第4节热力学第二定律
3-4 热力学第二定律(教学课件)——高中物理人教版(2019)选择性必修第三册
名师指点
热力学第二定律在实际生活生产中的应用
(1)电冰箱和空调机 空调机和电冰箱都是制冷机,它们的工作原理基本相同。为了便于解析, 我们以电冰箱为研究对象,认识它的基本结构和工作过程。从图中可以知 道,电冰箱由压缩机、冷凝器、毛细管、蒸发器四个部分组成。这四个部 分由管道连接,组成一个密闭的连通系统,制冷剂作为工作物质,由管道 输送,经过这四个部分,完成工作循环。
新知探究
知识点 2 热力学过程方向的实例
③气体向真空膨胀具有方向性:气体可自发地向真空容器膨胀,但绝 不可能出现气体自发地从容器中流出,容器变为真空。 ④气体的扩散现象具有方向性:两种不同的气体可以自发地进入对方, 最后成为均匀的混合气体,但这种均匀的混合气体,决不会自发地分 开,成为两种不同的气体。
比较法学习热力学第一定律和热力学第二定律
(1)热力学第一定律揭示了做功和热传递对改变物体内能的规律关系ΔU= W+Q,指明内能不但可以转移,而且还能跟其他形式的能相互转化。热 力学第一定律是能量守恒定律在热学中的一种表述形式,是从能的角度揭 示不同物质运动形式相互转化的可能性。告诫人们:第一类永动机不可能 制成,热力学第一定律只有一种表述形式。
新知探究
知识点 3 能源是有限的
(1)能量在数量上虽然守恒,但其转移和转化却具有方向性。 (2)能源是指具有高品质的容易利用的储能物质,例如石油、天然气、 煤等。 (3)能源的使用过程中,虽然能的总量保持守恒,但能量的品质下降了。 (4)能量总量不会减少,但能源会逐步减少,因此能源是有限的资源。
名师指点
名师指点
比较法学习热力学第一定律和热力学第二定律
(2)热力学第二定律揭示了有大量分子参与的宏观过程的方向性,如机械能 可以全部转化为内能,内能却不可能全部转化为机械能而不引起其他变化, 进一步揭示了各种物质及其运动形式的转化过程都具有方向性。告诫人们: 第二类永动机不可能制成。热力学第二定律有多种表述形式。 (3)热力学第一定律和热力学第二定律的联系 两定律都是热力学基本定律,分别从不同角度揭示了与热现象有关的物理 过程所遵循的规律,二者相互独立,又相互补充,都是热力学的理论基础。
第四章 热力学第二定律
2.开尔文-普朗克叙述——不可能制造循环热机,只从一 个热源吸热,将之全部转化为功,而 不在外界留下任何影响。
3.第二定律各种表述的等效性
T1 失去Q1– Q2 T2 无得失 热机净输出功Wnet= Q1– Q2
6
三.关于第二类永动机 第二类永动机:以环境为单一热源,使
机器从中吸热对外做功。 热力学第二定律说明第二类永动机是不
可能制成的。
7
4–2 卡诺循环和卡诺定理
一、卡诺循环及其热效率
1. 卡诺循环
1 绝热压缩 2
2 等温吸热3
3 绝热膨胀 4
4 等温放热1
定义:卡诺循环是两个热源间的可逆 正循环。它由两个定温和两个绝热可 逆过程组成。
8
2. 卡诺循环热效率
33
讨论: 1)孤立系统熵增原理ΔSiso=Sg ≥ 0,可作为第二定律
的又一数学表达式,而且是更基本的一种表达式; 2)孤立系统的熵增原理可推广到闭口绝热系;
3)一切实际过程都不可逆,所以可根据熵增原理判 别过程进行的方向;
4)孤立系统中一切过程均不改变其总内部储能,即 任意过程中能量守恒。但各种不可逆过程均可 造成机械能损失,而任何不可逆过程均是ΔSiso>0, 所以熵可反映某种物质的共同属性。
w1a A wac B A C E G wc2 F G
18
w1ac2 w1a wac wc2
A (B A C E G) (F G) BCEFDF CEF
D C E w12
又 u12 u1ac2
所以 q12 u12 w12 q1ac2 u1ac2 w1ac2
17
4–3 熵和热力学第二定律的数学表达式
第四章热力学第二定律
无限可转换能—机械能,电能
能量转换方向性的 实质是能质有差异 部分可转换能—热能
T T0
不可转换能—环境介质的热力学能
能质降低的过程可自发进行,反之需一定条件—补偿过 程,其总效果是总体能质降低。
q1 q2 wnet
代价
q2 T1 T2
q2
T2 T1
代价
wnet q1 q2
二.热力学第二定律的实质和表述
衡量制冷循环经济性的工作系数称为制冷系数,即
q2 q2 制冷系数可以大于1, w q1 q2 等于1或者小于1
衡量热泵的经济性的工作系数称为供热系数,即
/ q1 q1
供热系数总是大于1
w q1 q2
/ q1 q1 q1 q2 q2 1
w q1 q2
q1 q2
第二节 热力学第二定律 (Second law)
三、两种说法的等价性
克劳修斯说法:不可能把热从
1.违反克劳修斯说法 必然违反开尔文说法
低温物体传到高温物体而不 引起其它变化。
开尔文说法:不可能从单一
高温热源T1
热源取热,使之完全变为有 用功,而不引起其它变化。
Q1
WB
AW Q2
Q2 Q1>Q2
低温热源T2
A-违反Clausius表述 B-Carnot热机
把热能转化为机械能的循环叫正向循环,也叫热 机循环或动力循环,它使外界得到功。
热源
Q1
热机
Q2
冷源
W Q1 Q2
2、逆循环(counterclockwise direction cycle):
把热量从低温热源传给高温热源的循环叫逆 向循环,分为制冷循环和热泵循环,它消耗外界 的功。
热力学第二定律 概念及公式总结
热力学第二定律一、自发反应—不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2。
热温商:热量与温度的商3。
熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热工基础 第四章.热力学第二定律
注意:由于是可逆过程,T 既是工质的温度, 也等于热源的温度。
16
对于质量为 m 的工质, Q dS T
Q T 0
2. 克劳修斯不等式与不可逆过程熵的变化
(1)克劳修斯不等式 根据卡诺定理,在相同的恒温高温热源T1 和恒温低温热源T2之间工作的不可逆热机的热 效率一定小于可逆热机的热效率,即
q 克劳修斯 T 0 积分等式
15
q T 0
q q 1 A2 T 1B 2 T
q 一定是某一参数的全微分。 T q 的积分与积分路径无关。 T
根据状态参数的特点断定,q/T一定是某一 状态参数的全微分。这一状态参数被称为比熵, 用 s 表示,即
q ds T
2.热力学第二定律的表述 随自然界中热过程的种类不同,热力学第 二定律有多种表述方式,并且彼此是等效的。
克劳修斯表述: 不可能将热从低温物体传 至高温物体而不引起其它变化。 开尔文-普朗克表述:不可能从单一热源取 热,并使之完全转变为功而不产生其它影响。
