新人教版九年级上第用列举法求概率课件ppt
合集下载
人教版九年级数学上册25.2 用列举法求概率课件(共42张PPT)
过程与方法
理解 的结果,其中A包含m种)的意义,并能解决 一些实际问题。探究用特殊方法 “列举法” 求概率的简便方法,然后应用这种方法解决 一些实际问题。
P(A) = m (在一次试验中有n种可能 n
教学目标
情感态度与价值观
通过丰富的数学活动,交流成功的经 验,体验数学活动充满着探索和创造,体 验数学方法的多样性灵活性,提高解题能 力。
3 1 = 6 2
(3)点数大于2且小于5有2种可能,即点数 为 3, 4,
P(点数大于2且小于5)=
2 1 = 6 3
例2:掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上;
(2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上。
解:我们把掷两枚硬币所能产生的结果全部 列举出来,它们是:正正,正反,反正,反 反。所有的结果共有4个,并且这4个节结果 出现的可能性相等。 (1)所有的结果中,满足两枚硬币全部正面 朝上(记为事件A)的结果只有一个,即“正 1 正”,所以P(A)=
6
(1)以上两个试验有什么共同的特点? 一次试验中,可能出现的结果有限个。一 次试验中,各种结果发生的可能性相等。 (2)对于上述所说的试验,如何求事件的概率? 一般地,如果在一次试验中,有n种可 能的结果,并且它们发生的可能性都相等, 事件A包含其中的m种结果,那么事件A发生 m 的概率为 . P A =
(2)满足两个骰子的点数之和是9(记为事 件B)的结果有4个,则
4 1 P( B) = = 9 36
(3)满足至少有一个骰子的点数为2(记为 事件C)的结果有11个,则
P(C)=
11 36
想一想
“同时掷两枚硬币”,与“先后两次掷 一枚硬币”,这两种试验的所有可能结果 一样吗?
人教版九年级上册 25.2 第1课时 用列举法求概率【精简课堂课件】(共25张PPT)
36 6
第1枚 第2枚
1 2 3 4 5 6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
可以看出,同时掷两枚骰子,可能出现的结果有 36种,并且它们 出现的可能性相等.
第1枚 第2枚
1 2 3 4 5 6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
第1枚 第2枚
正 反
正 (正,正) (正,反)
反 (反,正) (反,反)
由此表可以看出,同时抛掷两枚硬币,可能出现的结果有4种,并且 它们出现的可能性相等.
归纳总结
当一次试验要涉及两个因素或分两步进行,并且可 能出现的结果数目较多时,为不重不漏地列出所有可 能结果,通常采用列表法.
方法: 选其中的一次操作或一个条件作为横行,另一次操作 或另一个条件为竖行,列表计算概率.
4
(2)两枚硬币全部反面向上(记为事件B) 的结果也只有1种, 即“反反”,所以 P(B) 1 .
4
(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C)的结果共 有2种,即“反正”“正反”,所以 P(C) 2 1 .
42
获取新知
知识点二:用列表法求概率
第1枚 第2枚
1 2 3 4 5 6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
可以看出,同时掷两枚骰子,可能出现的结果有 36种,并且它们 出现的可能性相等.
第1枚 第2枚
1 2 3 4 5 6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
第1枚 第2枚
正 反
正 (正,正) (正,反)
反 (反,正) (反,反)
由此表可以看出,同时抛掷两枚硬币,可能出现的结果有4种,并且 它们出现的可能性相等.
归纳总结
当一次试验要涉及两个因素或分两步进行,并且可 能出现的结果数目较多时,为不重不漏地列出所有可 能结果,通常采用列表法.
方法: 选其中的一次操作或一个条件作为横行,另一次操作 或另一个条件为竖行,列表计算概率.
4
(2)两枚硬币全部反面向上(记为事件B) 的结果也只有1种, 即“反反”,所以 P(B) 1 .
4
(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C)的结果共 有2种,即“反正”“正反”,所以 P(C) 2 1 .
