光的干涉
光的干涉ppt课件
(2)第一暗纹形成原因
S1
P1
S1
S2
P1
d
P
S2
d =λ/2
S1
P1
P1S1
S2
P1S2
d
P1
光程差d= λ/2 ,S1、S2在P1处步调相反,该点振动减弱。(暗)
(4)双缝干涉规律
P1
光程差: s
亮纹:
暗纹:
S1
L1 L2
减弱(波峰与波谷叠加);且振动加强的
区域与振动减弱的区域相互间隔.这种
现象叫波的干涉。
光是一种电磁波,那么光也应该发生干涉现象,怎样才能观察光的干涉现象呢?
干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光
的干涉现象
思考1:光要发生干涉现象需要满足什么条件?
相干光源(频率相同,振动方向相同,相位差恒定)
L越大,相邻的亮纹间距越大
2、白光的干涉图样特点:
(1)明暗相间的彩色条纹;
(2)中央为白色亮条纹;
(3)干涉条纹是以中央亮纹为对称点排列的;
(4)在每条彩色亮纹中红光总是在外侧,紫光在内侧。
三、薄膜干涉
1、原理
水面上的油膜呈彩色
2、应用
平滑度检测
镀了增透膜的镜片
增透膜厚度:
薄膜厚度
d
在透镜表面涂上一层薄膜,当薄膜的厚度等于入
思考2:有没有什么方法可以获得相干光—频率相同的光呢?
天才的设想
巧妙解决了相干光问题
单缝
光
束
s0
双缝
屏幕
s1
s2
托马斯·杨
光的干涉现象
光的干涉现象光的干涉现象是光学中一种重要的现象,它揭示了光波的波动性质以及光的性质与行为。
干涉现象包括两种类型:两条光波的叠加干涉和单条光波的多普勒干涉。
这篇文章将详细介绍光的干涉现象和其应用。
1. 叠加干涉1.1 双缝干涉双缝干涉是光的干涉现象中最经典的例子之一。
在双缝干涉实验中,光通过两个并排的狭缝,形成多个光束。
这些光束相互干涉,产生明暗条纹,常称为干涉条纹。
干涉条纹的出现可以解释为光的波动性质导致的波峰和波谷的叠加。
1.2 条纹间距干涉条纹的间距可以由下式计算得到:d·sinθ = mλ其中,d表示双缝之间的距离,θ为入射光的角度,m为干涉条纹的级次,λ为入射光波长。
1.3 干涉的明暗条件当条纹间距d·sinθ等于整数倍的光波长时,干涉条纹呈现明亮的状态,这是因为波峰和波峰叠加导致光强增强。
当条纹间距d·sinθ等于半整数倍的光波长时,干涉条纹呈现暗淡状态,这是因为波峰和波谷叠加导致光强减弱。
2. 多普勒干涉2.1 多普勒效应多普勒效应是指当光源或观察者相对于彼此运动时,引起光频率的改变现象。
当光源相对于观察者靠近时,光频率增加,光波变蓝偏;当光源相对于观察者远离时,光频率减少,光波变红偏。
2.2 多普勒干涉的应用多普勒干涉可以应用于光学测速仪器中。
通过测量观察者接收到的多普勒效应下的光频率,可以计算出物体相对于观察者的速度和方向。
3. 干涉的应用3.1 干涉仪干涉仪是一种利用光的干涉现象进行测量和研究的仪器。
常见的干涉仪包括迈克尔逊干涉仪和扫描干涉仪。
干涉仪可以用于测量长度、折射率、表面粗糙度等物理参数的精密测量。
3.2 干涉光谱仪干涉光谱仪利用光的干涉现象对光谱进行解析和测量。
典型的干涉光谱仪是菲涅尔干涉光谱仪,它可以测量出样品的折射率、薄膜的厚度、光学材料的色散性质等。
3.3 全息术全息术是一种记录和重现光的干涉图样的技术。
通过记录光的相位和幅度信息,全息术可以制作出具有立体感的光学图像。
光的干涉现象
光的干涉现象光的干涉现象是光学中重要而又有趣的现象之一。
它揭示了光的波动性质,并深化了人们对光的理解。
本文将通过对光的干涉现象的介绍和实例分析,探讨其原理、应用以及对科学研究和技术发展的影响。
一、光的干涉现象简介光的干涉现象指的是两束或多束光波相互叠加产生的干涉条纹现象。
当两束光波的相位差满足某一特定条件时,它们在空间中会相互干涉。
干涉的结果是光的强弱发生变化,形成了明暗相间的条纹。
在光的干涉现象中,存在两种类型的干涉:同态干涉和非同态干涉。
同态干涉是指两束来自同一光源的光波相互叠加产生的干涉现象,如杨氏双缝干涉和牛顿环等。
非同态干涉是指两束或多束不同光源的光波相互叠加产生的干涉现象,如薄膜干涉和透明薄板干涉等。
二、光的干涉现象原理光的干涉现象可以用波的叠加原理解释。
当两束光波相遇并叠加时,它们的电场强度相互叠加,形成一个新的电场强度分布。
而光的亮暗程度与电场强度的平方成正比,因此,新的电场强度分布也决定了光的亮暗程度。
在同态干涉中,双缝干涉是最典型的实例。
当一束光通过一个有两个细缝的屏幕时,射到屏幕后,光波会分成两束继续传播。
这两束光波在屏幕后再次相遇并叠加,产生干涉现象。
干涉的结果是在屏幕上形成一系列明暗相间的条纹,称为干涉条纹。
三、光的干涉现象应用光的干涉现象在科学研究和技术应用中具有重要意义。
以下是一些常见的应用。
1. 干涉测量:利用光的干涉现象,可以进行高精度的测量。
例如,通过测量干涉条纹的间距和光波的波长,可以计算出被测物体的长度或形状。
2. 光学薄膜:通过在透明介质表面上涂敷一层薄膜,可以利用薄膜的干涉现象来改变光的反射和透射性质。
这在光学元件的设计和制造中有广泛的应用。
3. 涡旋光:涡旋光是一种具有自旋角动量的光。
通过制造特殊形状的相位板,可以实现光的幅度和相位的分离,产生具有涡旋光性质的光束。
涡旋光在光学通信和光学显微镜等领域有重要应用。
4. 光学干涉仪器:干涉仪器是利用光的干涉现象设计和制造的仪器。
什么是光的干涉
什么是光的干涉光的干涉是一种光学现象,指的是两个或多个光波相互作用而产生的干涉效应。
当两束光波相遇时,它们会相互干涉并形成干涉图样,这是由于光的波动性质所致。
光的干涉现象在自然界和科学研究中有着广泛的应用。
1. 光的波动性质光既具有粒子性也具有波动性,光的波动性是光的干涉现象的基础。
光波的传播速度是有限的,它会沿着直线传播,并在传播过程中产生交迭、叠加和干涉。
2. 干涉的条件光的干涉需要满足两个基本条件:一是光源必须是相干光源,即光源发出的光波具有相同的频率、相位和振幅;二是光波必须在空间中交迭或叠加。
3. 干涉的类型光的干涉可以分为两类:一是光的干涉分为建设性干涉和破坏性干涉,二是光的干涉又可以分为薄膜干涉、杨氏双缝干涉、杨氏双缝干涉、菲涅尔双棱镜干涉等多种类型。
4. 建设性干涉和破坏性干涉当两束光波相遇且波峰与波峰相重叠(或波谷与波谷相重叠)时,它们会产生建设性干涉,此时干涉图样中会出现明亮的干涉条纹,光强增强;相反,当波峰与波谷相重叠时,它们会产生破坏性干涉,此时干涉图样中会出现暗淡的干涉条纹,光强减弱或消失。