第二类永动机是不可能制造成功的。
2
4-2
1. 热力循环
3.孤立系统熵增原理与作功能力损失
(1)孤立系统熵增原理 Q 0 对于孤立系统,dSf T
Siso Sg 0
上式表明:孤立系统的熵只能增大,或者不变,绝 不能减小。这一规律称为孤立系统熵增原理。 孤立系统熵增原理说明,一切实际过程都一 定朝着使孤立系统的熵增大的方向进行,任何使孤 立系统的熵减小的过程都是不能发生的。 上式揭示了一切热力过程进行时所必须遵循的 客观规律,突出地反映了热力学第二定律的本质, 是热力学第二定律的另一种数学表达式。
1
7
2.卡诺循环
卡诺循环是法国工程师 卡诺(S. Carnot)于1824年 提出的一种理想热机工作循 环,它由两个可逆定温过程 和两个可逆绝热过程组成。 卡诺循环热效率:
人教高中物理选修33课件:第十章 第4节 热力学第二定律 第5节 热力学第二定律的微观解释
(2)“不引起其他变化”的含义是指热量从低温热源传递到高温
热源或从单一热源吸收热量全部用来做功,不需通过第三方的帮助,
这里的帮助就是第三方提供能量等方式。
2.热力学第二定律的实质:热力学第二定律的每一种表述,都揭
示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行
的涉及热现象的宏观过程都是有方向性的。
子,右室为真空,撤去挡板后,气体自由扩散,以箱子内 4 个分子为模
型,说明具有哪些可能的宏观态和微观态,并用热力学第二定律说明,
气体扩散后 4 个分子分布的最大一种可能和最小一种可能的情
形。
答案:宏观态如:左 0 右 4,左 1 右 3,左 2 右 2,左 3 右 1,左 4 右 0;
对应微观态数目:1、4、6、4、1。不同的宏观态包含着不同数量的
同、温度相同的水,可以由固态自发地向液态、气态转化,所以,气态
时的熵最大,其次是液态,固态时的熵最小。
答案:见解析
理解热力学第二定律的实质
案例探究
根据热力学第二定律,下列判断正确的有(
)
A.热机中燃气的内能不可能全部变成机械能
B.电流的能不可能全部变成内能
C.在火力发电机中,燃气的内能不可能全部变成电能
意排列则很容易……稍作对比我们不难发现,生活中的无序要比有
序多得多,且形成有序往往需要这样或那样的条件,而无序则不然,它
比有序更容易发生。
五、熵
1.熵的定义:熵和系统内能一样都是一个状态函数,仅由系统的
状态决定。玻耳兹曼提出了熵与微观态数目的关系,普朗克把它写
成函数:S=kln Ω,式中 k 叫作玻耳兹曼常数。从分子动理论来看,熵
引起了其他变化,是可能的,故 D 正确。
3.4 热力学第二定律(解析版)
第4节热力学第二定律【知识梳理与方法突破】1.热力学第二定律的理解(1)“自发地”过程就是不受外来干扰进行的自然过程,在热传递过程中,热量可以自发地从高温物体传到低温物体,却不能自发地从低温物体传到高温物体。
要将热量从低温物体传到高温物体,必须“对外界有影响或有外界的帮助”,就是要有外界对其做功才能完成。
电冰箱就是一例,它是靠电流做功把热量从低温处“搬”到高温处的。
(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响。
如吸热、放热、做功等。
(3)热力学第二定律的每一种表述都揭示了大量分子参与的宏观过程的方向性。
如机械能可以全部转化为内能,内能却不可能全部转化为机械能而不引起其他变化,进一步揭示了各种有关热的物理过程都具有方向性。
(4)适用条件:只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。
而不适用于少量的微观体系,也不能把它扩展到无限的宇宙。
(5)热力学第二定律的两种表述是等价的,即一个说法是正确的,另一个说法也必然是正确的;如一个说法是错误的,另一个说法必然是不成立的。
2.热力学第一定律与第二定律的比较项目热力学第一定律热力学第二定律定律揭示的问题它从能量守恒的角度揭示了功、热量和内能改变量三者间的定量关系它指出自然界中出现的宏观过程是有方向性的机械能和内能的转化当摩擦力做功时,机械能可以全部转化为内能内能不可能在不引起其他变化的情况下全部转化为机械能热量的传递热量可以从高温物体自发地传到低温物体说明热量不能自发地从低温物体传到高温物体表述形式只有一种表述形式有多种表述形式联系两定律都是热力学基本定律,分别从不同角度揭示了与热现象有关的物理过程所遵循的规律,二者相互独立,又相互补充,都是热力学的理论基础3.能量耗散的理解(1)各种形式的能最终都转化为内能,流散到周围的环境中,分散在环境中的内能不管数量多么巨大,它也只能使地球、大气稍稍变暖一点,却再也不能自动聚集起来驱动机器做功了。
第十章第4节热力学第二定律
第4节 热力学第二定律1.了解热传递、扩散现象、机械能与内能的转化等都具有方向性.知道具有方向性的过程为不可逆的.2.了解热力学第二定律的两种表述,并能用热力学第二定律解释第二类永动机不能制造成功的原因.3.能用热力学第二定律解释自然界中的能量转化、转移及方向性问题.4.尝试运用热力学第二定律解决一些实际问题.一、热力学第二定律的一种表述1.热传导的方向性:一切与热现象有关的宏观自然过程都是不可逆的.2.克劳修斯表述:德国物理学家克劳修斯在1850年提出:热量不能自发地从低温物体传到高温物体.热力学第二定律的克劳修斯表述,阐述的是传热的方向性.1.(1)一切与热现象有关的宏观自然过程都是不可逆的.( )(2)热量不会从低温物体传给高温物体.( )(3)由冰箱能自发地把热量从低温物体传给高温物体.( )提示:(1)√ (2)× (3)×二、热力学第二定律的另一种表述1.热机(1)热机工作的两个阶段:第一个阶段是燃烧燃料,把燃料中的化学能变成工作物质的内能.第二个阶段是工作物质对外做功,把自己的内能变成机械能.(2)热机的效率:热机输出的机械功W 与燃料产生的热量Q 的比值.用公式表示为η=W Q. 2.开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.(该表述阐述了机械能与内能转化的方向性)3.热力学第二定律的其他描述(1)一切宏观自然过程的进行都具有方向性.(2)气体向真空的自由膨胀是不可逆的.(3)第二类永动机是不可能制成的.4.第二类永动机(1)定义:只从单一热库吸收热量,使之完全变为功而不引起其他变化的热机.(2)第二类永动机不可能制成的原因:虽然第二类永动机不违反能量守恒定律,但大量的事实证明,在任何情况下,热机都不可能只有一个热库,热机要不断地把吸取的热量变为有用的功,就不可避免地将一部分热量传给低温热库.2.