42
获取新知
知识点二:用列表法求概率
人教版九年级上册数学《用列举法求概率》概率初步研讨说课教学课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
机摸出 1 个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同
的概率是( D )
A.217
B.13
C.19
D.29
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
10.【陕西中考】现有A、B两个不透明袋子,分别装有3个除颜色外完全相同
数学·九年级(上)·配人教
8.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二 个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出
场顺序,求抽签后每个运动员的出场顺序都发生变化的概率.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
数学·九年级(上)·配人教
5.【教材 P140 习题 25.2T4 变式】一只昆虫在如图所示的树枝上寻觅食物,假
1
定
课件 课件
课件 课件
昆虫在
每个
岔路口
都会
随机选
择一
条路径
,则
它获取
食物
的概率
是
___3___.
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
数学·九年级(上)·配人教
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
《用列举法求概率》PPT课件 人教版九年级数学
第二
第 个
一
个
1
2
3
4
5
6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
巩固练习
同时抛掷2枚均匀的骰子一次,骰子各面上的点数分 别是1、2、3···6.试分别计算如下各随机事件的概率. (1)抛出的点数之和等于8; (2)抛出的点数之和等于12.
分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能 掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1、 2、···6中的每一种情况.可以用“列表法”列出所有可能的结果.
一个因素所包含的可能情况
另一个 因素所 包含的 可能情 况
两个因素所组合的所 有可能情况,即n
说明
如果第一个 因素包含2种 情况;第二 个因素包含3 种情况;那 么所有情况
n=2×3=6.
探究新知 素养考点 1 利用列表法解答掷骰子问题
例1 同时掷两个质地均匀的骰子,计算下列事件
的概率: (1)两个骰子的点数相同.
.
(3,3)
课堂检测
拓广探索题
在6张卡片上分别写有1-6的整数,随机地抽取一张后 放回,再随机地抽取一张,那么第一次取出的数字能够 整除第二次取出的数字的概率是多少?
第二第张一 张
1
2
3
4
5
6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件
板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为
(
)
1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能
人教版九年级上册25.2 用列举法求概率 (共45张PPT)
答案:7/18.
概率与函数综合 点M(x,y)可以在数字-1,0,1,2中任意选取.试求 (1)点M在第二象限内的概率. (2)点M不在直线y=-2x+3上的概率.
答案:(1)1/4;(2)7/8.
电流通过的概率
已知电流在一定时间段内正常通过电子元件 的概率是0.5,分别在一定时间段内,A、B之间和C、D之 间电流能够正常通过的概率.
练习
2. 有6张看上去无差别的卡片,上面分别写着1,2,3,4,5, 6. 随机抽取1张后,放回并混在一起,再随机抽取1张,那么 第二次取出的数字能够整除第一次取出的数字的概率是多少?
练习 某人有红、白、蓝三件衬衫和红、白、蓝三条长裤,该人任意 拿一件衬衫和一条长裤,求正好是一套白色的概率______.
答案:甲获胜的概率是1/4, 乙获胜的概率是3/4,不公平.
练习 先后抛掷三枚均匀的硬币,至少出现一次正面的概率_____.
答案:7/8.
练习 有两把不同的锁和三把钥匙,其中两把钥匙恰好能分别打开这 两把锁,第三把钥匙不能打开这两把锁.任意取一把钥匙去开 任意一把锁,一次打开锁的概率是多少?
答案:1/3.
答案:1/2.
练习——是否放回 小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早 上起床没看清随便穿了两只就去上学,问小明正好穿的是相同 的一双袜子的概率是多少?
答案:1/3.
练习——是否放回 在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再 随机的抽取一张,那么,第一次取出的数字能够整除第2次取出 的数字的概率是多少?
A AA AA A B B B BB B C CD DE E C C D DE E HI HI HI HI H I HI
(1)P(1个元音)
概率与函数综合 点M(x,y)可以在数字-1,0,1,2中任意选取.试求 (1)点M在第二象限内的概率. (2)点M不在直线y=-2x+3上的概率.
答案:(1)1/4;(2)7/8.
电流通过的概率
已知电流在一定时间段内正常通过电子元件 的概率是0.5,分别在一定时间段内,A、B之间和C、D之 间电流能够正常通过的概率.
练习
2. 有6张看上去无差别的卡片,上面分别写着1,2,3,4,5, 6. 随机抽取1张后,放回并混在一起,再随机抽取1张,那么 第二次取出的数字能够整除第一次取出的数字的概率是多少?