5. 薄膜干涉薄膜干涉是指光在由两个介质分界面分离的薄膜上反射和透射产生的干涉现象。
当光波从一个介质射入到另一个介质时,会发生反射和透射。
光的反射和透射在介质的界面上发生相位差,不同相位差会导致干涉效应。
薄膜干涉常用于衬底上的光学薄膜和光学元件的设计。
6. 杨氏双缝干涉杨氏双缝干涉是一种经典的干涉实验,由英国科学家杨恩斯提出。
它通过将光通过两个狭缝,让光波以波前偏斜的方式形成干涉条纹。
杨氏双缝干涉实验证明了光的波动性和光的干涉现象,为光的本质提供了重要的证据。
7. 菲涅尔双棱镜干涉菲涅尔双棱镜干涉是将平行光通过两个类似楔形棱镜所形成的干涉图样。
这种干涉实验是由法国科学家菲涅尔提出的,可以用来测量光的波长和探测光的相位差。
菲涅尔双棱镜干涉被广泛应用于光学检测、波长测量和多种光学仪器的设计中。
物理知识点光的干涉
物理知识点光的干涉光的干涉是光学中的重要概念之一,它揭示了光波的波动性质及其产生的干涉现象。
本文将依据物理知识点,对光的干涉进行详细论述。
一、干涉现象的基本原理光的干涉是指两个或多个光波相互叠加所形成的干涉图案。
干涉现象的产生需要满足两个基本条件:光源是相干光源,波长相同。
当光波经过不同路径传播后再次相遇时,它们会相互干涉,产生增强或减弱的干涉效应。
二、双缝干涉1. 双缝干涉的实验装置双缝干涉实验一般采用光源、狭缝、透镜和屏幕等组成。
光源发出的光经狭缝后,形成一个光源光斑,通过透镜聚焦后照射到屏幕上。
2. 双缝干涉的光程差当光波通过两个缝隙后再次相遇时,其传播路径的长度差称为光程差。
光的干涉现象取决于光程差的大小。
3. 双缝干涉的干涉图案双缝干涉的干涉图案呈现出一系列明暗相间的条纹,称为干涉条纹。
该条纹呈现出一定的规律性,可通过干涉公式和级差条件进行分析和计算。
三、杨氏双缝干涉实验1. 杨氏双缝干涉实验的装置杨氏双缝干涉实验是一种经典的干涉实验方法。
实验装置由一束狭缝光源、双缝、透镜和幕板等组成。
2. 杨氏双缝干涉的干涉条纹杨氏干涉条纹呈现出一系列黑白相间的圆环或直线条纹。
根据实验条件和光波的干涉效应,可以通过杨氏双缝干涉公式进行计算。
四、单缝干涉1. 单缝干涉的实验装置单缝干涉实验通常采用单缝光源、单缝和屏幕等组成。
单缝光源发出的光波通过单缝后形成一个光斑,映射到屏幕上形成单缝干涉图样。
2. 单缝干涉的干涉条纹单缝干涉的干涉条纹呈现出明暗相间且中央最亮的中央极大和两侧较暗的暗条纹分布。
单缝干涉的干涉效应可由单缝干涉公式和级差条件加以说明。
五、干涉现象的应用光的干涉在科学研究和实际应用中有着重要的意义。
1. 干涉仪干涉仪是一种基于光的干涉原理设计的精密仪器,常用于光学测量、干涉剖析和光学检测等领域。
2. 光纤通信光纤通信是一种基于光的传输技术。
光波经光纤传输时,可能会产生干涉现象,影响信号传输质量,因此需要进行干涉相关的优化和控制。
光的干涉-精品文档
02
光的干涉条件
相干光条件
同一波源
01
干涉光必须来自同一波源,这样波源的相干性会影响干涉条纹
的质量。
频率相同
02
来自同一波源的光线必须具有相同的频率,否则它们将无法产
生干涉。
相位差恒定
03
来自同一波源的光线必须具有恒定的相位差,这意味着它们的
振动方向必须相同。
干涉条纹条件
稳定的干涉条纹
为了获得清晰的干涉条纹,需要 确保光线经过的路程差是恒定的 ,这意味着需要使用稳定的实验 装置和精确的控制光源。
相间的干涉条纹。
应用
分振幅干涉在光学实验、光学测 量等领域也有着广泛的应用,如 测量光学表面的形状、光学元件
的精度等。
迈克尔逊干涉仪
01
定义
迈克尔逊干涉仪是一种利用分振幅干涉原理测量光学表面形状和光学元
件精度的干涉仪。
02 03
原理
迈克尔逊干涉仪通过将一束光波分成两束相干光波,分别经过反射镜后 再次相遇,形成明暗相间的干涉条纹。通过测量干涉条纹的变化,可以 推算出光学表面的形状和光学元件的精度。
光线的平行性
为了使干涉条纹更加明显,需要确 保光线具有平行性,这可以通过使 用聚焦透镜或高亮度的光源来实现 。
03
光的干涉类型
分波面干涉
定义
应用
分波面干涉是指两束或多束相干光波 在空间某一点叠加时,形成明暗相间 的干涉条纹的现象。
分波面干涉在光学实验、光学测量等 领域有着广泛的应用,如测量光学表 面的形状、光学元件的精度等。
全息干涉实验
实验原理
全息干涉实验是一种利用全息技术实现的干涉实验,通过 将一束光分成两束相干光波,然后在全息底片上记录它们 之间的干涉图样。
光的干涉 课件
类型一 两列光波发生干涉的条件
【例 1】在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干 涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一 缝前放一绿色滤光片(只能透过绿光),已知红光与绿光频率、波长均 不相等,这时( ) A.只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失 B.红色和绿色的双缝干涉条纹消失,其他颜色的干涉条纹依然存在 C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮 D.屏上无任何光亮 解析:两列光波发生干涉的条件之一是频率相等,利用双缝将一束光 分成能够发生叠加的两束光,在光屏上形成干涉条纹,但分别用绿色 滤光片和红色滤光片挡住两条缝后,红光和绿光频率不等,不能发生 干涉,因此屏上不会出现干涉条纹,但仍有红光和绿光的衍射图样。 答案:C
答案:B
光的干涉
1.杨氏双缝干涉实验 (1)史实:1801 年,英国物理学家托马斯·杨成功地观察到了光的 干涉现象。 (2)实验过程:让一束平行的单色光投射到一个有两条狭缝的挡 板上,两条狭缝相距很近。如果光是一种波,狭缝就成了两个波源,它 们的频率、相位和振动方向总是相同的。两波源发出的光在挡板后 面的空间互相叠加,发生干涉现象:来自两个光源的光在一些位置相 互加强,在另一些位置相互削弱。 (3)实验现象:在屏上得到明暗相间的条纹。 (4)实验结论:证明光是一种波。 (5)现象解释:当两个光源与屏上某点的距离之差等于半波长的 偶数倍时(即恰好等于波长的整数倍时),两列光在这点相互加强,这 里出现亮条纹;当两个光源与屏上某点的距离之差等于半波长的奇 数倍时,两列光在这一点相互削弱,这里出现暗条纹。
