆盘静⽌半径为r求⼉的取值范围cow对A F mgir邮对13⽐较⼩时t sf T f MWrmg MMg Mwm ir uift A国当⼤0时Ta EM wirW愿was揹离圆⼼w_w f指向圆⼼⽐较⼤时if If MuirmgtyMg Mwmiwl sfp wm in WE Wmaxi6AW愿Biwi愿异侧ow加㜾B先临界①0WEW A13均为 绳内⽆拉⼒照照此⼼以B pig不够绳内有拉⼒撤T 对B T国对AT tpng m hn Ttf静MA uniwi iti TT if静减⼩1先向内减为0再向外增⼤1豳T之后AT f静⼆mini㓥静Mng时A临界T png m in17已知mr MN弹簧劲度系数为k物块恰不滑动求愿⻓1 cow W瘵Wcw义⼼压缩im ymg kil rkmairwno tk拉伸Nmgtkl nl mwr⼆圆锥摆模型扃mgtanoagtanoLim Wriiiw等⻓圆锥摆L 定_F mgtanQmwl si no LniW ⺦品等⻓圆锥摆转动速度过快甩得越⾼等⾼圆锥摆h 定_tan ⽉卡W 原等⾼圆锥摆w 下㜀等IĀh⽐过⼤h 减⼩⼩球会⻜起来go____W 从0增⼤a ⼀定有⼒b 不⼀定有⼒T asintmg的定值T acos 0⼗万muir万增⼤三漏⽃模型i1三器咔a㵿mgǚtan卡让丽对于同⼀漏⽃⼼不蕊___1向⼼加速度都相同2都相同为后相同了若⼼则内Not你从碗底到碗⼝逐渐减⼩让不半球形碗R固定不变近⼼离⼼屩ME灜⼀指向圆⼼的合⼒法向⼒则证姆屩⼆灜圆周运动阼咔F㟐㳡⽊屩灜离⼼运动V不够屩1赢近⼼运动洗⾐机脱⽔筒四过弯模型汽⻋⽔平转弯0最⼤值是多少if_意囌5囑喈jumgm 等Vmihugrit rt 越容易侧滑⽕⻋转弯_䑉mg与1元的合⼒1鬺哶可tan1⾼⼆mgtanmiFiliT ano若Plant 则mgtan 孙于所需的⼒mg外轨施加向内的压⼒若以Tt 则mgtan 挝⼤内轨施加向外的⽀持⼒I竖直圆周模型⼀绳模型佯轨m最⾼点Ttmgm毕选重v r当我0时要恰好通过最⾼点mgm下0原oi若想完成完整的圆周运动则到最⾼点速度⾄少为原最低点T mg__m憴重单轨模型最⾼点Fnitmg喋i若想完成完整的圆周运动则到最⾼点速度⾄少为原侃0最低点Firing暩最⾼点F0图像绳对⼩球作⽤⼒FnEm E mgmgmO b V2⼆杆模型双轨m A最⾼点速度从0开始逐渐增⼤R籲mg与流的合⼒屫啥当⻓较⼩时mg1元㗳以越⼤1元越⼩当11元0时mgm等红厅⼦当以较⼤时mg1元哶以越⼤Fi越⼤最低点杆只能提供拉⼒FN mg my双轨模型最⾼点当⻓较⼩时内轨提供向上的1元当阮0时轨道恰⽆作⽤⼒让原当以较⼤时外轨提供向下的信最低点外轨提供向上的1元最⾼点F0图像杆对⼩球作⽤⼒i V2的时V3b时F mE mg F mE mgmg咔0b702三过⽊雕型mg F mil 最⾼点失重若V 直增⼤则所需向⼼⼒增⼤FN Img 安全⾏驶速度以后若让原做平抛运动若以后汽⻋抵达桥顶前斜抛⻜出i Firing 啱超重汽⻋过凹形桥时轮胎所受压⼒⼤于重⼒lmg 若以FA 有爆胎⻛险四斜⾯圆周模型光滑斜⾯最⾼点受⼒分析mgs in 0-T 唥当mgsint 咔即019sinai 时恰能通过最⾼点。
圆周运动模型归类例析

圆周运动模型归类例析一、常见匀速圆周运动模型序号模型名称模型图受力分析图力学方程1水平圆盘上的圆周运动2NfF mgF m Rω==2倾斜圆盘上的圆周运动2cossinNfF mgmg F m Rθθω=±=最高点:摩擦力方向可能沿斜面向上也可能沿斜面向下3火车转变模型(汽车转变,小球在锥形桶内运动)内外轨恰好不受作用力时:2cossinNNF mgF m Rααω==4 圆锥摆模型2cossinTTF mgF m Rθθω==5绳球模型(小球在轨导内运动)最高点:2Tmg F m Rω+=最低点:2TF mg m Rω-=6杆球模型(小球在细管中运动)最高点:2Tmg F m Rω±=在最高点杆的力可能向下,也可能向上或没有作用力最低点:2TF mg m Rω-=7 摩天轮模型最高点:2Nmg F m Rω-=最低点:2NF mg m Rω-=与圆心等高处:NF mg=,2F m Rω=例题1:(多选题)如图所示,两个质量均为m 的小木块A 、B (可视为质点)放在水平圆盘上,A 与转轴OO' 的距离为l ,B 与转轴OO' 的距离为2l 。