练习 某人有红、白、蓝三件衬衫和红、白、蓝三条长裤,该人任意 拿一件衬衫和一条长裤,求正好是一套白色的概率______.
答案:甲获胜的概率是1/4, 乙获胜的概率是3/4,不公平.
练习 先后抛掷三枚均匀的硬币,至少出现一次正面的概率_____.
答案:7/8.
练习 有两把不同的锁和三把钥匙,其中两把钥匙恰好能分别打开这 两把锁,第三把钥匙不能打开这两把锁.任意取一把钥匙去开 任意一把锁,一次打开锁的概率是多少?
答案:1/3.
答案:1/2.
练习——是否放回 小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早 上起床没看清随便穿了两只就去上学,问小明正好穿的是相同 的一双袜子的概率是多少?
答案:1/3.
练习——是否放回 在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再 随机的抽取一张,那么,第一次取出的数字能够整除第2次取出 的数字的概率是多少?
A AA AA A B B B BB B C CD DE E C C D DE E HI HI HI HI H I HI
(1)P(1个元音)
人教版九年级数学上册2用列举法求概率课件
).
3.从26个英文字母中任意选一个,是C或D的概率是
.
小结
1. 有一道四选一的单项选择题,某同学用排除法排除了一个概率是( )
A. 二分之一
B.三分之一
C.四分之一
D.3
2. 从一幅充分均匀混合的扑克牌中,随机抽取一张,抽到大王的
概率是(
),抽到牌面数字是6的概率(
),
抽到黑桃的概率是(
25.2 用列举法求概率
古典概型
一次实验具有两个共同的特点:①一次实验中,可能出现的结果有有限个; ②一次实验中,各种结果产生的可能性相等. 具有这些特点的实验称为古典概 型. 古典概型的概率求法: 一般地,如果在一次实验中,有n种可能的结果,并且它们产生的可能性都相 等,事件A包含其中的m种结果,那么事件A产生的概率为P(A)= .
练习
同时掷两个质地均匀的骰子,计算下列事件的概率: 1. 两个骰子的点数相同 2. 两个骰子的点数之和是9 3. 至少有一个骰子的点数为2.
列表法与树状图的区分
对于不放回型的概率求法,要注意排除不存在的情况,防止出现错 误.
例题
在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一 个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便? 1、从盒子中取出一个小球,小球是红球. 2、从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同. 3、从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小 球的颜色都相同.
练习
从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,抽出的 签上的号码有5种可能的结果,即1、2、3、4、5,每一根签抽到的 可能性相等,都是 .
列表法
当一次实验要涉及两个因素并且可能出现的结果数目较多时,为了 不重不漏地列出所有可能的结果,经常采用列表法.
人教版九年级上册课件25.2.1 用列举法求概率 (19张PPT)
21 (3)P(一枚正面朝上,一枚反面朝上)= =
42
自学检测一 (4分钟 )
1. 袋子中装有红、绿各一个小球,随机摸出1个小球后 放回,再随机摸出一个.求下列事件的概率: (1)第一次摸到红球,第二次摸到绿球. (2)两次都摸到相同颜色的小球; (3)两次摸到的球中有一个绿球和一个红球.
解:所有等可能的结果为:红红、红绿、绿红、绿 绿,共4种.
用列举法求概率的步骤:(1)列源自出一次试验中的所有结果( n 个);
(2)找出其中事件A发生的结果( m 个);
(3)运用公式求事件A的概率:P( A ) m n
自学指导二(3分钟)
自学课本P137页例2,思考相关问题: 1.同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子点数之和是9; (3) 至少有一个骰子的点数为2.
(1)“第一次摸到红球,第二次摸到绿球”(记为事件
A)有1种可能, 1故其概率为: P(A)= 4
(2)“两次都摸到相同颜色的小球”(记为事件B)有2 种可能,故其概率为:
P(B)= 1 2
(3)“两次摸到的球中有一个绿球和一个红球”(记为 事件C)有2种可能,故其概率为:
P(C)= 1 2
点拨运用 (5分钟)
一般地,如果在一次试验中,有 n 种可能的结果, 并且它们发生的可能性都相等, 事件A包含在其中的 m 种结果,
那么事件A发生的概率为: P( A ) m n
注:用该公式求概率的条件是:
(1)试验的结果是有限个(n) 简单随机试验
(2)各种结果的可能性相等.