类型二 干涉图样明、暗条纹的条件
【例 2】如图所示是双缝干涉实验装置,使用波长为 600nm 的橙色光 源照射单缝 S,在光屏中央 P 处观察到亮条纹,在位于 P 上方的 P1 处 出现第一条亮纹中心(即 P1 到 S1、S2 的路程差为一个波长),现换用 波长为 400 nm 的紫光源照射单缝,则( )
光的干涉实验方法
光的干涉实验方法光的干涉实验是研究光波相互作用的重要手段之一。
通过干涉实验,我们可以观察到光波的波动性质,揭示光的干涉现象和性质。
本文将介绍几种常见的光的干涉实验方法,包括杨氏双缝干涉实验、牛顿环干涉实验以及单缝干涉实验。
一、杨氏双缝干涉实验方法杨氏双缝干涉实验是最经典的光的干涉实验之一,它能够清晰地展示出光的干涉现象。
实验装置如下:在一块光透明的屏上开设两个非常接近的小孔,这两个小孔称为双缝。
在双缝之后,放置一个接收屏,可以用来接收和观察干涉条纹。
将光经过双缝后,光线会有一部分通过第一个小孔,有一部分通过第二个小孔,然后这两部分光线在接收屏上相互干涉,形成干涉条纹。
实验过程如下:首先,将光源对准双缝,使得光向双缝垂直射入。
随后,调整双缝的间距和宽度,观察干涉条纹的变化。
可以发现,当双缝间距很小时,干涉条纹间隔很大;当双缝间距较大时,干涉条纹间隔较小。
这表明,光的干涉现象与双缝之间的间距有关。
二、牛顿环干涉实验方法牛顿环干涉实验是一种通过凸透镜和反射镜进行的干涉实验。
该实验可以观察到牛顿环,用来研究光的波动性质。
实验装置如下:将一块透明的凸透镜放置在一个平坦的玻璃片上。
在凸透镜上方悬挂一个反射镜,然后用反射镜将光射入凸透镜。
在玻璃片上可以观察到一系列明亮和暗淡的环状干涉条纹,这就是牛顿环。
实验过程如下:首先,将凸透镜调整至与玻璃片平行,然后调整光源的位置和角度,使得光线斜射入凸透镜。
接着,观察并记录牛顿环的形状和颜色。
可以发现,当光线垂直射入凸透镜时,牛顿环呈圆形;当光线斜射入凸透镜时,牛顿环呈椭圆形。
这说明,光的干涉现象与光线的入射角度有关。
三、单缝干涉实验方法单缝干涉实验是一种利用单个缝隙产生干涉现象的实验。
通过单缝干涉实验,我们可以更好地理解光的干涉现象和性质。
实验装置如下:在一块光透明的屏上开设一个缝隙,这个缝隙称为单缝。
在单缝之后,放置一个接收屏,可以用来接收和观察干涉条纹。
将光经过单缝后,光线会在接收屏上形成干涉条纹。
光的干涉现象
光的干涉现象光的干涉现象是光学中的一种重要现象,它是指两束或多束光波相互叠加时所产生的干涉效应。
这种现象能够揭示光的波动性质,为我们深入研究光学提供了重要的实验依据。
本文将从光的干涉原理、干涉模式以及干涉在实际应用中的重要性等方面进行探讨。
一、光的干涉原理光的干涉现象是基于光的波动性质而产生的。
根据互相干涉的光波传播规律,我们可以将干涉现象分为两类:构造干涉和疏进建立。
1. 构造干涉构造干涉是指两束相干光波叠加后形成明暗交替的干涉条纹的现象。
这种干涉是由于光波在空间中的干涉途程有差异而产生的。
当两个光波的光程差为整数倍波长时,它们相互加强,形成明亮的条纹;而当光程差为半整数倍波长时,它们相互抵消,形成暗纹。
著名的双缝干涉实验就是一个典型的构造干涉现象。
2. 疏进建立疏进建立是指当两束光波相交时,它们在交叉区域内相互干涉而产生的干涉现象。
在这种干涉中,光的传播路径并不造成干涉途程差异,而主要取决于光波在交叉区域内的相位差。
当光波的相位差为奇数倍π时,交叉区域会出现暗纹;而相位差为偶数倍π时,会出现明纹。
著名的杨氏双缝干涉实验正是一种疏迷新建的干涉现象。
二、干涉模式光的干涉现象可分为几种常见的模式,每种模式都有自己独特的特点和应用。
1. Young's 双缝干涉由托马斯·杨提出的Young's 双缝干涉是一种经典的构造干涉模式。
它利用了两个相隔较远的狭缝,使光波通过后产生干涉,从而形成明暗条纹。
这种干涉模式常用于电子显微镜和各类干涉仪器。
2. Michelson 干涉仪Michelson 干涉仪是一种基于疏进建立干涉的仪器,常用于精确测量光的波长、折射率、长度等参数。
它利用半透镜和半反射镜构成干涉仪的臂,通过调节一臂的光程,观察干涉条纹的变化,从而获得精确的测量结果。
3. 薄膜干涉薄膜干涉是一种在厚度为波长级别的薄膜上发生的干涉现象。
这种干涉模式广泛应用于光学涂层、薄膜制备和表面形貌测量等领域。
光的干涉ppt
xx年xx月xx日
contents
目录
• 光的干涉现象 • 光的干涉基本原理 • 实验方法和数据分析 • 实验结果和讨论 • 结论和展望
01
光的干涉现象
光的干涉定义
光的干涉是指两个或多个波源产生的光波在空间叠加时,形 成某些特定区域振动加强或减弱的现象。
干涉现象通常表现为明暗相间的条纹或色彩,称为干涉条纹 或干涉色彩。
通过本课程的学习,我们深入了解了光的干涉 基本概念、干涉原理、干涉仪器的使用以及干 涉现象在光学检测中的应用。
光的干涉在光学检测技术中具有重要的应用价 值,如光学表面检测、光学元件装配、光学薄 膜检测等领域。
展望未来
随着科学技术的发展,光的干涉技术的研究和应用 领域将不断扩大。
在未来,我们可能会看到更加先进的光学干涉仪器 和技术,如更高精度的干涉仪、更智能化的数据处
3
分析实验参数对干涉条纹特征的影响,如条纹 间距、亮度等。
02
光的干涉基本原理
双缝干涉
实验装置
双缝干涉实验中需要使用光源、双缝装置 和屏幕,光源发出的光经过双缝后形成两 束相干光,在屏幕上形成干涉条纹。
VS
干涉图样
双缝干涉的条纹呈现为明暗交替的平行条 纹,相邻条纹之间的距离为 $\Delta x = \frac{L}{d}\lambda$,其中 $L$ 为屏幕 到双缝的距离,$d$ 为双缝之间的距离, $\lambda$ 为光的波长。
离、微小角度等。
02
光学表面检测
干涉条纹可以用来检测光学表面的平整度和粗糙度,如检测光学镜片
的表面质量。
03
光学信息处理
干涉条纹可以用来进行光学信息处理,如全息技术、光学图像处理等
光的干涉 课件
图 4-4-5
b.被测平面凹陷或凸起的判断方法 由于同一空气层厚度的地方路程差相同,故出现在同一条纹上,若条纹发 生了弯曲,我们只要抓住弯曲处的空气层厚度4-6,条纹向左弯曲,说明弯曲处的空气层厚度与右 侧的相同,即该处有凹陷.