(1)可以从单一热库吸收热量,使之完全变为功.( )(2)第二类永动机违背了能量守恒定律.( )(3)第二类永动机违背了热力学第二定律.( )提示:(1)√ (2)× (3)√知识点一对热力学第二定律的理解在热力学第二定律的表述中,“自发地”“不可能”“不产生其他影响”的涵义1.“自发地”是指热量从高温物体“自发地”传给低温物体的方向性.在传递过程中不会对其他物体产生影响或不需借助其他物体提供能量等.2.关于“不可能”:实际上热机或制冷机系统循环终了时,除了从单一热库吸收热量对外做功,以及热量从低温热库传到高温热库以外,过程所产生的其他一切影响,不论用任何曲折复杂的办法都不可能加以消除.3.“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.(2016·永州高二检测)下列说法正确的是()A.机械能全部变成内能是不可能的B.第二类永动机不可能制造成功是因为能量既不会凭空产生,也不会凭空消失,只能从一个物体转移到另一个物体,或从一种形式转化成另一种形式C.根据热力学第二定律可知,热量不可能从低温物体传到高温物体D.从单一热源吸收的热量全部变成功是可能的[解析]机械能可以全部转化为内能,故A错;第二类永动机不可能制造成功是因为它违背了热力学第二定律,故B错;热量不能自发地从低温物体传到高温物体,但如果不是自发地,是可以进行的,故C错;从单一热源吸收热量全部用来做功而不引起其他变化,是不可能的,但如果是从单一热源吸收热量全部变为功的同时也引起了其他的变化,是可能的,故D项对.[答案] D对热力学第二定律理解的两个误区(1)误认为热量只能由高温物体传到低温物体,不能由低温物体传到高温物体.热量可以由高温物体传到低温物体,也可以由低温物体传到高温物体;但是,前者可以自发完成,而后者则必须有外界参与.(2)误认为机械能可以完全转化为内能,而内能不能完全转化为机械能.机械能可以完全转化为内能,内能也可以完全转化为机械能;但是,前者可以不产生其他影响,而后者一定会产生其他影响.1.(多选)电冰箱能够不断地把热量从温度较低的冰箱内部传给温度较高的外界空气,这说明了()A.热量能自发地从低温物体传给高温物体B.在一定条件下,热量可以从低温物体传给高温物体C.热量的传递过程不具有方向性D.在自发的条件下热量的传递过程具有方向性解析:选BD.一切自发过程都有方向性,如热传递,热量总是由高温物体自发地传向低温物体;又如扩散,气体总是自发地由密度大的地方向密度小的地方扩散.如果在外界帮助下气体可以由密度小的地方向密度大的地方扩散,热量可以从低温物体传向高温物体,电冰箱就是借助外界做功把热量从低温物体——冷冻食品传向高温物体——周围的大气.所以在解答热力学过程的方向性问题时,要区分是自发过程还是非自发过程,电冰箱内热量传递的过程是有外界参与的.知识点二热力学第一定律与热力学第二定律的比较1.两个定律的区别:热力学第一定律是能量守恒定律在热力学中的具体表现形式,在转化的过程中,总的能量保持不变.热力学第二定律是指在有限的时间和空间内,一切和热现象有关的物理过程具有不可逆性.2.两个定律的联系:两定律都是热力学基本定律,分别从不同角度揭示了与热现象有关的物理过程所遵循的规律.二者既相互独立,又相互补充,都是热力学的理论基础.关于热力学第一定律和热力学第二定律,下列论述正确的是() A.热力学第一定律指出内能可以与其他形式的能相互转化,而热力学第二定律则指出内能不可能完全转化为其他形式的能,故这两条定律是相互矛盾的B.内能可以全部转化为其他形式的能,只是会产生其他影响,故两条定律并不矛盾C.两条定律都是有关能量的转化规律,它们不但不矛盾,而且没有本质区别D.其实,能量守恒定律已经包含了热力学第一定律和热力学第二定律[解析]热力学第一定律揭示了内能与其他形式能量之间的转化关系,是能量守恒定律在热力学中的具体体现.热力学第二定律则进一步阐明了内能与其他形式能量转化时的方向性,二者表述的角度不同,本质不同,相互补充,并不矛盾,故C、D错误,B正确.内能在一定条件下可以全部转化为机械能,热量也可以由低温物体传递到高温物体,但是要引起其他变化,如电冰箱制冷机工作要消耗电能,故A错误.[答案] B2.(多选)关于两类永动机和热力学两大定律,下列说法正确的是()A.热力学第一定律和热力学第二定律是相互独立的B.热力学第二定律的两种表述是等效的C.由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D.由热力学第二定律可知热量从低温物体传向高温物体是可能的,从单一热库吸收热量,完全变成功也是可能的解析:选ABD.热力学第二定律有几种不同的表述形式,但它们是等价的,它与热力学第一定律是各自独立的,故A、B正确.由热力学第一定律可知W≠0,Q≠0,但ΔU=W +Q可以等于0,C错误;由热力学第二定律可知D中现象是可能的,但不引起其他变化是不可能的,D正确.典型问题——热机和永动机的比较1.热机(1)热机是把内能转化成机械能的一种装置.例如:蒸汽机把水蒸气的内能转化为机械能;内燃机是把燃烧后的高温高压气体的内能转化为机械能.(2)热机的工作原理:工作物质从热源吸收热量Q1,推动活塞做功W,然后排出废气,同时把热量Q2散发到冷凝器中.根据能量守恒有Q1=W+Q2.(3)热机的效率:η=WQ1因为Q1=W+Q2,所以Q1>W,η<1.这说明热机不可能把吸收的热能全部转化为机械能,总有一部分要散失到冷凝器中.热机的效率不可能达到100%.2.第一类永动机(1)第一类永动机:不消耗能量,能源源不断地对外做功的一种机器.(2)第一类永动机不可能制成的原因是违背能量守恒定律.3.第二类永动机(1)第二类永动机:只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机,效率为100%.(2)第二类永动机不违背能量守恒定律,它不可能制成是因为违背热力学第二定律.(2016·济南高二检测)热力学第二定律常见的表述方式有两种,其一:不可能使热量由低温物体传递到高温物体而不引起其他变化;其二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化.第一种表述方式可以用图甲来表示,根据你对第二种表述的理解,如果也用类似的示意图来表示,你认为图乙示意图中正确的是()[解析]由题图甲可知,使热量由低温物体传递到高温物体必伴随着压缩机的做功,即引起其他变化;对于第二种方式,热机工作时,从高温物体吸收热量,只有一部分用来对外做功,转变为机械能,另一部分热量要排放给低温物体,故B正确,A、C、D错误.[答案] B(多选)关于热机和永动机,下列说法中正确的是()A.