回答下列问题,并说明理由.
1 (1)掷一枚硬币,正面向上的概率是___2____;
解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下 表列举出所有可能的结果.
42
自学检测一 (4分钟 )
1. 袋子中装有红、绿各一个小球,随机摸出1个小球后 放回,再随机摸出一个.求下列事件的概率: (1)第一次摸到红球,第二次摸到绿球. (2)两次都摸到相同颜色的小球; (3)两次摸到的球中有一个绿球和一个红球.
解:所有等可能的结果为:红红、红绿、绿红、绿 绿,共4种.
用列举法求概率的步骤:(1)列源自出一次试验中的所有结果( n 个);
(2)找出其中事件A发生的结果( m 个);
(3)运用公式求事件A的概率:P( A ) m n
自学指导二(3分钟)
自学课本P137页例2,思考相关问题: 1.同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子点数之和是9; (3) 至少有一个骰子的点数为2.
(1)“第一次摸到红球,第二次摸到绿球”(记为事件
A)有1种可能, 1故其概率为: P(A)= 4
(2)“两次都摸到相同颜色的小球”(记为事件B)有2 种可能,故其概率为:
P(B)= 1 2
(3)“两次摸到的球中有一个绿球和一个红球”(记为 事件C)有2种可能,故其概率为:
P(C)= 1 2
点拨运用 (5分钟)
一般地,如果在一次试验中,有 n 种可能的结果, 并且它们发生的可能性都相等, 事件A包含在其中的 m 种结果,
那么事件A发生的概率为: P( A ) m n
注:用该公式求概率的条件是:
(1)试验的结果是有限个(n) 简单随机试验
(2)各种结果的可能性相等.
回答下列问题,并说明理由.
1 (1)掷一枚硬币,正面向上的概率是___2____;
解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下 表列举出所有可能的结果.
九年级数学上册(人教版)2用列举法求概率课件
典例2 一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随
机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是
_______________
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
2)所求概率是一个准确数,一般用分数表示。
课堂练习 (通过直接列举法求概率)
典例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小
军能一次打开该旅行箱的概率是___________________
【解析】
∵密码的末位数字共有10种可能
(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),
3) 根据树状图求出所关注事件包含的结果数及所有等可能的结果数,再利用概
率公式求解。
03
通过画树状图法求概率
2)会用直接列举法、列表法和画树状图法列举所有可能出现的结果。
重点
能够运用列表法和树状图法计算简单事件产生的概率。
难点
会用列表法和画树状图法列举所有可能出现的结果。
01
通过直接列举法求概率
同时掷两枚硬币,求下列事件的概率:
1)两枚硬币全部正面朝上;2)两枚硬币全部面朝上。
课前导入
产生的可能性相等
一般地,如果在一次实验中,有n种可能的结果,并且它们____________________
m
m
,事件A包含其中的 种结果,那么事件A产生的概率P(A)=
.则:P(A)的 取
机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是
_______________
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
2)所求概率是一个准确数,一般用分数表示。
课堂练习 (通过直接列举法求概率)
典例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小
军能一次打开该旅行箱的概率是___________________
【解析】
∵密码的末位数字共有10种可能
(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),
3) 根据树状图求出所关注事件包含的结果数及所有等可能的结果数,再利用概
率公式求解。
03
通过画树状图法求概率
2)会用直接列举法、列表法和画树状图法列举所有可能出现的结果。
重点
能够运用列表法和树状图法计算简单事件产生的概率。
难点
会用列表法和画树状图法列举所有可能出现的结果。
01
通过直接列举法求概率