图 4-4-6
4.屏上某处出现亮、暗条纹的条件 频率相同的两列波在同一点引起的振动的叠加,如明条纹处某点同时参与 的两个振动步调总是一致,即振动方向总是相同,总是同时过最高点、最低点、 平衡位置;暗条纹处振动步调总相反,具体产生亮、暗条纹的条件为: (1)明条纹的条件: 屏上某点 P 到两缝 S1和 S2的路程差正好是波长的整数倍或半波长的偶数倍. 即|PS1-PS2|=kλ=2k·2λ(k=0..,1,2,3…)
四、薄膜干涉 1.形成原因 如图 4-4-4 所示,照射到液膜上的光线从前、后两个表面反射回来,形 成两列光波.由于这两列光波是由同一入射光波产生的,因此频率相同、相差 恒定,满足干涉条件.
图 4-4-4
【特别提醒】 因为薄膜干涉中的条纹是从薄膜前、后两个表面反射的光 在光源这一侧发生干涉形成的,所以应在与光源同一侧才能观看到干涉条纹.
L Δx=__d_λ___
3.薄膜干涉 (1)形成原因:从薄膜的_前__、_后___表面反射出两列相干光波发生干涉. (2)应用:检查光学平面的平整度,增透膜.
一、对双缝干涉实验及现象的理解,实验操作时常在双缝前加一条单缝 1.双缝干涉的示意图(如图 4-4-3)
图 4-4-3
2.单缝屏的作用 获得一个线光源,有唯一的频率和振动情况. 3.双缝屏的作用 平行光照射到单缝 S 上后,又照到双缝 S1、S2 上,这样一束光被分成两束 频率相同和振动情况完全一致的相干光.
三、用白光做双缝干涉实验时,中央出现白色条纹,两侧出现彩色条纹的 形成原因
光的干涉
洛埃镜
S1 d S2 M
E'
E
洛埃镜
此处为暗纹—半波损失
M为反射镜,S1为狭缝光源,它发出的光波一部分以接近于 为反射镜, 为狭缝光源, 为反射镜 90˚的入射角掠射于反射镜上,经反射到达屏幕 上,另一部 的入射角掠射于反射镜上, 的入射角掠射于反射镜上 经反射到达屏幕E上 分直接射到屏幕上。 可看作两个相干光源。 分直接射到屏幕上。S1和S2可看作两个相干光源。 处于位置 若光屏E处于位置 ,从光路上看,由S1和S2发出的光到达接 光屏 处于位置E',从光路上看, 触处的路程相等,该处应该出现明条纹。 触处的路程相等,该处应该出现明条纹。但实验结果这里出现 的是暗条纹,说明反射光在该处出现了大小为π的相位变化 的相位变化, 的是暗条纹,说明反射光在该处出现了大小为 的相位变化, 这种现象称为“半波损失” 这种现象称为“半波损失”。
例题 4-4:
干涉现象应用于射电天文学: 干涉现象应用于射电天文学:将微波检测器安装在海平面上 h = 20m处。 处 当发射频率为ν= 60 MHz 的射电星从海面升起时,检测器收到来自星体和 当发射频率为 的射电星从海面升起时, 海面反射的电波干涉信号。求当第一个极大出现时, 海面反射的电波干涉信号。求当第一个极大出现时,射电星体相对于地平 线的仰角θ= 线的仰角 ?
获得相干光的基本方法是将光源上同一点发出的光设法 获得相干光的基本方法是将光源上同一点发出的光设法 同一点 一分为二” 然后再使这两部分光叠加起来, “一分为二”,然后再使这两部分光叠加起来,由于这两 部分光实际上都是来自同一发光原子 同一次发光, 同一发光原子的 部分光实际上都是来自同一发光原子的同一次发光,即每 一个光波列都分为两个频率相同、振动方向相同、 一个光波列都分为两个频率相同、振动方向相同、相位差 恒定的波列,因而这两部分光满足相干条件。 恒定的波列,因而这两部分光满足相干条件。 获得相干光的方法: 获得相干光的方法: ⑴使用单色光源(如:钠光灯、激光器等); 使用单色光源( 钠光灯、激光器等); ⑵将一个分子单次发出的光波分为两个部分: 将一个分子单次发出的光波分为两个部分: 分波面法 分振幅(强度) 分振幅(强度)法
光的干涉现象及其应用解析
光的干涉现象及其应用解析光的干涉现象是指当光通过不同的光程到达某一点时,由于相位的差异而产生的干涉效应。
干涉现象是光波性质的重要体现,不仅能揭示光的波动性质,还能应用于科学研究、技术革新以及各种测量中。
本文将对光的干涉现象及其应用进行解析。
一、光的干涉现象的基本原理光的干涉现象的基本原理可以概括为两束相干光的叠加。
当两束相干光以一定的角度汇聚或相交时,会在交叉区域产生明暗相间的干涉条纹。
这是由于光的相位差引起光强的叠加干涉所形成的。
二、光的干涉现象的分类及特点1. 单色光干涉:指由单一波长的光线所引起的干涉现象。
其特点是形成的干涉条纹清晰明确,颜色纯净。
2. 白光干涉:指由多种波长的光线所引起的干涉现象。
其特点是形成的干涉条纹带有彩色,颜色会随观察角度的变化而改变。
3. 平行光干涉:指两束光线平行地入射在平面上的干涉现象。
常见的平行光干涉装置有杨氏双缝干涉仪和劳埃德镜。
4. 斜光干涉:指两束光线斜着入射在平面上的干涉现象。
常见的斜光干涉装置有米氏干涉仪等。
三、光的干涉现象的应用1. 干涉仪:光的干涉现象在干涉仪中得到了广泛应用。
例如,杨氏双缝干涉仪可以通过干涉条纹的形成来测量光的波长,进而实现对光的性质的研究;劳埃德镜则可以用于测量物体的形状、厚度等。