效率为100%的热机是不可能制成的B.第二类永动机可以制成C.不需要任何外力做功而可正常运行的制冷机是不可能制成的D.能把从单一热源吸收的热量全部用来做功而不引起其他变化的热机是可以实现的解析:选AC.热机在工作过程中,必然向外排出热量,故热机效率小于100%,故A对;由热力学第二定律可得C对,B错;内能要全部转化为机械能,必须借助外界的帮助,因而一定会引起其他变化,故D错.[随堂达标]1.(2016·烟台高二检测)热力学第二定律使人们认识到自然界中进行的涉及热现象的宏观过程()A.都具有方向性B.只是部分具有方向性C.没有方向性D.无法确定解析:选A.一切涉及热现象的宏观过程都具有方向性.2.下列说法正确的是()A.物体放出热量,温度一定降低B.物体内能增加,温度一定升高C.热量能自发地从低温物体传给高温物体D.热量能自发地从高温物体传给低温物体解析:选D.热量和内能之间没有必然的联系,A错;内能和宏观的温度和体积有关,所以B错;热量能自发地从高温物体传给低温物体,不能自发地从低温物体传给高温物体,所以C错D对.3.我们绝不会看到:一个放在水平地面上的物体,靠降低温度,可以把内能自发地转化为动能,使这个物体运动起来,其原因是()A.违反了能量守恒定律B.在任何条件下内能不可能转化为机械能,只有机械能才能转化为内能C.机械能和内能的转化过程具有方向性,内能转化成机械能是有条件的D.以上说法均不正确解析:选C.机械能和内能的相互转化,必须通过做功来实现.机械能可以自发地转化为内能,但内能不能自发地转化为机械能.4.(多选)根据热力学第二定律,下列说法正确的是()A.热机中燃气的内能不可能全部变成机械能B.电流的能不可能全部转变成内能C.在火力发电机中,燃气的内能不可能全部转变成电能D.在传热中,热量不可能自发地从低温物体传递给高温物体解析:选ACD.任何热机效率都不可能是100%,故A正确;由电流热效应中的焦耳定律可知,电流的能可以全部转化为内能,故B错误;火力发电机发电时,能量转化的过程为内能→机械能→电能,因为内能→机械能的转化过程中会对外放出热量,故燃气的内能必然不能全部变为电能,C正确;热量从低温物体传递到高温物体不能自发进行,必须借助外界的帮助,故D正确.故选ACD.5.下列说法正确的是()A.热量不能由低温物体传递到高温物体B.外界对物体做功,物体的内能必定增加C.第二类永动机不可能制成,是因为违背了能量守恒定律D.不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响解析:选D.根据热力学第二定律,热量不能自发地从低温物体传到高温物体,但在外界帮助下,热量可以从低温物体传到高温物体,例如电冰箱制冷时,压缩机工作,消耗了电能,同时热量由冰箱内的低温物体传递到冰箱外的高温物体,所以选项A错误;外界对物体做功的同时,物体可能放热,物体的内能不一定增加,所以选项B错误;第二类永动机不可能制成,虽不违背能量守恒定律,但它违背了热力学第二定律,因此它不可能制成,所以选项C错误;而D选项中的表述就是热力学第二定律的一种表述形式,所以选项D正确.[课时作业] [学生用书P103(单独成册)]一、单项选择题1.关于热力学第二定律,下列说法正确的是()A.热力学第二定律是通过实验总结出来的实验定律B.热力学第二定律是通过大量自然现象的不可逆性总结出来的经验定律C.热力学第二定律是物理学家从理论推导出来的结果D.由于热力学第二定律没有理论和实验的依据,因此没有实际意义解析:选B.热力学第二定律是物理学家通过对大量自然现象的分析,又总结了生产和生活经验得到的结论,是一个经验定律,它并不能通过理论推导出来和实验来证明,但它符合客观事实,因此是正确的.它揭示了与热有关的宏观过程的方向性,使人们认识到第二类永动机不可制成,对我们认识自然和利用自然有着重要的指导意义.2.热力学定律表明自然界中与热现象有关的宏观过程是()A.有的只遵守热力学第一定律B.有的只遵守热力学第二定律C.有的既不遵守热力学第一定律,也不遵守热力学第二定律D.所有的都遵守热力学第一、第二定律解析:选D.热力学第一、第二定律是热力学的基本定律,对所有涉及热现象的宏观过程都成立,选项D正确,选项A、B、C错误.3.(2016·海口高二检测)下列说法中,正确的是()A.一切形式的能量间的相互转化都具有方向性B.热量不可能由低温物体传给高温物体C.气体的扩散过程具有方向性D.一切形式的能量间的相互转化都不具有可逆性解析:选C.热力学第二定律反映的所有与热现象有关的宏观过程都具有方向性,A、D 错误;热量不是不能从低温物体传给高温物体,关键是能否还产生其他影响,B错误;气体扩散过程具有方向性,C正确.故选C.4.根据热力学定律,下列判断正确的是()A.我们可以把火炉散失到周围环境中的能量全部收集到火炉中再次用来取暖B.利用浅层海水和深层海水间的温度差制造出一种热机,将海水的一部分内能转化为机械能,这在原理上是可行的C.制冷系统能将冰箱内的热量传给外界较高温度的空气,而不引起其他变化D.满足能量守恒定律的客观过程都可以自发地进行解析:选B.热量不能自发地从低温物体传到高温物体,所以不能说把散失的能量全部收集起来重新加以利用,A错;由热力学第二定律可知,B对;热量从低温物体传给高温物体时一定会发生其他变化,C错;只满足能量守恒定律而不满足热力学第二定律的过程是不可能发生的,D错.5.下列说法正确的是()A.冰箱能使热量从低温物体传递给高温物体,因此不遵从热力学第二定律B.空调工作时消耗的电能与室内温度降低所放出的热量可以相等C.自发的热传导是不可逆的D.不可能通过给物体加热而使它运动起来,因为违背热力学第一定律解析:选C.有外界的帮助和影响,热量可以从低温物体传递到高温物体,空调消耗的电能必须大于室内温度降低所放出的热量.不可能通过给物体加热而使它运动起来,违背了热力学第二定律.6.如图所示,汽缸内盛有一定质量的理想气体,汽缸壁是导热的,缸外环境保持恒温,活塞与汽缸壁接触光滑,但不漏气,现将活塞杆缓慢地向右移动,气体膨胀对外做功.已知理想气体的内能只与温度有关,则下列说法中正确的是()A.气体是从单一热库吸热,全用来对外做功,因此此过程违反热力学第二定律B.气体是从单一热库吸热,但并未全用来对外做功,因此此过程不违反热力学第二定律C.气体是从单一热库吸热,全部用来对外做功,但此过程不违反热力学第二定律D.以上三种说法都不正确解析:选C.由于气体始终通过汽缸壁与外界接触,外界温度不变,活塞杆与外界连接并使其缓慢地向右移动过程中,有足够时间进行热交换,所以汽缸内的气体温度也不变.要保持其内能不变,该过程气体是从单一热源即外部环境吸收热量,即全部用来对外做功才能保证内能不变,但此过程不违反热力学第二定律.