复变函数论_钟玉泉_第三版_高教_答案_清晰版

合集下载

复变函数论第三版课后习题答案[1]

复变函数论第三版课后习题答案[1]

第一章习题解答(一)1.设z ,求z 及Arcz 。

解:由于3iz e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

解:12444(),0,1,2,3k ii za e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数论_钟玉泉_第三版_高教_答案_清晰版

复变函数论_钟玉泉_第三版_高教_答案_清晰版

n 1
z z 0 nM n1 , 故对 0 ,
n
只需取

nM
n 1
,于是当 z z 0 时,就有 z n z 0 .
(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此 f ( z ) 在
z 平面上除使分母为零点外都连续.
arg z, z 0 13.证明:令 f ( z ) arg z 0, z 0
2
2
z 3 z1 为实数. z 2 z1
10.解:(1)令 z x yi t (1 i) ,得 x y ,即曲线为一,三象限的角平分线. (2)令 z x yi a cos t ib sin t , 得 x a cos t , y b sin t ,则有


2
.
因而对任何自然数 p ,也有 z n p z 0

2
.
利用三角不等式及上面两不等式, 当 n N 时,有
z n p z n z n p z 0 z n z 0
充分性 :设对 0, N ( ) 0 ,当 n, n p N 时,有 z n p z 0 ,由定义 得
12.证明:(1)首先考虑函数 f ( z ) z n 在 z 平面上的连续性. 对复平面上任意一点 z 0 ,来证明 lim z n z 0
z z0 n
不妨在圆 z M z 0 1 内考虑. 因为 z n z 0 z z 0 ( z
n n 1
z
n2
z0 z0

3
2k
(k 0,1,2,)
1 i 2

复变函数论钟玉泉第三章

复变函数论钟玉泉第三章
1 2
作和式 Sn f ( k ) ( zk zk 1 ) f ( k ) zk ,
k 1 k 1
A
o
z1 z2
k z k zk 1
C z n 1

记 max{sk }, 当 n 无限增加且 0 时,
这里 zk zk zk 1 , sk zk 1 zk的长度,
2
2.积分的定义: 设函数 w f ( z ) 定义在区域
D 内, C 为区域D 内起点为 A 终点为 B的一条光 点为A z0 , , z k 1 , z k , , z n B,
n n
滑的有向曲线 , 把曲线 C任意分成 n个弧段 , 设分 y
在每个弧段zk 1 z( k 1,2, , n)任取一点 k ,
下式两端极限存在 ,
f ( k )zk [u( k ,k )xk v( k ,k )yk ]
k 1 k 1
n
n
i [v ( k ,k )xk u( k ,k )yk ]
k 1
n
在形式上可以看成是 f ( z ) u iv 与 dz dx idy 相乘后求积分得到: C f ( z )dz (u iv )(dx idy ) udx vdy i vdx udy. 5
12
第二节 柯西积分定理
一、问题的提出
观察上节例1, 被积函数 f ( z ) z 在复平面内处处解析 ,
此时积分与路线无关.
1 , 观察上节例4, 被积函数当n 0 时为 z z0
它在以 z0 为中心的圆周C 的内部不是处处解析的 , 1 此时 dz 2i 0. c z z 0
0

复变函数答案 钟玉泉 第五章习题全解

复变函数答案 钟玉泉 第五章习题全解

(z 2 1)2 4(z i)2 n0
2i
1 4(z i)2
(1)n (n 1)( z i)n )n
n0
2i
(0
z i
2)
1
(2) z 2e z
1 z n2
1 1 (0 z )
n0 n!
n2(n 2)! z n
e e e (3) 令 1 ,则 z
1
1z
1
2
(1 ...) 2
f (z) w0 解 析 , 即 为整函数 . 又 因 f (z) 非 常 数 , 所 以 g(z) 非常 数 , 其值全 含于一圆
g(z) 1 之内,与刘维尔定理矛盾. 0
11.证明:由题意, f (z) 在 z0 的去心邻域内的洛朗展开式可设为
f (z)
c1 z z0
cn (z z0 )n
(a)
0
6.证明:令 g(z) (z a)k f (z) 。由题设, g(z) 在 k {a}: 0 | z a | R 内有界。由
定理 5.3(3),a 为 g(z) 的可去奇点,则 a 为 g(z) 的解析点。又由定理 5.4(2),

a

f
(z) 的
m
级极点,则在点
a
的某去心邻域内能表成
正好是以 1 为中心的无穷远点的去心领域。所以根据题中的洛朗展式,只能判
定 z 是 f (z) 的可去奇点。
3.证明:由孤立奇点的定义,又有 f (z) 在点 a 解析,故知 a 为 g(z) 的孤立奇点,
且 lim g(z) lim f (z) f (a) f (a) g(a) ,故 a 为 g(z) 的可去奇点。故在 a 业
(充分性) 若