2. 薄膜干涉:基于光的干涉现象,利用薄膜对光的反射和透射进行调控,可以实现光的增透、减透等功能。
这在光学镀膜、光学仪器制造等领域有着广泛的应用。
3. 光谱分析:通过光的干涉现象,可以将光分解成不同的波长,从而实现对光谱的分析。
利用光的干涉现象结合像差补偿技术,还可以实现高分辨率、高灵敏度的光谱测量。
4. 空间干涉:光的干涉可以应用于干涉测量领域,如干涉测量技术、干涉计量技术等,用于精密测量目标的位移、形状等参数。
四、光的干涉现象的研究进展随着科学技术的不断发展,对光的干涉现象的研究也在不断深入。
目前,已经提出了许多新的干涉技术,如数字全息术、斑图测量技术等。
《光的干涉》 知识清单
《光的干涉》知识清单一、光的干涉现象当两束或多束光在空间中相遇时,如果它们的频率相同、振动方向相同、相位差恒定,就会发生光的干涉现象。
在干涉区域内,光的强度会出现明暗相间的条纹,这是光的波动性的有力证据。
例如,杨氏双缝干涉实验就是一个经典的例子。
通过在屏幕上观察到的等间距的明暗条纹,我们可以直观地感受到光的干涉。
二、产生光的干涉的条件1、频率相同两束光的频率必须相同,这样它们在相遇时才能产生稳定的干涉现象。
如果频率不同,干涉条纹会迅速消失,无法观察到明显的干涉效果。
2、振动方向相同光的振动方向相同是指电场矢量的方向相同。
只有在这个条件下,两束光的振动才能相互叠加,形成干涉条纹。
3、相位差恒定这意味着两束光在传播过程中的相位差不随时间变化。
相位差的恒定是产生稳定干涉条纹的关键因素。
三、杨氏双缝干涉实验1、实验装置由一个光源、一个有两条狭缝的挡板和一个观察屏组成。
光源发出的光通过双缝后,在观察屏上形成干涉条纹。
2、干涉条纹的特点(1)等间距:相邻的明条纹或暗条纹之间的距离相等。
(2)明暗相间:明条纹和暗条纹交替出现。
3、条纹间距的计算条纹间距Δx 与光的波长λ、双缝间距 d 以及双缝到屏的距离 L 有关,其计算公式为:Δx =λL/d四、薄膜干涉1、原理当一束光照射到薄膜上时,在薄膜的上、下表面分别反射的两束光会发生干涉。
2、常见的薄膜干涉现象(1)肥皂泡上的彩色条纹肥皂泡的薄膜厚度不均匀,不同位置反射的光的光程差不同,导致出现彩色条纹。
(2)增透膜和增反膜在光学仪器的镜头表面镀上一层特定厚度的薄膜,可以增加或减少反射光,从而提高光学性能。
五、光的干涉的应用1、测量微小长度变化利用干涉条纹的移动可以精确测量物体的微小长度变化,如在精密测量仪器中。
2、检测表面平整度通过观察干涉条纹的形状和分布,可以检测物体表面的平整度。
3、制作光学元件如干涉滤光片,用于选择特定波长的光。
六、相干光源的获取1、分波前法如杨氏双缝干涉实验,通过将同一波前分成两部分来获得相干光源。
光的干涉-PPT
光的干涉
薄膜干涉
让一束光经薄膜的两个表面反射后,形成的两束 反射光产生的干涉现象叫薄膜干涉.
点 击 画 面 观 看 动 画
光的干涉
薄膜干涉
1、在薄膜干涉中,前、后表面反射光的路程差由膜 的厚度决定,所以薄膜干涉中同一明条纹(暗条纹)应 出现在膜的厚度相等的地方.由于光波波长极短,所以 微薄膜干涉时,介质膜应足够薄,才能观察到干涉条 纹.2、用手紧压两块玻璃板看到彩色条纹,阳光下的肥 皂泡和水面飘浮油膜出现彩色等都是薄膜干涉.
第1节 光的干涉
光到底是什么?……………
17世纪明确形成 了两大对立学说
由于波动说没有 数学基础以及牛 顿的威望使得微 粒说一直占上风
牛顿
19世纪初证明了 波动说的正确性
惠更斯
微粒说
19世纪末光电效应现象使得 爱因斯坦在20世纪初提出了 光子说:光具有粒子性
波动说
这里的光子完全不同于牛顿所说的“微粒”
光的干涉
干涉现象是波动独有的特征,如果光真的 是一种波,就必然会观察到光的干涉现象.
光的干涉 光的干涉
1801年,英国物理学家托马斯·杨(1773~1829) 在实验室里成功的观察到了光的干涉.
双缝干涉
激
双
光
缝
束
屏上看到明暗相间的条纹 屏
光的干涉
S1 S2 d
双缝干涉
P2
P1
P
P
P1 P2
S1、S2
相干波源
P1S2-P1S1= d
光程差
P2S2-P2S1> d 距离屏幕的中心越远路程差越大
光的干涉
双缝干涉
1、两个独立的光源发出的光不是相干光,双缝干 涉的装置使一束光通过双缝后变为两束相干光,在光屏 上形成稳定的干涉条纹.
光的干涉 课件ppt(共29张PPT)
(k=1,2,3,等)
亮纹
暗纹
结论:
表达式: 亮纹:光程差 δ =kλ( k=0,1,2,等) 暗纹:光程差 δ =(2k-1)λ/2 (k=1,2,3,等)
三、干涉条纹的间距与哪些因素有关?
1、什么是干涉条纹的间距?
双缝 S1
屏幕
△x
S2
△x
★条纹间距的含义:亮纹或 暗纹之间的距离总是相等的, 亮纹和亮纹之间的距离或暗 纹和暗纹之间的距离叫做条 纹间距。
★我们所说的亮纹是指最 亮的地方,暗纹是最暗的地 方,从最亮到最暗有一个过 渡,条纹间距实际上是最亮 和最亮或最暗和最暗之间的 距离。
三、干涉条纹的间距与哪些因素有关?
2、干涉条纹的间距与哪些因素有关?
双缝
屏幕
S1
d
L
S2
重做干涉实验,并定性寻找规律.