此过程由外力对活塞做功来维持,如果没有外力F对活塞做功,此过程不可能发生.7.下列过程中,可能发生的是()A.某工作物质从高温热源吸收20 kJ的热量,全部转化为机械能,而没有产生其他任何影响B.打开一高压密闭容器,其内气体自发溢出后又自发跑进去,恢复原状C.利用其他手段,使低温物体的温度更低,高温物体的温度更高D.两瓶不同液体自发混合,然后又自发地各自分开解析:选C.根据热力学第二定律,热量不可能从低温物体自发地传给高温物体,而不引起其他的变化,但通过一些物理过程是可以实现的,故C项正确;内能自发地全部转化为机械能是不可能的,故A项错误;气体膨胀具有方向性,故B项错误;扩散现象也有方向性,D项也错误.8.下列有关能量转化的说法中正确的是()A.不可能从单一热库吸收热量并把它全部用来做功,而不产生其他影响B.只要对内燃机不断改进,就可以把内燃机得到的全部内能转化为机械能C.满足能量守恒定律的物理过程都能自发进行D.外界对物体做功,物体的内能必然增加解析:选A.由热力学第二定律的开尔文表述可知,选项A正确.热机效率总低于100%,选项B错误.满足能量守恒的过程未必能自发进行,任何热力学过程一定都满足热力学第二定律,则选项C错误.由热力学第一定律ΔU=W+Q可知,W>0,ΔU不一定大于0,即内能不一定增加,选项D错误.二、多项选择题9.下列哪些现象能够发生,并且不违背热力学第二定律()A.一杯热茶在打开杯盖后,茶会自动变得更热B.蒸汽机把蒸汽的内能全部转化成机械能C.桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离D.电冰箱通电后把箱内低温物体的热量传到箱外高温物体解析:选CD.A、B都违背了热力学第二定律,都不能发生.C中系统的势能减少了,D中消耗了电能,所以不违背热力学第二定律,均能发生.10.下列宏观过程能用热力学第二定律解释的是()A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动起来D.随着节能减排措施的不断完善,最终也不会使汽车热机的效率达到100%解析:选BCD.热力学第二定律反映的是与热现象有关的宏观过程的方向性的规律,A 不属于热现象,A错误;由热力学第二定律可知B、C、D正确.11.如图为电冰箱的工作原理示意图,压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外.下列说法正确的是()A.热量可以自发地从冰箱内传到冰箱外B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能C.电冰箱的工作原理不违反热力学第一定律D.电冰箱的工作原理违反热力学第一定律解析:选BC.热力学第一定律是热现象中内能与其他形式能的转化规律,是能的转化和守恒定律的具体表现,适用于所有的热学过程,故C正确,D错误;再根据热力学第二定律,热量不能自发地从低温物体传到高温物体,必须借助于其他系统做功,A错误,B正确,故选B、C.12.根据热力学第二定律,下列说法正确的是()A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量C.科技的进步可以使内燃机成为单一热源的热机D.对能源的过度消耗将使自然界的能量不断减少,形成能源危机解析:选AB.热力学第二定律有两种表述:第一是热量不能自发地从低温物体传到高温物体,即自发热传递具有方向性,选项A中热量从低温物体传到高温物体是电冰箱工作的结果,选项A正确;第二是不可能从单一热库吸收热量,使之完全变为功,而不产生其他影响,即第二类永动机不存在,选项B正确,选项C错误;由能量守恒定律知,能量总是守恒的,只是存在的形式不同,选项D错误.13.下列说法正确的是()A.热传导过程是有方向性的B.第二类永动机不可能制成,因为它违反能量守恒定律C.第二类永动机不可能制成,因为机械能和内能的转化具有方向性D.热力学第二定律表明,所有的物理过程都具有方向性解析:选AC.根据热力学第二定律和实验事实都说明,热传导的过程是有方向性的,热量可以从高温物体自发地传给低温物体,却不能自发地由低温物体传给高温物体,所以A 正确;第二类永动机是一种热机,它希望能够从单一热源吸热全部用来做功而不引起其他任何变化,这种设想并不违反能量守恒定律,但违反热力学第二定律,所以B错误,C正确;热力学第二定律指出了所有与热现象有关的宏观物理过程都具有方向性,并不是所有的物理过程都具有方向性,因此D错误.故选AC.14.用两种不同的金属丝组成一个回路,接触点1插在热水中,接触点2插在冷水中,如图所示,电流计指针会发生偏转,这就是温差发电现象.关于这一现象,正确的说法是()A.这一实验过程不违反热力学第二定律B.在实验过程中,热水一定降温、冷水一定升温C.在实验过程中,热水内能全部转化成电能,电能则部分转化成冷水的内能D.在实验过程中,热水的内能只有部分转化成电能,电能则全部转化成冷水的内能解析:选AB.温差发电现象中产生了电能是因为热水中的内能减少,一部分转化为电能,一部分传递给冷水,转化效率低于100%,不违反热力学第二定律.热水温度降低,冷水温度升高,故A、B正确,C、D错误.。
第六章 热力学第二定律
3.两种表述是等价的
假设克劳修斯表述不成立, 则开尔文表述也不成立。
假设开尔文表述不成立,则 克劳修斯表述也不成立。
热力学第二定律的微观实质
从微观上看,任何热力学过程都伴随着大量分子的无序运 动的变化。热力学第二定律就是说明大量分子运动的无序程度
若系统是不绝热的,则可将系统和外界看作 一复合系统,此复合系统是绝热的,则有 (dS)复合=dS系统+dS外界
若系统经绝热过程后熵不变,则此过程是可的; 若熵增加,则此过程是不可逆的。 —— 可判断过程的性质 孤立系统 内所发生的过程的方向就是熵增加的方 向。 —— 可判断过程的方向
恢复符号的规定后有如下形式
Q1 Q2 T1 T2
Q1 Q2 0 T1 T2
结论:系统经历一可逆卡诺循环后,热温比总和为零
P
△Qi1 Ti1
Ti2
V
0
△Qi2
任一可逆循环,用一 系列微小可逆卡诺循 环代替。
每一 可逆卡诺循环都有:
Qi 1 Qi 2 0 Ti 1 Ti 2
(不可逆) (可逆)
可逆 b
2
p
0
dQ dQ S 2 S1 S 代入(1)式 1b 2 T 2 b1 T
(可逆) (可逆)
dQ S 1 T (不可逆)
2
微过程
dQ dS T
热力学第二定律的数学表示
“=”可逆过程 逆过程
dQ SB S A A T dQ dS T
§4-5 玻尔兹曼公式和熵增加原 玻尔兹曼公式
玻尔兹曼公式:S = k ln
热力学第二定律
700K
Q1 ?