复变函数答案 钟玉泉 第一章习题全解

复变函数答案 钟玉泉 第一章习题全解

第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.。

复变函数答案 钟玉泉 第五章习题全解

复变函数答案 钟玉泉 第五章习题全解

5.4
的条件(2)
f
(z)
(z) (z a)m
,其中 (z) 在点 a
邻域内解析,
且 (a) 0 为 f (z) 以 a 为 m 阶极点的特征,则
lim(z a)m
z a
f
(z)
lim(z a)m za
(z) (z a)m
(a)
0
6.证明:令 g(z) (z a)k f (z) 。由题设, g(z) 在 k {a}: 0 | z a | R 内有界。由
n0
2i
(0
z i
2)
1
(2) z 2e z
1 z n2
1 1 (0 z )
n0 n!
n2(n 2)! z n
e e e (3) 令 1 ,则 z
1
1z
1
2
(1 ...) 2
2
3
4
5
4
2 (1 ...)(1 ...)
2 3! 4! 5!
2
3
4
5
平面上无其他奇点.
(4)令分母为 0,解得 z 2 (1 i) ,即为所给函数的极点. 2
且因[(z2 i)3 ] z
2 (1i)
0,[(z2 i)3 ] z
2 (1i)
0,
2
2
故 z 2 (1 i) 均为所给函数的三级极点. 2
又因 1 z 0 ,所以 z 为可去奇点. (z2 1)3
从而分别是函数的一级和二级极点,又因
z 1 z(z 2 4)
z
0
,所以
z
为可去
奇点.
(2)由定理 5.4(3)知函数 sin z cos z 的 m 级零点,就是

复变函数论第三版课后习题答案

复变函数论第三版课后习题答案

第一章习题解答(一)1.设z ,求z 及Arcz 。

解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

解:12444(),0,1,2,3k ii za e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数论第三版钟玉泉PPT第三章

复变函数论第三版钟玉泉PPT第三章

k 1
k 1
o
1 A
2
z1
z2
C zn1
k zk zk 1
x
这里 zk zk zk1 , sk zk1zk的长度,
记 m1kaxn{sk }, 当n 无限增加且 0 时,
如果不论对C 的分法及 k 的取法如何, Sn 有唯
一极限, 那么称这极限值为函数f (z) 沿曲线C
n
的积分, 记为 C f (z)dz
AEBBEAA
AAF BBFA
f (z)dz f (z)dz f (z)dz f (z)dz f (z)dz f (z)dz 0
C

C1
f (z)dz
AA
AA
f (z)dz 0,
BB
BB
或 f (z)dz
f (z)dz.
C
C1
17
C
C1
复变函数
如果我们把这两条简单闭曲线C 及 C1 看 成一条复合闭路, 的正方向为:
xdx ydy i
C
C
ydx
xdy
这两个积分都 与路线C 无关
所以不论C 是怎样从原点连接到点3 4i 的
曲线,
zdz (3 4i)2 / 2.
C
例2 计算 z dz, 其中C 为 : 圆周 z 2.
解 积分路径C 的参数方程为 z 2ei (0 2π ),
z dz 2π 2 2iei d ( 因为 z 2 ) dz 2iei d
C 及 C1 为 D内的任意两条简
C
单闭曲线(正向为逆时针方向), A A
C 及 C1 为边界的区域D1
D1
全含于D.
︵ ︵D
作两段不相交的弧段 AA 和 BB,