同时掷两枚硬币,求下列事件的概率:
1)两枚硬币全部正面朝上;2)两枚硬币全部面朝上。
课前导入
产生的可能性相等
一般地,如果在一次实验中,有n种可能的结果,并且它们____________________
m
m
,事件A包含其中的 种结果,那么事件A产生的概率P(A)=
.则:P(A)的 取
九年级数学上册25.2.1用列举法求概率课件新版新人教版
九年级数学上册25.2.1 用 列举法求概率课件新版新 人教版
这是一份九年级数学上册25.2.1课件,通过使用列举法来解决概率问题。通过 本课件,你将学习到概率的基础知识、列举法的步骤和注意事项,以及如何 运用列举法求解概率的例题。
一、概率的基础知识回顾
1 随机试验
对于每一次试验,结果不 确定且具有多个可能的结 果。
五、作业讲解
1 列举法求概率的练习
通过解析作业中的问题,帮助学生掌握列举法求概率的方法。
2 提高题解析
详细解析一些较难的题目,帮助学生理解和应用概率的相关概念。
六、小结与反思
1 学习心得
学生可以分享他们在学习 概率和列举法时的心得体 会。
2 课后问题解答
解答学生在学习过程中遇 到的问题,巩固他们对概 率和列举法的理解。
列举法的注意事项
确保列举到的结果是互不相同且没有遗漏的。
三、列举法求概率的例题
1 求抽取两个红色球的概率
从一组彩球中列举所有可能结果,计算红色球的个数占总数的比例。
2 求从1~10的数字中随机抽取两个数,它们的和为5的概率
列举所有可能结果,计算和为5的个数占总数的比例。
3 求从1~6的数字中随机抽取三个数,它们的和为10的概率
3 课程总结
复习本节课的重点内容, 强调重要概念和技巧。
注意事项
本PPT仅供参考,具体内容以教师授课为准。
列举所有可能结果,计算和为10的个数占总数的比例。
四、总结
1 列举法的优缺点
优点:对于简单的问题,列举法可以直接得到准确的结果。缺点:对于复杂的问题,列 举法可能导致计算量巨大。
2 其他求概率的方法
例:几何法、频率法、古典概型、条件概率等。
这是一份九年级数学上册25.2.1课件,通过使用列举法来解决概率问题。通过 本课件,你将学习到概率的基础知识、列举法的步骤和注意事项,以及如何 运用列举法求解概率的例题。
一、概率的基础知识回顾
1 随机试验
对于每一次试验,结果不 确定且具有多个可能的结 果。
五、作业讲解
1 列举法求概率的练习
通过解析作业中的问题,帮助学生掌握列举法求概率的方法。
2 提高题解析
详细解析一些较难的题目,帮助学生理解和应用概率的相关概念。
六、小结与反思
1 学习心得
学生可以分享他们在学习 概率和列举法时的心得体 会。
2 课后问题解答
解答学生在学习过程中遇 到的问题,巩固他们对概 率和列举法的理解。
列举法的注意事项
确保列举到的结果是互不相同且没有遗漏的。
三、列举法求概率的例题
1 求抽取两个红色球的概率
从一组彩球中列举所有可能结果,计算红色球的个数占总数的比例。
2 求从1~10的数字中随机抽取两个数,它们的和为5的概率
列举所有可能结果,计算和为5的个数占总数的比例。
3 求从1~6的数字中随机抽取三个数,它们的和为10的概率
3 课程总结
复习本节课的重点内容, 强调重要概念和技巧。
注意事项
本PPT仅供参考,具体内容以教师授课为准。
列举所有可能结果,计算和为10的个数占总数的比例。
四、总结
1 列举法的优缺点
优点:对于简单的问题,列举法可以直接得到准确的结果。缺点:对于复杂的问题,列 举法可能导致计算量巨大。
2 其他求概率的方法
例:几何法、频率法、古典概型、条件概率等。
人教版数学九年级上册25.2用列举法求概率(共48张PPT)
在一次试验中,如果可能出现的结果只有有限个, 且各种结果出现的可能性大小相等,那么我们可以通过 列举试验结果的方法,求出随机事件发生的概率,这种 求概率的方法叫列举法.
1 、创设情景,发现新知
每次选择2名同学分别拨动A、B两个转盘上的 指针,使之产生旋转,指针停止后所指数字较 大的一方为获胜者,(若箭头恰好停留在分界 线上,则重转一次)。 作为游戏者,你会选择哪个装置呢?
5
6
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 但满足两张牌的数字之积为奇数(记为事件,1)(5,3)(5,5) 这9种情况,所以
学习重难点
1、一般地,如果在一次试验中,有几种可能的 结果,并且它们发生的可能性都 相等,事件A包含其中的。种结果,那么事件A发 生的概率为P(A)= ,以及运用它 解决实际间题. 2、通过实验理解P(A)= 并应用它解决一些具体题 目
回答下列问题,并说明理由. (1)掷一枚硬币,正面向上的概率是_______; (2)袋子中装有 5 个红球,3 个绿球,这些球除了 颜色外都相同,从袋子中随机摸出一个球,它是红色的 概率为________; (3)掷一个骰子,观察向上一面的点数,点数大 于 4 的概率为______.