Wnet 10000 kJ
Q2 4000kJ
400K
解:设为热机循环 TL 400 tc 1 1 0.4286 Th 700
Q2 Wnet 10000 t 1 0.7126 Q1 Q1 14000
设为制冷循环
Tc 400 c 1.33 T0 Tc 700 400
以上例子说明: ①.能量是有‘质’的差别的,机械能属高 质能,热能属低质能,热能所处温度越接近环境温度, 其能质也越低。 ②.能质高的能量可以全部转换成能质低的 能量,而能质低的不能全部转换成能质高的,而且必 须有补偿条件。 ③.能量的传递过程总是朝着消除势差的方 向进行的,在传递过程中,能量在数量上虽然保持守 恒,但在能质上却降低了。
§4-1 热力学第二定律的实质及表述
一 热力学第二定律的实质 热力学第二定律的实质就是“能质衰贬原理”, 即一切实际过程总是朝着使孤立系总的能质下降 的方向进行的。 二 热力学第二定律的表述: 1 . 开尔文—普朗克说法(1851年提出) 表述I:只从单一热库吸热而连续不断做功的循 环机器是不可能造成的。
④在一定的环境条件下,系统能量的有用能、无 用能、(火用)、(火无)等均为状态参数。
五、 熵
1)熵的物理意义
熵是系统无序程度(混乱度)的度量,熵值越大, 则无序度越大,系统能质越低,无用能也越大, 因此 熵是表征系统无用能大小的状态参数。 dE无用 --------- 可逆,不可逆均适用。 2) 定义式 dS T0
A
T
S
B
V
§4—2 有关“能质”的基本概念
一、 寂态及(火无)库 结论:①周围环境中能量的能质为零,没有转换能力; ②系统温度、压力越高,则能量的品质越高。 ③系统温度、压力低于周围环境越多,则能量 品质也越高。 (火无)库:指周围环境。 能质是相对于周围环境而言的,以周围环境作为能质 分析时的基准库,称为(火无)库,(火无)库中的能量 不可能被利用。
第四章 热力学第二定律
T1 = 400 K 时, u1 = 286.16kJ / kg
4
工程热力学
T2 = 280 K 时, u 2 = 199.75kJ / kg
第四章 热力学第二定律
185.45 − 178.28 × (257.76 − 250)]kJ / kg = 183.34kJ / kg 260 − 250
W0 = Q1 − Q2 = mc p (TA − TATB ) − mc p ( TATB − TB ) = mc p (TA + TB − 2 TATB )
(3)如果抽掉可逆热机,使二物体直接接触,直至温度相等。这时二物体的熵增为
=−
− 169.064kJ / kg − 468.72kJ / kg 676.25kJ / kg + 468.72kJ / kg − 300 K 1200 K = 1.1718kJ /( kg ⋅ K )
2
工程热力学
4-4
第四章 热力学第二定律
两台卡诺热机串联工作。A热机工作在700℃和t之间;B热机工作在t和20℃之间。试计
T2 s = 257.76 K 时, u 2 s = [178.28 +
ws = u1 − u 2 s = 286.16kJ / kg − 183.84kJ / kg = 102.32kJ / kg
有内摩擦
w = u1 − u 2 = 286.16kJ / kg − 199.75kJ / kg = 86.41kJ / kg
(3)定温放热过程3→4
qT 2 = wT 2 = wt ,T 2 = R g T2 ln
4第四章 热力学第二定律
逆卡诺循环
c
T2 卡诺循环的制冷系数和制热系数只取决于高温热 源温度T1和低温热源温度T2。且随高温热源温度T1的降低 或低温热源温度T2的提高而增大。 (2)逆卡诺循环的制热系数总是大于1,而其制冷系 数可以大于l、等于1或小于l。在一般情况下,由于T2> (T1-T2),所以制冷系数也是大于1的。
• 一切热力发动机都是按正向循环工作的。
• 正向循环在p-v图上按顺时针方向进行。
设1kg工质在热机中进行一个正向循环1234l 1-2-3: 膨胀过程,作膨胀功123v3v11 3-4-1: 压缩过程,作压缩功341v1v33 工质从高温热源T1吸热q1,向T2放热q2
∵
q u w
u 0
• 供热系数
T1 T1 T2
逆卡诺循环
逆卡诺循环是制冷循环和热泵循环的理想循环。 • 制冷系数:
q2 T2 ( sc sd ) T2 c q1 q2 T1 ( sb sa ) T2 ( sc sd ) T1 T2
• 供热系数:
c q1 T1 ( sb sa ) T1 q1 q2 T1 ( sb sa ) T2 ( sc sd ) T1 T2
1. 克劳修斯(Clausius)表述
不可能把热量从低温物体传向高温物体而不引起其它 变化。
如制冷机或热泵装置的工 作需消耗能量进行补偿
它是从热量传递过程来表达热力学第二定律的。
热力学第二定律
2.开尔文-普朗克(Kelvin-Plank)表述
不可能从单一热源取热,并使之完全转变为功而不产
生其它影响。
限度(熵增加到极大值)。
本章小结
热力学第二定律的实质及表述; 热力循环、制冷(热泵)循环的定义及循环经济 性的描述方法; 卡诺循环的定义及循环经济性的描述方法; 卡诺定理的内容及实际意义;
第六章 热力学第二定律第四节 熵变的计算
ΔHm(263.1
ΔS1 ΔH1
5K) ΔS3 ΔH3
ΔS2
水(0℃,101.325 kPa)
冰(0℃,101.325 kPa)
ΔHm(273
.15K)
所以
ΔS=ΔS1+ΔS2+ΔS3
S1
nC
p,m
(H
2O,
l)
ln
T2 T1
1mol 75.3J
K 1 mol 1 ln
273.15K 263.15K
变时的温度
2023/2/20
7
(二)不可逆相变化
●定义 定温定压下,两相在不能共存条件下的相变。例,过
冷水结冰,过饱和蒸气凝结
●计算原则 对不可逆的相变,需在相同始末态之间设计可逆
过程计算
例6.2 1mol过冷水在-10℃,101.325 kPa下凝固成冰,求此过程
的熵变。已知水的凝固热ΔHm(273.15K)=-6020J·mol-1,冰与水的 摩尔定压热容分别为
2.81J
K 1
S 2
H m (273.15K ) T
1mol (6020J mol 1) 273.15K
22.0J
K 1
S3
nC p,m (H 2O, s) ln
T1 T2
1mol 37.6J
K 1
mol 1
ln
263.15K 273.15K
1.40J
K 1
2023/2/20
Cp,m(H2O,s) 37.6J K1 mol1
Cp,m (H2O,l) 75.3J K1 mol 1
解:在 101.325 kPa时,水的正常凝固温度是0℃。所求的是一个
不可逆的相变过程的熵变,需设计一可逆途径来计算ΔS
工程热力学第四章_热力学第二定律
五 热力过程熵变化分析
3 熵的性质
1)熵是状态参数,与变化过程的性质无关。 )熵是状态参数,与变化过程的性质无关。 2)可逆过程中熵的变化量说明了系统与热源间热 ) 交换的方向。 交换的方向。 3)Siso ≥ 0 ,表明孤立系统内各物质熵的总和 ) 可以增大,或保持不变,但绝不能减小。 可以增大,或保持不变,但绝不能减小。 4)任一过程熵变化都是由熵流和熵产组成。 )任一过程熵变化都是由熵流和熵产组成。 5)对任一热力过程,系统的熵变量也可表示为 )对任一热力过程, δq s ≥ ∫ 其中等号适用于可逆过程, T ,其中等号适用于可逆过程,不等号适 用于不可逆过程
2)热量火用 ) 热量火用为热源放出的热量中可转化为功的最大 值。
T0 e , = ∫ (1 )δq xq T
T不变
T0 e , = 1 q xq T
热量火用与工质火用的区别在于要获 得热量火用必须完成循环作功。 得热量火用必须完成循环作功。
六 火用和火用损失
1 工质火用、热量火用和火用损 工质火用、
3)不可逆性与火用损 ) 由于不可逆性引起的做功量的减少,称为火用损, 由于不可逆性引起的做功量的减少,称为火用损, 以eI表示
e = wt max wt = T0 sis l
七 热力学第二定律的应用
1 热力学第二定律的应用
1)熵分析法 ) 熵分析法的主要内容就是通过对体系的熵平衡计 求取熵产的大小及其分布, 算,求取熵产的大小及其分布,分析影响熵产的 因素,确定熵产与不可逆损失的关系, 因素,确定熵产与不可逆损失的关系,作为评价 过程的不完善性与改进过程的依据。 过程的不完善性与改进过程的依据。 缺点:首先无法用它来评估能量流的使用价值; 缺点:首先无法用它来评估能量流的使用价值; 其次熵的概念比较抽象, 其次熵的概念比较抽象,其物理意义是表征由有 序到无序的转变度,本身并不是一种能量。 序到无序的转变度,本身并不是一种能量。
第四章 热力学第二定律
虽然为实现各种非自发过程补偿是必不可少 的,但是为提高能量利用的经济性,人们一 直在最大限度地减少补偿。 热力学第二定律的任务:研究热力过程的方 向性,以及由此而引出的非自发过程的补偿 和补偿限度等。 二、热力学第二定律的表述 克劳修斯的说法:不可能把热量从低温物体 传向高温物体而不引起其他变化。
⑵卡诺循环热效率永远小于1。这是因为Tl= ∞或T2 = 0 是不可能达到的。 ⑶当Tl= T2时,卡诺循环热效率为零,即只 有单一热源存在时,不可能将热能转变为机 械能。 二、逆卡诺循环 如果卡诺循环按逆时针方向进行,则称为卡 诺逆循环。 如下图所示。
对于制冷机的卡诺逆循环,其制冷系数用下 式表示,
同理可证 A B 也不成立,因此唯一可以
成立的结果是 A B 。
定理一得证。
例题: 1.某热力设备,工作在1650℃ 的炉膛燃气 温度和15℃的低温热源之间,求:1)该 热力设备按卡诺循环工作时的热效率以及 产生 6×105 kw时的吸热量Q1和放热量Q2 ; 2)如果热力设备的实际效率只有40% , 其有效功率仍为6×105 kw ,问吸热量Q1 和放热量Q2又是多少?