复变函数答案 钟玉泉 第三章习题全解

复变函数答案 钟玉泉 第三章习题全解
知 f ′′(z)在 D 内也存在,所以 f ′(z)在 D 内也连续,则由复合函数求导法则 w′(t) = f ′(z) z′(t) ≠ 0 ,且连续于[a,b].
14.证明:由上题知 C 和 Γ 均为光滑曲线,因 Φ(w) 沿 Γ 连续以及 f (z), f ′′(z) 在包 含 C 的区域 D内解析,因此 Φ[ f (z)] f ′(z) 也连续,故公式中的两端积分存在.则
|z| =1 z + 2
设 z = eiθ , dz = ieiθ dθ ⇒
2π i iθdθ 2π (i cosθ − sinθ )[(cosθ + 2) − i sinθ ]
e 0 = ∫ e ∫ 0
iθ + 2 = 0
dθ (cos θ + 2)2 +sin2 θ
∫= 2π −2 sinθ + i(1+ 2 cosθ )dθ
∂2 ( ∂x2
+
∂2 ∂y2 )
f(Biblioteka )2=4(ux 2
+
vx2 ) +
2u (ux2
+
uy2
)+
2v (vx2
+
vy2
)
=4( ux2 + vx2 )=4 f ′(z ) 2
18.证明: f (z)在 D 内解析,则 f ′(z) 在 D 内也解析.已知 f ′(z) ≠ 0,则 ln f ′(z)在
π
(3)下半圆周方程为 z = eiθ ,π ≤ θ ≤ 2π ,则
∫ ∫ ∫ z dz = 2π deiθ = i 0ie iθ dθ = 2
C
π
π
3.证明:(1) C : x = 0,−1 ≤ y ≤ 1

复变函数第一张第二节(钟玉泉第三版)

复变函数第一张第二节(钟玉泉第三版)
2 2
,
特 (1)光滑曲线上的各点都有切线 点 (2)光滑曲线可以求长 由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
y y
o
x
o
x
12
课堂练习 判断下列曲线是否为简单曲线?
z (a ) z (a ) z (b ) z (b ) z (a ) z (b ) z (a ) z (b )
记作:N(z0)
N(z0)={z | |z-z0|<}
0 z z0 所 z 0 的去心邻域 .
称由不等式 确定的点的集合为
记作:N0(z0)={z | 0<|z-z0|<}
2
定义1.2 聚点、外点、孤立点
设 E 为一平面点集 ( 不必属于 的无穷多点 E ), 如果对 , z 0 为 复平面中任意一点 z 0 的任意一个邻域 , 都有 E
(1) D是一个开集;
(2) D是连通的,就是说D中任何 两点都可以用完全属于D的一 条折线连结起来.
z1

D z2

D加上D的边界称为闭域。记为D=D+D
6
说明
不包含边界!
C2
(1) 区域都是开的.
(2) 区域的边界可能是 由几条曲线和一些孤立 的点所组成的.
边界
z z
C3
C1
以上基 本概念 的图示
z z ( t ) x ( t ) iy ( t ). ( t )
z
C的复参数方程
起点z()
o
x
C的正向:起点终点
9
对于满足
t1 , t 2 的 t1 与 t 2 , 当
C
t 1 t 2 而有 z ( t 1 ) z ( t 2 ) 时 , 点 z ( t 1 ) 称为曲线 的重点 .

复变函数论第三版钟玉泉第五章

复变函数论第三版钟玉泉第五章

(3)
(1).
因主要部分的系数
cn
1
2i
f
a n1
d
其中 : a , 可任意小,故
cn
1
2
f
a n1
d
1
2
M
n1
2
M n
cn 0 n 1,2,
13
2020/7/9
复变函数
华中科技大学数学与统计学院
3. 施瓦茨(Schwarz)引理
Schwarz引理 如果函数f(z)在单位圆|z|<1内解析, 并且满足条件 f(0)=0,|f(z)|<1(|z|<1),则在单位圆 |z|<1内恒有|f(z)|≤|z|,且有 | f (0) |1. 如果上式等号成立,或在圆|z|<1内一点z0≠0 处前一式等号成立,则(当且仅当)
12
2020/7/9
复变函数
华中科技大学数学与统计学院
证 (1) (2). 由(1)有
f z c0 c1z a c2z a2 0 z a R
因此 lim za
(2) (3).
f
z

c0
lim
f z
b

0,
za
0, z
:0
|
z
a
| ,有 |
f
(z) b |
,
于是,有 | f (z) || b | ,即f (z)在a的去心邻域内有界。
ez z3
展开成洛朗级数.
例2 求函数
f
z
sinh z2
z
在 0 z
内的洛朗级数。
例3 试问函数 f 洛朗级数?
z
tan