你能求出小亮得分的概率吗?
用表格表示
红桃 黑桃
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
3 4
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
九年级数学上册 25.2.2 用列举法求概率课件 (新版)新人教版.ppt
P(B) 1 . 2
4
情境导入
思考 上述问题如果老师想让甲、乙、丙三位同学猜拳(剪
刀、锤子、布) ,由最先一次猜拳就获胜的同学来回答,那 么你能用列表法算出甲同学获胜的概率吗?
若再用列表法表示所有 结果已经不方便!
5
本节目标
1.进一步理解等可能事件概率的意义. 2.学习运用树状图计算事件的概率. 3.进一步学习分类思想方法,掌握有关数学技能.
人教版九年级上册数学
25.2.2用列举法求概率
1
情境导入
1.通过上节课的学习,你掌握了用什么方法求概率? 直接列举法、列表法.
2.刚才老师提的这个问题有很多同学举手想来回答. ①如果老师就从甲、乙、丙三位同学中随机地选择 一位来回答,那么选中丙同学的概率是多少?
P(A) 1 3
2
情境导入
②如果老师想从甲和乙两位同学中选择一位同学回答,且由甲和乙两位同学 以猜拳一次(剪刀、锤子、布)的形式谁获胜就谁来回答,那么你能用列表 法求得甲同学获胜的概率吗?
A AA AA A B B B B B B C CD DE E C C D D E E H I H I H I HI H I HI
满足只有两个元音字母的结果有4个,则 P
满足三个全部为元音字母的结果 有1个,则 P(三个元音)= 1 .
12
(两个元音)= 4 = 1 . 12 3
12
典例精析
(2)取出的3个小球上全是辅音字母的概率是多少?
A. 1
4
1
1
3
B. 3
C. 2
D. 4
3.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余
均相同,若从中随机摸出一个球,摸到黄球的概率为 4 ,则
4
情境导入
思考 上述问题如果老师想让甲、乙、丙三位同学猜拳(剪
刀、锤子、布) ,由最先一次猜拳就获胜的同学来回答,那 么你能用列表法算出甲同学获胜的概率吗?
若再用列表法表示所有 结果已经不方便!
5
本节目标
1.进一步理解等可能事件概率的意义. 2.学习运用树状图计算事件的概率. 3.进一步学习分类思想方法,掌握有关数学技能.
人教版九年级上册数学
25.2.2用列举法求概率
1
情境导入
1.通过上节课的学习,你掌握了用什么方法求概率? 直接列举法、列表法.
2.刚才老师提的这个问题有很多同学举手想来回答. ①如果老师就从甲、乙、丙三位同学中随机地选择 一位来回答,那么选中丙同学的概率是多少?
P(A) 1 3
2
情境导入
②如果老师想从甲和乙两位同学中选择一位同学回答,且由甲和乙两位同学 以猜拳一次(剪刀、锤子、布)的形式谁获胜就谁来回答,那么你能用列表 法求得甲同学获胜的概率吗?
A AA AA A B B B B B B C CD DE E C C D D E E H I H I H I HI H I HI
满足只有两个元音字母的结果有4个,则 P
满足三个全部为元音字母的结果 有1个,则 P(三个元音)= 1 .
12
(两个元音)= 4 = 1 . 12 3
12
典例精析
(2)取出的3个小球上全是辅音字母的概率是多少?
A. 1
4
1
1
3
B. 3
C. 2
D. 4
3.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余
均相同,若从中随机摸出一个球,摸到黄球的概率为 4 ,则
最新人教版九年级数学上册《25.2 用列举法求概率(第2课时)》优质教学课件
(3)P(A).
探究新知 第一次传球
甲
乙
丙
第二次传球
甲
丙
甲
乙
第三次传球 乙 丙 甲 乙 乙 丙 甲 乙
“传球三次后,球又回到甲的手中”的结果有甲-乙丙-甲、甲-丙-乙-甲2种.