若循环中全部过程都可逆,则该循环称为可逆循环; 若循环中部分过程或全部过程都不可逆,则该循环为 不可逆循环。 根据循环的热力学特征,可把循环分为热机循环(正 循环)和制冷循环(逆循环)。 正循环的效果是使热能转变为机械能,系统向外输出 功。如图所示,循环按顺时针方向进行,图(a)中12-3为工质膨胀,从高温热源吸收热量Q1。工质经3-41回到初态的过程中,工质受压缩,向低温热源放出热 量Q2。工质对外做功的净功为W,用循环1-2-3-4-1所 包围的面积表示,等于工质从高温热源吸取的热量与 向低温源放出的热量之差。即
【高中物理】第四课 热力学第二定律(课件) 高二物理课堂(人教版2019选择性必修第三册)
Q1──热机从T1吸热
A ──热机输出功
Q2──热机从T2吸热
Q1+Q2──致冷机向T1
放热
违背开尔文表述一定违背克劳修斯表述
如果开尔文表述不成立,可制成一个单热源热机,将它同另一个制
冷机组成复合机,如图所示,其总效果相当于一个无功致冷机,于是克
劳修斯表述也就不成立.
开尔文表述实质说明功变热过程的不可逆性,克劳修斯表述则说明
热传导过程的不可逆性,两种表述是等价的,可用反证法证明.
T2──低温热源
Q2──热量通过假想装置自动
地从T2传向T1
Q1──卡诺热机从T1吸热
A ──卡诺热机对外作功
违背克劳修斯表述一定违背开尔文表述
如果克劳修斯表述不成立,则可制成一个无功致冷机,将它同另一
发地进行,但是向相反的方向却不能自发地进行.
➢要实现相反方向的过程,必须借助外界的帮助,因而产生
其它影响或引起其它变化.
气
体
扩
散
具
有
方
向
性
思考 会不会有这样的现象:
均匀混合的空气与溴气过一段时间会自发地变的界线分明 ?
一、热力学第二定律的一种表述
热力学第二定律的克劳修斯表述:
R.Clausius(1822-1888)
(2)能量耗散:系统的内能流散到周围环境中,没有办法把这些内能收集起来
加以利用的现象.
2.品质降低:
能量从高度有用的形式降级为不大可用的形式叫品质降低,也叫能量降退.
虽然能量不会减少,但能源越来越少.因此会出现“能源危机”.
三、能源是有限的
3.“能源危机”的应对方法
第四章 热力学第二定律
4-1可逆绝热压缩过程,对内作功
卡诺循环热机效率
q w t 1 2 q1 q1
t,C
q1 q2 T2q T2 2s2 s1 1 1 1 q q1 T T1 11 s2 s1
T1
q1 Rc w
卡诺循环热机效率
t,C
T2 s2 s1 T2 1 1 T1 s2 s1 T1
1000 K
2000 kJ A 1200 kJ 1500 kJ 800 kJ 500 kJ 300 K
w 1200 t 60% 可能 q1 2000
如果:W=1500 kJ
1500 t 75% 不可能 2000
例题
• 某科学家设想利用海水的温差发电。设海洋表面 的温度为20℃,在500m深处,海水的温度为5℃, 如果采用卡诺循环,其热效率是多少? 解:计算卡诺循环热效率时,要用热力学绝对温度 T1=20+273.15=293.15K T2=5+273.15=278.15K
q2
对于整个不可逆循环:
1a 2
q1
T1
2b1
q2
q 0 T2 T irr
克劳修斯不等式:
q 0 T
即
q 0 T
上式是热力学第二定律的数学表达式之一,可用于判断一个循环是否能进行,是否 可逆。
不 可 p 逆 过 程 熵 变 化 q T irr
转变为机械能,只有一个热源的热机(第二类永动机)是 不可能的。
卡诺逆循环卡诺制冷循环
T T0
制冷
T2
s1
s2 s T2 ( s2 s1 ) T2 T0 ( s2 s1 ) T2 ( s2 s1 ) T0 T2
热力学第二定律4
( − d G )T , p > −δ W '
若是不可逆过程,系统所作的非膨胀功小于 小于Gibbs 若是不可逆过程,系统所作的非膨胀功小于 不可逆过程 自由能的减少值。 自由能的减少值。
如果系统在等温、等压、且不作非膨胀功的条件下, 如果系统在等温、等压、且不作非膨胀功的条件下, 等温 的条件下 (dG)T , p,W ' =0 ≤ 0 (−dG )T , p ,W ' =0 ≥ 0 或
(dG )T , p ,W ' =0 ≤ 0
" = " 表示可逆,平衡 " < " 表示不可逆,自发
即自发变化总是朝着Gibbs自由能减少的方向进行 自由能减少的方向进行, 自发变化总是朝着 自由能减少的方向进行 这就是Gibbs自由能判据,系统不可能自动发生dG>0 自由能判据,系统不可能自动发生 这就是 自由能判据 的变化。 的变化。 因为大部分实验在等温、等压条件下进行, 因为大部分实验在等温、等压条件下进行,所以这 个判据特别有用。 个判据特别有用。
600 300
T2 T1
−1
+ 19.5 × ln
)]J ⋅ K
例3. 在268.2K和100kPa压力下, 1.0mol液态苯 268.2K和100kPa压力下 1.0mol液态苯 压力下, 凝固,放热9874J,求苯凝固过程的熵变。已知, 凝固,放热9874J,求苯凝固过程的熵变。已知, 苯熔点278.7K,标准摩尔熔化热为9916J/mol, 苯熔点278.7K,标准摩尔熔化热为9916J/mol, Cp,m(l) =126.8J/K/mol, Cp,m(s) =122.6J/K/mol 。 解:过冷液体的凝固是不可逆过程,需要在相 过冷液体的凝固是不可逆过程, 同始终态间设计一个可逆过程来计算熵变。设 同始终态间设计一个可逆过程来计算熵变。 计的可逆过程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节热力学第二定律
目标导航
1. 了解热传导过程的方向性。
2. 了解热力学第二定律的两种不同表述,以及这两种表述的物理实质。
3. 了解什么是第二类永动机。