①d、λ不变,只改变屏与缝之 间的距离L——L越大,条纹间距越
白光的干涉图样是什么样? 【学生实验】观察白炽灯光的干涉。
①明暗相间的彩色条纹; ②中央为白色亮条纹; ③干涉条纹是以中央亮纹为对称点排列的; ④在每条彩色亮纹中红光总是在外缘,紫光在内线。
一、光的干涉现象---杨氏干涉实验
二、运用光的波动理论进行分析 三、干涉条纹的间距与哪些因素有关
四、波长和频率
由于从S1S2发出的光是振动情况完全相同,又经过 相同的路程到达P点,其中一条光传来的是波峰,另
(1)形成明暗相间的条纹
一条传来的也一定是波峰,其中一条光传来的是波
谷,另一条传来的也一定是波谷,确信在P点激起的
振动总是波峰与波峰相遇或波谷与波谷相遇,振幅A=
A1+A2为最大,P点总是振动加强的地方,故应出现 亮纹,这一条亮纹叫中央亮纹。
光的干涉
3、关于光在竖直肥皂液薄膜上产生的干涉现象,下列说 法中正确的是( A、 )C A.干涉条纹的产生是由于光在薄膜前后两表面发生反射, 形成的两列光波叠加的结果 B.若出现明暗相间的条纹相互平行,说明肥皂膜的厚度是 均匀的
C.用绿色光照射薄膜产生的干涉条纹间距比黄光照射间距
小 D.薄膜上的干涉条纹基本上是竖直的
3 2
五、薄膜干涉 肥皂泡看起来常常是彩 色的,雨后公路积水上 面漂浮的油膜,看起来 也是彩色的。这些现象 是怎样形成的呢?
观察肥皂薄膜上干涉条纹
1.薄膜干涉的成因
如图所示,竖直放置的肥皂薄膜由于
受到重力的作用,下面厚、上面薄.因 此,在薄膜上不同的地方,从膜的前、 后表面反射的两列光波叠加,在某些位 置,这两列波叠加后互相加强,出现亮 条纹;在另一些地方,叠加后互相削弱, 出现暗条纹.故在单色光照射下,就出
暗条纹形成的原因
双缝 屏幕
取P点上方的点Q1,与两个狭缝S1、 S2路程差δ= Q1 S2- Q1 S1=λ/2 当其中一条光传来的是波峰,另 一条传来的就是波谷,其中一条 光传来的是波谷,另一条传来的 一定是波峰,Q1点总是波峰与波 谷相遇,振幅最小,Q1点总是振 动减弱的地方,故出现暗纹。
S1 S2
3λ/2
δ= 3λ/2
以此类推
当光程差δ= 半波长的奇数倍时出现暗纹
双缝
屏幕
Q3 第三暗纹 Q2 第二暗纹
δ=5λ/2
δ=3λ/2 δ=λ/2 δ=λ/2
S1 S2
Q 1 第一暗纹
Q1 / 第一暗纹 Q2 / 第二暗纹 Q3 / 第三暗纹
δ=3λ/2 δ=5λ/2
总结规律
(1)空间的某点距离光源S1 和S2的路程差为0、1 λ、2 λ、3 λ、等波长的整数倍 (半波长的偶数倍)时,该点 为振动加强点。 (2)空间的某点距离光 源S1和S2的路程差为λ /2、3 λ/2、5λ/2、等 半波长的奇数倍时,该点 为振动减弱点。
光的干涉和光的衍射
光的干涉和光的衍射光的干涉是指两束或多束相干光波相互叠加时,它们在空间中某一点相遇时产生的光强分布现象。
光的衍射是指光波遇到障碍物或通过狭缝时,光波在障碍物或狭缝周围发生弯曲、扩展和干涉的现象。
一、光的干涉1.干涉现象的条件–光源发出的光为单色光或频率非常接近的多色光。
–光束经过不同路径传播后相遇。
–光束相遇时要有相位差。
2.干涉条纹的特点–等距性:干涉条纹间距相等。
–亮暗相间:干涉条纹由亮条纹和暗条纹组成。
–叠加性:多束干涉光相遇时,各自干涉条纹叠加形成新的干涉条纹。
3.干涉实验–双缝干涉实验:通过两个狭缝,观察光在屏幕上的干涉现象。
–迈克尔逊干涉实验:利用分束器将光分为两束,分别经过不同路径后再次合并,观察干涉现象。
二、光的衍射1.衍射现象的条件–光源发出的光波遇到障碍物或通过狭缝时发生衍射。
–障碍物或狭缝的尺寸与光波波长相当或更小。
–观察衍射现象时,衍射光束要有足够的光程差。
2.衍射条纹的特点–衍射条纹是光波传播路径的积分结果,具有明显的弯曲和扩展现象。
–衍射条纹间距不固定,取决于光波波长和障碍物或狭缝的尺寸。
–衍射条纹可以是明暗相间的,也可以是亮度分布的。
3.衍射分类–单缝衍射:光通过一个狭缝时的衍射现象。
–多缝衍射:光通过多个狭缝时的衍射现象。
–圆孔衍射:光波通过圆形孔洞时的衍射现象。
–菲涅尔衍射:光波从一种介质进入另一种介质时的衍射现象。
4.衍射的应用–衍射光栅:利用光的衍射原理,制造出具有周期性结构的衍射光栅,用于光谱分析、光学仪器等。
–光纤通信:利用光在光纤中的衍射现象,实现高速、长距离的通信。
–激光技术:激光的产生和传播过程中,衍射现象起着关键作用。
光的干涉和光的衍射是光学中的重要现象,它们在生活中和科技领域有着广泛的应用。
通过学习光的干涉和光的衍射,我们可以深入了解光的本质和光波的传播规律。
习题及方法:1.习题:双缝干涉实验中,若将其中一个狭缝关闭,则观察到的现象是什么?•双缝干涉实验中,两束相干光波相遇产生干涉现象,形成明暗相间的干涉条纹。
光的干涉现象
光的干涉现象光的干涉现象是光学中一种重要的现象,它揭示了光波的特性以及光的行为。
干涉实验的结果不仅令人叹为观止,还对解释光的本质提供了有力的证据。
本文将介绍光的干涉现象、干涉的主要类型以及干涉实验的原理和应用。
一、干涉是指两束(或多束)光波在相遇时产生的干涉现象。
这种相遇可以是两束光波来自同一光源,也可以是来自不同的光源。
干涉现象的基础是光的波动性质以及光的相位差。
当两束波波峰或波谷同时到达某一点时,它们相互增强,叫做构成性干涉;而当波峰和波谷同时到达某一点时,它们相互抵消,使得光强变弱或者完全消失,叫做破坏性干涉。
二、干涉的主要类型在光的干涉现象中,主要有两种类型的干涉,即相干光的干涉和非相干光的干涉。
相干光的干涉是指光源发出的两束相干光经过分束器或反射产生的相干干涉。
相干光的干涉常见的实验有杨氏双缝干涉实验、自发光照明干涉等。
非相干光的干涉是指来自不同光源的两束或多束光波相遇产生的干涉。
这种干涉实验中的光源通常不是单色光源,而是如白光等连续光源。
干涉实验的结果将呈现出一系列的颜色条纹,以及光的分光能力。