复变函数论第三版钟玉泉第二章

复变函数论第三版钟玉泉第二章
则称 f (z) 在 z0 解析.
如果函数 f (z)在区域 D内每一点解析, 则称 f (z)在区域 D内解析. 或称 f (z)是 区域 D内的一 个解析函数(全纯函数或正则函数).
2. 奇点的定义
若函数 f (z )在点 z 0不解析,但在 z 0 的任一邻域内总 有f (z )的解析点,则称 z 0 为函数f (z ) 的奇点.
dw f (z0 ) z f (z0 ) dz, 即
f
( z0
)
dw dz
z z0
函数w f (z)在 z0 可导与在 z0 可微是等价的.
如果函数 f (z)在区域 D内处处可微, 则称
8 f (z)在区域 D内可微.
复变函数论
广西教育学院
二、解析函数的概念
1. 解析函数的定义 如果函数 f (z) 在 z0 及 z0 的某邻域内处处可导 ,
若 f (z ) = u (x, y ) + iv (x, y ) 在一点z = x + iy,可微,设
lim f (z + D z ) - f (z ) = f ' (z )
Dz? 0
Dz
(1)
设 Vz =Vx + iVy, f (z + Vz )- f (z ) = Vu + i Vv,
Vu = u (x + Vx, y + Vy )- u (x, y )
z
z
x iy
y , x iy
当点沿平行于实轴的方向(y 0)而使z 0时,
lim f lim f (z z) f (z) lim y 0,
z0 z z0
z
x0 x iy
y0
当点沿平行于虚轴的方向(x 0)而使z 0时,

[VIP专享]复变函数论第三版课后习题答案[1]46

[VIP专享]复变函数论第三版课后习题答案[1]46

第一章习题解答(一)1.设,求及。

z z Arcz 解:由于3z e π-==所以,。

1z =2,0,1,3Arcz k kππ=-+=± 2.设,试用指数形式表示及。

121z z ==12z z 12z z 解:由于6412,2i i z e z i e ππ-====所以()64641212222i i iiz z e eeeπππππ--===。

54()146122611222ii i i z e ee z e πππππ+-===3.解二项方程。

440,(0)z a a +=>解:。

12444(),0,1,2,3k i za e aek πππ+====4.证明,并说明其几何意义。

2221212122()z z z z z z ++-=+证明:由于2221212122Re()z z z z z z +=++ 2221212122Re()z z z z z z -=+- 所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又 )())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z 故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数 钟玉泉第三版 第二章第三节

复变函数 钟玉泉第三版 第二章第三节
n
n re
i k
2k
n
=
w0 n re
i0
2 w1 re
n
arg z 2k k 0,1, n 1 n i1 n
w2 re
2( n 1)
22
i2
2k wk n re ik
因为 Ln( 1) ln 1 iArg( 1) ( 2k 1)i ( k为整数) 所以 Ln(1) 的主值就是i .
注意: 在实变函数中, 负数无对数, 而复变数对 数函数是实变数对数函数的拓广.
15
例5
解方程 e z 1 3i 0.

因为 e z 1 3i ,
e
b
p [ln a i ( arg a 2 k )] q
e
p p ln a i ( arg a 2 k ) q q
p ln a q
p p cos q (arga 2kπ) i sin q (arga 2kπ)
a 具有q 个值, 即取 k 0,1,2,, (q 1)时相应的值.
z
常用的做法: 从原点起沿着负实轴将z平 面割破:
o
G x
9
从原点起沿着负实轴将z平面割破,即可将根式函数:
结论:
w n z
分成如下的n个单值函数:
wk
z
n
n r ( z )e
k
i
( z ) 2 k
n
定义域为
值域Tn :
Gk : 2k 2k
2
2.3.0幂函数的变换性质及其单叶性区域
设有幂函数: w =zn 令z=rei,w=ei ,则: w =zn ei = rnein= rn, =n

《复变函数》第一章习题全解钟玉泉版

《复变函数》第一章习题全解钟玉泉版

第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)Re(2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()2000z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅令2001,,A B z C z 2==-=-γ,从而圆周可以写成0AZ Z BZ BZ C +++=,A C 为实数,且22200B z z AC 2=>-γ= 9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周.(2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122y y v y u +-=+=且u yy y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续.13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况. 当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:i i i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以 22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--, 而23313arg,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =. 9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321arg z z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143argarg arg z z z z z zz z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211k z z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.。

复变函数论第三版课后习题答案[1]

复变函数论第三版课后习题答案[1]

第一章习题解答(一)1.设z ,求z 及Arcz 。

解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±L 。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

解:12444(),0,1,2,3k ii za e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档