P( A) 2 1 . 84
探究新知
方法点拨
当试验包含两步时,列表法比较方便; 当然,此时也可以用树状图法;
当事件要经过多个(三个或三个以上)步骤 完成时,应选用树状图法求事件的概率.
1. 2
问题2 同时抛掷两枚均匀的硬币,出现正面向上的 概率是多少?
可能出现的结果有:(正,正)(正,反)(反,正)(反,反)
P(正面向上)= 1 . 4
还有别的方法求 问题2的概率吗?
探究新知
同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?
列树状图 求概率
第1枚 正
第2枚 正
结果 (正,正)
(正,反) 反 开
探究新 明和小华正在兴致勃勃的玩这个游戏,你想一想, 这个游戏能用概率分析解答吗? 问题 尝试用树状图法列出小明和小华所 玩游戏中所有可能出现的结果,并求出 事件A、B、C的概率.
A:“小明胜” B:“小华胜” C : “平局”
探究新知
归纳总结
画树状图求概率的基本步骤
(1)将第一步可能出现的A种等可能结果写在第 一层; (2)若第二步有B种等可能的结果,则在第一层 每个结果下面画B个分支,将这B种结果写在第二 层,以此类推; (3)根据树状图求出所有的等可能结果数及所求 事件包含的结果数,利用概率公式求解.
探究新知 素养考点 利用画树状图求概率
共有12种结果,且每种结果出现的可能性相等,其
中2名都是女生的结果有4种,所以事件A发生的概率为 P(A)= 4 = 1 .
探究新知 第一次传球
甲
乙
丙
第二次传球
甲
丙
甲
乙
第三次传球 乙 丙 甲 乙 乙 丙 甲 乙
“传球三次后,球又回到甲的手中”的结果有甲-乙丙-甲、甲-丙-乙-甲2种.
P( A) 2 1 . 84
探究新知
方法点拨
当试验包含两步时,列表法比较方便; 当然,此时也可以用树状图法;
当事件要经过多个(三个或三个以上)步骤 完成时,应选用树状图法求事件的概率.
1. 2
问题2 同时抛掷两枚均匀的硬币,出现正面向上的 概率是多少?
可能出现的结果有:(正,正)(正,反)(反,正)(反,反)
P(正面向上)= 1 . 4
还有别的方法求 问题2的概率吗?
探究新知
同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?
列树状图 求概率
第1枚 正
第2枚 正
结果 (正,正)
(正,反) 反 开
探究新 明和小华正在兴致勃勃的玩这个游戏,你想一想, 这个游戏能用概率分析解答吗? 问题 尝试用树状图法列出小明和小华所 玩游戏中所有可能出现的结果,并求出 事件A、B、C的概率.
A:“小明胜” B:“小华胜” C : “平局”
探究新知
归纳总结
画树状图求概率的基本步骤
(1)将第一步可能出现的A种等可能结果写在第 一层; (2)若第二步有B种等可能的结果,则在第一层 每个结果下面画B个分支,将这B种结果写在第二 层,以此类推; (3)根据树状图求出所有的等可能结果数及所求 事件包含的结果数,利用概率公式求解.
探究新知 素养考点 利用画树状图求概率
共有12种结果,且每种结果出现的可能性相等,其
中2名都是女生的结果有4种,所以事件A发生的概率为 P(A)= 4 = 1 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一辆车 上 第二辆车 中 下
第三辆车 下 中
甲
上、中、下
上
上、下、中
上
中、上、下
中
中、下、上
中
下、上、中
下
下、中、上
下
中 上下
下 上中
下上
中上
乙
下
中
上
上
上
中
11、在一次口试中,要从20道题中随机抽出6道 题进行回答,答对了其中的5道就获得优秀, 答对其中的4道题就获得及格,某考生会回答 12道题中的8道,试求:
将题中的”同时掷两个骰子”改为 ”把一个骰子掷两次”,所得的结果 有变化吗?
思考2: 思考2:
1.甲口袋中装有2个相同的小球,它们 分别写有字母A和B;乙口袋中装有3个 相同的小球,它们分别写有字母C.D和 E;丙口袋中装有2个相同的小球,它们 分别写有字母H和I,从3个口袋中各随 机地取出1个小球.