三、干涉实验的原理和应用干涉实验的原理可以通过光的波动性质来解释。
光的波动模型认为光是一种电磁波,具有波长、频率和振幅等特性。
当光波经过不同的光程差后相遇时,会出现干涉现象。
干涉实验在科学研究和技术应用中具有广泛的应用。
首先,干涉实验是检验光的波动理论的有效手段之一。
通过观察和分析干涉条纹,我们可以验证光波理论的正确性,并进一步深入研究光的本质。
其次,干涉实验也被广泛应用于光学仪器和设备的设计和制造中。
比如在干涉仪、激光干涉仪和光学测量等领域,干涉实验的原理和技术都得到了充分的利用。
干涉实验的结果可以帮助我们测量物体的形状、薄膜的厚度等参数,并且在光学通信、光学信息存储和光学计算等领域也发挥着重要的作用。
总结:光的干涉现象是光学中的重要现象,揭示了光波的特性和行为。
干涉实验的结果在理论研究和技术应用上都具有重要的意义。
《光的干涉》课件
特定的干涉条纹。
实验步骤
1. 制备不同厚度的薄膜样品。
2. 将光源对准薄膜,使光波入射到薄 膜表面。
3. 观察薄膜表面的干涉条纹,分析干 涉现象与薄膜厚度的关系。
迈克尔逊干涉仪
实验目的:利用迈克尔逊干涉仪观察不同波长的光的干 涉现象。 实验步骤
2. 将不同波长的光源依次对准迈克尔逊干涉仪。
实验原理:迈克尔逊干涉仪通过分束器将一束光分为两 束,分别经过反射镜后回到分束器,形成干涉。
1. 调整迈克尔逊干涉仪,确保光路正确。
3. 观察不同波长光的干涉条纹,分析干涉现象与波长 的关系。
04
光的干涉的应用
光学干涉测量技术
干涉仪的基本原理
干涉仪利用光的干涉现象来测量长度、角度、折射率等物理量。干涉仪的精度极高,可以达到纳米级 别。
光的波动性是指光以波的形式传播, 具有振幅、频率和相位等波动特征。
光的干涉是光波动性的具体表现之一 ,当两束或多束相干光波相遇时,它 们会相互叠加产生加强或减弱的现象 。
波的叠加原理
波的叠加原理是物理学中的基本原理之一,当两列波相遇时,它们会相互叠加, 形成新的波形。
在光的干涉中,当两束相干光波相遇时,它们的光程差决定了干涉加强或减弱的 位置。
多功能性
光学干涉技术将向多功能化发展,实现同时进行 多种参数的测量和多维度的信息获取。
光学干涉技术的挑战与机遇
挑战
光学干涉技术面临着测量精度、 稳定性、实时性等方面的挑战, 需要不断改进和完善技术方法。
机遇
随着科技的不断进步和应用需求 的增加,光学干涉技术在科学研 究、工业生产、医疗等领域的应 用前景将更加广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理《光的干涉》教学设计一、教材分析本节主要讲杨氏双缝干涉原理和相干光源的概念。
重点是双缝干涉中波的叠加形成的明暗条纹的条件及判断方法。
要把光波的干涉和机械波的干涉联系起来,引用路程差的概念,应用学生已有的波的叠加的知识,分析光屏上明暗条纹的分布规律,即与两个狭缝的路程差是波长的整数倍处出现亮条纹,与两个狭缝的路程差是半个波长的奇数倍处出现暗条纹。
教材将《光的干涉》安排在学生可感知的光折射现象研究(第1 节)之后,意在建立有层次的光本性认知平台.在光折射现象研究中得到折射定律后,教材及时引导学生作深层思考:从实验中得出的折射定律1212sin sin n θθ=与从惠更斯原理得出的结论形式一致,是否可以推测光可能是一种波?“光线”是否应该是光波的波线?为将对光的认知同化至波的图式中去作了自然的铺垫,这样的编排与高中学生的认知水平相适应的,也顺乎人类对光本性认识的进程。
二、教学目标1.知识与技能◆会观察与描述光的双缝干涉现象,认识单色光双缝干涉条纹的特征。
◆知道单色光双缝干涉亮、暗条纹形成的原理。
◆知道产生光的干涉现象的条件。
2.过程与方法▲通过对实验观察分析,认识干涉条纹的特征,获得探究活动的体验。
▲尝试运用波动理论解释光的干涉现象。
▲体验观察到光的双缝干涉以支持光的波动说的假说上升为理论的方法。
▲通过机械波的干涉向光的干涉迁移,经历知识同化、抽象建模的物理思维过程。
3.情感态度与价值观●体验探究自然规律的艰辛与喜悦。
●欣赏光现象的奇妙和谐。
●了解光干涉现象的发现对推动光学发展的意义。
三、重点难点重点:1.观察与描述光的双缝干涉现象。
2.双缝干涉中波的叠加形成的明暗条纹的条件及判断方法。
难点:用波动理论解释明暗相间的干涉条纹。
四、教具准备:⑴实验装置:激光器,双缝干涉演示仪⑵多媒体课件:水波干涉的视频,托马斯·杨双缝干涉实验原理示意图, PPT 课件、多媒体动画等。
五、教学过程 在光的折射一课中,从实验中得出的折射定律1212sin sin n θθ=与从惠更斯原理得出的结论形式一致,是否可以推测光可能是一种波?学生思考与交流后得到:如果光是一种波,则要有波的特征现象作实验支持.干涉是波特有的现象,一切波都能发生干涉,因此可以用光是否具有干涉现象来判断光是不是一种波。
复习提问:(课件展示下列问题及右图)右图是两列水波某时刻干涉的示意图,S1、S2是振动情况总是相同的波源,实线代表波峰,虚线代表波谷,直线OO 是S1S2的中垂线,在此时刻介质中a点为两波谷叠加,b点为波峰与波谷叠加,c点为两、、、中哪些是出现振动加强的地方,哪些是出波峰叠加,d点是处于某种中间状态的叠加。
问:a b c d现振动减弱d 地方,哪些是出现振动加强和减弱的中间过渡状态?、两点是振动加强的点,b点是振动减弱的点,对于(一般情况下,学生能顺利回答a cd点可能会出现争议。
教师可做如下引导)设问:b点位于什么位置呢?学生答:略(教师进一步引导学生分析)既然S1S2到d点的路程差为零,根据波动理论,两波源在d点处激起的振动总是一致的,虽然该时刻是中间状态的叠加,但两列波在d点处的叠加,激起d点的振动的振幅(教师强调是振幅最大,而非位移最大,即使是振动加强的点,也有位移为零的时候)仍为最大,故d点还是振动加强的地方。