木块与圆盘间的最大静摩擦力为木块所受重力的k 倍,已知重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速转动,ω 表示圆盘转动的角速度,下列说法正确的是( )A.木块B 一定比木块A 先开始滑动B.木块A 、木块B 所受的摩擦力始终相等C.是木块B 开始滑动的临界角速度D.当A 所受摩擦力的大小为23kmg 分析与解:因圆盘从静止开始绕转轴缓慢加速转动,在某一时刻可认为稳定状态,木块随圆盘转动时,其受到的静摩擦力的方向指向转轴,两木块转动过程中角速度相等,当木块B 刚刚开始滑动时,由牛顿第二定律可得222kmg m l ω=,可得2ω=A 开始滑动时,由牛顿第二定律得21kmg m l ω=,可得1ω=,12ωω>,因为两木块的最大静摩擦力相等,木块B 先达最大静摩擦力,故木块B 一定比木块A 先开始滑动,选项A 正确,选项B 错误;当木块B 刚刚开始滑动时的角速度为2ω=选项C正解;当木块A 开始滑动时,由牛顿第二定律得21kmg m l ω=,可得1ω=>块A 未发生滑动,其所需的向心力由静摩擦力来提供,即223f m l kmg ω==,选项D 正确. 答案:ACD例题2:如图所示,一倾斜的匀质圆盘垂直于盘面的固定对称轴以恒定的角速度转动,盘面上离转轴距离2.5m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32。
水平面内的圆周运动模型-2024届新课标高中物理模型与方法(解析版)

2024版新课标高中物理模型与方法水平面内的圆周运动模型目录【模型一】圆锥摆、圆锥斗、圆碗模型【模型二】火车转弯模型【模型三】水平路面转弯模型【模型四】圆盘模型【模型一】圆锥摆、圆锥斗、圆碗模型一.圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。
2.受力特点:摆球质量为m,只受两个力即竖直向下的重力mg和沿摆线方向的拉力F T。
两个力的合力,就是摆球做圆周运动的向心力F n,如图所示(也可以理解为拉力F T的竖直分力与摆球的重力平衡,F T的水平分力提供向心力)。
3.运动特点:摆长为l,摆线与竖直方向的夹角为θ的圆锥摆,摆球做圆周运动的圆心是O,圆周运动的轨道半径是r=l sinθ=mg tanθ=ma n=mω2l sinθ=mv2/(l sinθ)向心力F合摆线的拉力F T=mg/cosθ【讨论】:(1)当摆长一定,摆球在同一地点、不同高度的水平面内分别做匀速圆周运动时,据cosθ=g/(ω2l)可知,若角速度ω越大,则θ越大,摆线拉力F T=mg/cosθ也越大,向心加速度a n=g tanθ也越大,线速度v=ωr =gl sinθtanθ也越大。
结论是:同一圆锥摆,在同一地点,若θ越大,则摆线的拉力越大,向心力越大,向心加速度也越大,转动的越快,运动的也越快,。
(2)当l cosθ为定值时(l cosθ=h为摆球的轨道面到悬点的距离h,即圆锥摆的高度),摆球的质量相等、摆长不等的圆锥摆若在同一水平面内做匀速圆周运动,则摆线拉力F T=mg/cosθ,向心力F合=mg tanθ,向心加速度a n=g tanθ,角速度ω=g/h,线速度v=ωr=gh tanθ。
结论是:在同一地点,摆球的质量相等、摆长不等但高度相同的圆锥摆,转动的快慢相等,但θ角大的圆锥摆,摆线的拉力大,向心力大,向心加速度大,运动得快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动——圆盘模型
1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:
2、(1)转盘的角速度为时绳中的张力T1;
(2)转盘的角速度为时绳中的张力T2。
2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。
A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:
(1)当圆盘转动的角速度为多少时,细线上开始出现张力?