这9种情况,所以
P(A)=
这个游戏对小亮不公 平
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
随堂练习: 同时掷两个质地均匀的骰子,计算下列 事件的概率: (1)两个骰子的点数相同 (2)两个骰子点数之和是9 (3)至少有一个骰子的点数为2
一辆车向左转)=3/27=1/9 至少有两辆车向左转结果有7个,所以P(至少有两辆车向左转)=
7/27
学科内综合
(湖北宜昌)点M(x,y)可以在数字-1,0,1 ,2中任意选取. 试求(1)点M在第二象限内的概率.
(2)点M不在直线y=-2x+3上的概率.
解:列表如下:
y x -1
0
1
2
-1
(-1,-1 )
想一想
什么时候使用”列表法”方便? 什么时候使用”树形图法”方便 ?
1.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
练习
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2
B1
B2
A2 B1 B2 A1 B1 B2 A1 A1 B2 A1 A2 B1
AAAAAABBBBBB CC DDEECCDDEE HI HI HIHIHI HI
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)=
有两个元音字母(记为事件B)的结果有4个,所以 P(B)=
有三个元音字母(记为事件C)的结果有1个,所以 P(C)=
(2)全是辅音字母(记为事件D)的结果有2个,所以 P(D)=
中考链接
( 安徽 14分)两人要去某风景区游玩, 每天某一时段开往该风景区有三辆汽车(票价相 同),但是他们不知道这些车的舒适程度,也不知道汽车开过 来的顺序,两人采用了不同的乘车方案: 甲无论如何总是上开来的第一辆车,而乙则是先观察后上 车,当第一辆车开来时,他不上来,而是仔细观察车的舒 适状况.如果第二辆车的状况比第一辆好,他就上第二车 ;如果第二辆车不比第一辆车好,他就上第三辆车.如果 把这三辆车的舒适程度分上、中、下三等,请尝试着解决 下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能? (2)你认为甲、乙两人采用的方案,哪一种方案使自己 乘坐上等车的可能性大?为什么?
(1)三辆车全部继续直行;
(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转
解:用树型图法 图
由图可以看出,可能出现的结果不27个,它们出现的可能性相等。 三辆车全部继续直行的结果只有一个,所以P(三辆车全部直行)=
1/27 两辆车向右转 , 一辆车向左转的结果有3个,所以P(两辆车向右转 ,
(1)取出的3个小球上,恰好有1个,2个 和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母 的概率是多少?
B
D E
I
A
C
H
解:根据题意,我们可以画出如下的树形图
甲
A
B
乙C
D
丙 H IH I
E
CD
E
H I H IH I H I
根据树形图,可以看出,所有可能出现的结果是 12个,这些结果出现的可能性相等,
新人教版九年级上第用 列举法求概率课件ppt
2020/9/21
复习引入
等可能性事件的两个特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等;
等可能性事件的概率-------列举法
思考1:
小明和小亮做扑克游戏,桌面上放有两 堆牌,分别是红桃和黑桃的1,2,3,4,5,6, 小明建议:”我从红桃中抽取一张牌,你从 黑桃中取一张,当两张牌数字之积为奇 数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿意 接受这个游戏的规则吗?
所以穿相同一双袜子的概率为
2 .在6张卡片上分别写有1~6的 整数,随机的抽取一张后放回,再随 机的抽取一张,那么,第一次取出的 数字能够整除第2次取出的数字的 概率是多少?
3.经过某十字路口的汽车,它可能继续直行, 也可能向左转或向右转,如果这三种可能 性大小相同,当有三辆汽车经过这个十字 路口时,求下列事件的概率
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 但满足两张牌的数字之积为奇数(记为事件A) 的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)
(0,-1) (1,-1) (2,-1)
0 (-1,0) (0,0) (1,0) (2,0)
1 (-1,1) (0,1) (1,1) (2,1)
2 (-1,2) (0,2) (1,2) (2,2)
∴ (1)P(点M在第一象限)= 4/16 = 1/4 (2)P(点M不在直线y=-2x+3上)= 14/16 = 7/8
这个游戏对小亮和小明公 平吗?怎样才算公平 ?
你能求出小亮得分的概率吗?
w用表格表示
红桃 1
2
3
4
5
6
黑桃
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)