(屏幕展示“水波干涉”的视频,通过已有知识的迁移让学生走进光的双缝干涉)让学生观察并描述稳定水波干涉现象的特征:即出现振动总是加强和振动总是减弱的区域,且加强区和减弱区互相间隔的现象;指出干涉现象是两列波在空间相遇叠加的结果;强调要得到稳定干涉图样需要两波源的振动情况完全相同.一、波的特征现象之一——干涉现象——振动加强与减弱的区域确定条件——两列波的频率相同(必要条件)设问1:预期的光(例如红光)的干涉图样是怎样的?要求回答:单色光的干涉现象是明暗相间的条纹.(从机械波迁移至光波)设问2:日常生活中为什么不易看到光的干涉现象?学生交流后教师总结:要产生光的干涉现象必须要有两个振动情况完全相同的光源,包括频率相同、振动方向相同、相位差恒定。
而普通光源发出的光,是大量原子跃迁时发出的,由不连续的波列组成,各波列的相位是无规则变化的,这是由原子发光的特点决定的。
因此,两个独立的光源发出的光,即使是频率相同的单色光也不能保持恒定的相位差。
学生交流后教师归纳:实验控制的关键在获取振动情况完全相同的光源,让两个完全相同的“相干光源”发出的光在同一空间叠加,用屏在叠加区域接收,应可得到预期的现象。
1801年英国的托马斯·杨想出了一个巧妙的办法,把一个点光源发出的一束光分成两束,从而找到了“两个振动情况总是相同的波源”,如愿以偿的观察到了光的干涉现象。
因为他设计的巧妙,双缝干涉实验被评为十大美丽物理实验之一(排第五名,多媒体投影如右图)。
二、双缝干涉实验1.演示实验、观察现象(屏幕显示托马斯·杨双缝干涉实验原理示意图,如图1所示,介绍杨氏实验)教师强调以下两点:单缝的作用是获取单一频率的光源;双缝屏上的两条狭缝离的很近,到前一条狭缝的距离相等,所以两条狭缝处光的振动情况完全相同.说明杨氏最初的实验所用的不是狭缝,而是小孔,后来,他发现改用狭缝后干涉图样更加明亮,于是后人把他的实验叫做双缝干涉实验。
杨氏实验成功获得亮暗相间的干涉图样,证明光的确是一种波。
(教师采用激光作为光源演示双缝干涉实验)教师操作:⑴打开激光器,直接把激光打到后背的墙(光屏)上(易观察).要求学生说出观察到的现象——激光沿直线传播,打到墙上是一个亮斑。
⑵在激光器前加一双缝,让学生再观察实验现象,并引导学生描述观察到的现象。
学生活动:①在加双缝前,请一学生来观察双缝,因为双缝间距太小,大约0.1mm 左右,一般很难看出是双缝,可以让其他同学帮助想办法,如将双缝屏迎着光去看便可看出。
②仔细观察实验现象,并描述加双缝前、后在光屏上观察到的现象:光到达屏上的范围比不加双缝时大了;屏上出现了明(红)暗相间的条纹;条纹间距相等;还可以请刚才观察双缝的学生说出,明暗相间的条纹走向与双缝的方向平行。
教师设问:请同学们根据刚才的观察,归纳双缝干涉图样的特征。
学生讨论后回答:⑴亮暗相间的条纹;⑵ 条纹间距相等;⑶ 光到达的范围比“直线传播”的大。
教师设问:为什么会出现这样的图样?怎样用波动理论解释光的干涉现象。
三、比较推理、分析现象我们可以仿照机械波的干涉,用波动理论来分析屏上明暗条纹的分布情况:⑴中央明条纹 (课件投影右图)S 1、S 2到P 0点距离相同,所以这两列波的波峰或波谷同时到达P 0点,在这一点,两列波的波峰与波峰叠加,波谷与波谷叠加,他们在P 0点相互加强,因此这里出现明条纹。
⑵第一亮条纹S 1、S 2到P 1点距离不相同,S 2到P 1的距离比S 2到P 1的距离大一个波长λ。
所以当S 1的波峰(或波谷)到达P 1点时,S 2的波峰(或波谷)也到达P 1点。
在这一点,两列波的波峰与波峰叠加,波谷与波谷叠加,他们在P 1点相互加强,因此这里也出现明条纹。
⑶第一暗条纹S 1、S 2到Q 1点距离不相同,S 2到Q 1的距离比S 2到Q 1的距离大半个波长2λ。
所以当S 1的波峰(或波谷)到达Q 1点时,S 2的波谷 (或波峰)也到达Q 1点。
在这一点,两列波的波峰与波谷叠加,他们在Q 1点相互减弱,因此这里出现暗条纹。
教师设问:同学们能否自己归纳一下屏上出现明条纹或者暗条纹的一般条件呢?学生思考讨论后得出结论:凡光程差等于波长整数倍的位置,产生亮条纹;凡光程差等于半波奇数倍的位置,产生暗条纹。
即产生亮暗条纹条件表达式:亮纹:光程差(012)k k δλ==、、……暗纹:光程差(21)(123)2k k λδ=-=、、……为了巩固理解干涉的稳定性,教师课播放多媒体动画(右图为该动画的截图,本动画可以逐帧播放,动画每播放一帧,波向前传播一个周期,由动画可以清晰看出干涉加强的位置每一时刻都是加强的,而减弱的位置每一时刻都是减弱的。
)教师设问:在上面的分析中,屏上位于P(中央明纹位置)和Q1(第一暗纹位置)之间的某一点是明纹还是暗纹呢?学生茫然……教师指出:其实,我们刚才讨论的所谓振动加强点,实际上应该是振动最强的点,该点振幅最大(等于两列波的振幅之和),而振动减弱的点实际上是振动最弱的点,该点振幅最小(等于两列波的振幅之差)。
像这样的点我们称为明条纹中心位置或暗条纹中心位置。
大家从干涉图样上可以看出明条纹到暗条纹是逐渐过渡过去的。
(这是学生理解上的难点,此时教师再用多媒体投影干涉图样,让学生仔细观察,加深体会。
) 思考题:试着推导出明条纹(暗条纹)中心位置的表达式。
(为下一节的实验打下基础)本题在教师的指导下师生共同完成。
四、相干光源如果两个光源发出的光能够产生干涉,这样的两个光源叫做相干光源。
(全课总结、提升)1.托马斯·杨在历史上第一次解决了相干光源问题,成功做出了光的干涉实验.光的干涉现象是微粒说无法解释的,使人们认识到光具有波动性。
2.两个相干光源发出的光在屏上某处叠加时,如果同相光就加强,如果反相光就减弱,于是产生亮暗条纹,其特征是在中央亮纹两侧对称地分布着亮暗相间的各级干涉条纹,且相邻亮纹和相邻暗纹的间距相等。
3.亮暗相间条纹反映光的能量在空间分布情况。
暗条纹处光能量几乎是零,表明两列光波叠加彼此相互抵消,这并不是光能量损耗了或变成其它形式能量,而是按波的传播规律,没有能量传到该处;亮条纹处的光能量比较强,光能量增加,也不是光的干涉可以产生能量,而是按波的传播规律,到达该处的能量比较集中。