(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()
3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为
m的A、B两个小物块。
A离轴心r
1=20 cm,B离轴心r
2
=30 cm,A、B与圆盘面
间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?
(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?
(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?
4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B
两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B 与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()
A.B所受合外力一直等于A所受合外力
B.A受到的摩擦力一直指向圆心
C.B受到的摩擦力一直指向圆心
D.A、B两物块与圆盘保持相对静止的最大角速度为
5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求
⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?
⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(g=10m/s2)
6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()
A.两物体均沿切线方向滑动
B.两物体均沿半径方向滑动,离圆盘圆心越来越远
C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动
D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远
7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg
的小物体A、B,它们到转轴的距离分别为r
A =10 cm,r
B
=40 cm,A、B与盘面间
最大静摩擦力均为重力的0.4倍。
如果圆盘的转速可以从零开始由小到大的调节,试求:(g取10 m/s2)
(1)如图甲所示,A、B之间没有细线相连,随着圆盘转速的增大,哪一个物体先发生相对圆盘的滑动?
(2)如图乙所示,A、B之间用刚好拉直的细线相连,当细线上开始出现弹力T 时,圆盘的角速度ω1多大?当A开始滑动时,圆盘的角速度ω2多大?
(3)当A即将滑动时,烧断细线。
请在图丙给出的坐标系中,为坐标轴选取合适的标度,作出烧断细线之前,细线上的弹力T随圆盘角速度平方ω2的变化关系图线。
甲乙
参考答案
1、设角速度为ω0时绳刚好被拉直且绳中张力为零,则由题意有:
………………①
解得:………………②
(1)当转盘的角速度为时,有:
∵,物体所受静摩擦力足以提供物体随转盘做圆周运动所需向心力……③
即:T1=0 ………………④
(2)当转盘的角速度为时,有:
∵,物体所受最大静摩擦力不足以提供物体随转盘做圆周运动所需向心力……⑤
则:………………⑥
解得:………………⑦
2(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。
再增大,AB间绳子开始受到拉力。
由,得:
(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,
A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。
如再增加,就不能维持匀速圆周运动了,A、B
就在圆盘上滑动起来。
设此时角速度为,绳中张力为,对A、B受力分析:对A有
对B有
联立解得:
3【答案】(1)ω≤3.7rad/s (2)4.0rad/s (3)A随圆盘一起转动,B做离心运动
(1)当B所需向心力时,细线上的张力为0,即,
得。
即当时,细线上不会有张力。
(2)当A、B所受静摩擦力均达到最大静摩擦力时,圆盘的角速度达到最大值ω
m
,
超过ω
m 时,A、B将相对圆盘滑动。
设细线中的张力为F
T。
对A:,对B:,
得。
(3)烧断细线时,A 做圆周运动所需向心力
,又最大静摩擦力为0.4mg ,则A 随盘一起转动。
B 此时所需向心力
,大于它的最大静摩擦力0.4mg ,因此B 将做离心运动。
4、CD
5、⑴………………………①
方向为指向圆心。
……………………………②
⑵ …………………………③
6、解析:根据两个物体的质量相等且与盘间动摩擦因数相同可知,它们与盘间的最大静摩擦力大小相等.当它们刚好还未发生滑动时,对物体A :f max +T=m ω2·r A ,对物体B :f max -T=m ω2·r B .若细线烧断,对A 而言,仅靠f max 不足以提供需要的
向心力,A 将沿半径方向相对圆盘发生滑动;对物体B ,由静摩擦力提供需要的向心力,它将仍随圆盘一起做匀速圆周运动.选项D 正确.
答案:D
7、(1)B 先滑动 (2)rad/s , 4 rad/s
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。