4. 理解第二类永动机不可能制成。
诱思导学
1. 可逆与不可逆过程
(1)•热传导的方向性
热传导的过程可以自发地由高温物体向低温物体进行,但相反方向却不能自发地进行,即热传导具 有方向
性,是一个不可逆过程。
高温物体
热量Q 能自发传给
低温物体 热量Q 不能自发传给
⑵.说明:
① 自发地”过程就是在不受外来干扰的条件下进行的自然过程。
② 热量可以自发地从高温物体传向低温物体,热量却不能自发地从低温物体传向高温物体。
③ 要将热量从低温物体传向高温物体,必须有
外界的影响或帮助”,就是要由外界对其做功才能完
成。
电冰箱、空调就是例子。
2•热力学第二定律的两种表述
① .克劳修斯表述:热量不能自发地从低温物体传递到高温物体。
② •开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。
3•热机
热机是把内能转化为机械能的装置。
其原理是热机从热源吸收热量 凝器释放热量Q 2。
由能量守恒定律可得:
Q i =W+Q 2
我们把热机做的功和它从热源吸收的热量的比值叫做热机效率,用 4•第二类永动机
① •设想:只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机。
② .第二类永动机不可能制成,表示尽管机械能可以全部转化为内能,但内能却不能全部转化成机 械能而不引起其他变化;机械能和内能的转化过程具有方向性。
典例探究
例1下列所述过程是可逆的,还是不可逆的?
A. 气缸与活塞的组合内装有气体,当活塞上没有外加压力,活塞与气缸间没有摩擦,气体缓慢地膨 胀时; Q 1,推动活塞做功 W ,然后向冷
r 表示,即n=
B.上述装置,当活塞上没有外加压力,活塞与气缸上摩擦很大,使气体缓慢地膨胀时;
C.上述装置,没有摩擦,但调整外加压力,使气体能缓慢地膨胀时;
D.在一绝热容器内盛有液体,不停地搅动它,使它温度升高;
E.在一传热容器内盛有液体,容器放在一恒温的大水池内,液体不停地搅动,可保持温度不变;
F.在一绝热容器内,不同温度的液体进行混合;
G.在一绝热容器内,不同温度的氦气进行混合;
解析:A.发生自由膨胀,则是不可逆的;
B.有摩擦发生,也是不可逆的;
C.是准静态无摩擦的膨胀,则为可逆过程。
D.这是做功变为热的过程,一定不可逆。
E.此过程中既有功变热”又有热传导”,也是不可逆过程。
F.液体的扩散是不可逆过程。
G.有一定温度差的热传导是不可逆过程。
友情提示:注意分析可逆与不可逆满足的条件。
例2
一种冷暖两用型空调,铭牌标注:输入功率1kW,制冷能力1.2 >104kJ/h,制热能力1.3 >104kJ/h。
这样,该空调在制热时,每消耗1J电能,将放岀3J多热量。
是指标错误还是能量不守恒?
解析:都不是。
空调制冷、制热靠压缩机做功,从室内(室外)吸收热量放到室外(室内)。
在制热时,放岀的热量等于消耗的电能与从室外吸收的热量之和,完全可以大于电能消耗。
这既不违背热力学第一定律,也不违背热力学第二定律。
友情提示:本题注重考查对热力学第一定律,热力学第二定律的理解。
课后问题与练习点击
1.解:汽油燃烧时释放的化学能有的由于漏气而散失;有的使汽车的机体温度上升,然后又通过机体散失了;转化为机械能的那部分还要用于克服机械摩擦转化为内能。
2.解答:A B不能发生;C D能发生。
C不违背热力学第二定律,D违背热力学第二定律。
3•解:他还要知道水的比热c,水的密度p煤气的燃烧值q,煤气的密度p,' c表示比热,单位是J/kg °C;表示水的密度,单位是kg/m3;V表示水的体积,单位是m3; &表示温度的变化,单位是C;q表示煤气的燃烧值,单位是J/kg;煤气的密度P,单位是kg /m3;烧水前后煤气的体积 V T V2
C吋&
烧水的效率
qP'M-
基础训练
1.下列关于能量转化的说法中,正确的是()
A.机械能可以转化为内能,但内能不能转化为机械能
B.机械能可以转化为内能,内能也能转化为机械能
C.机械能不可以转化为内能,但内能可以转化为机械能
D.机械能可以转化为内能,但内能不能全部转化为机械能,同时不引起其他变化
2.关于第二类永动机,下列说法正确的是()
A.它既不违反热力学第一定律,也不违反热力学第二定律
B.它既违反了热力学第一定律,也违反了热力学第二定律
C.它不违反热力学第一定律,只违反热力学第二定律
D.它只违反热力学第一定律,不违反热力学第二定律
3.下列关于热机的说法中,正确的是()
A.热机是把内能转化成机械能的装置
B热机是把机械能转化为内能的装置.
C.只要对内燃机不断进行革新,它可以把气体的内能全部转化为机械能
D.即使没有漏气,也没有摩擦等能量损失,内燃机也不能把内能全部转化为机械能
4.下列说法中正确的是()
A.—切涉及热现象的宏观过程都具有方向性
B.—切不违背能量守恒与转化定律的物理过程都是可以实现的
C.由热力学第二定律可以判断物理过程能否自发进行
D.—切物理过程都不可能自发地进行
5.第二类永动机不可能制造岀来的原因是因其工作原理违背()
A.热力学第一定律
B.能的转化与守恒定律
C.热力学第二定律
D.上述三个定律
6•热量会自发地从_______ 物体传到_________ 物体,而不能自发地从_____________ 物体传到________ 物体,这就是热传导的____________ 性。
7.设想有这样一种热机,它没有冷凝器,只有第一热源,它从第一热源吸收的热量全部用来做功,
而不引起其它变化,设想中的这种热机叫_________ ,它________ 制成(填能”或不能”
多维链接
1•自然界中,所有的宏观自发过程都具有单向性
在整个自然界中,无论有生命的或无生命的,所有的宏观自发过程都具有单向性,都有一定的方向
性,都是一种不可逆过程。
如河水向下流,重物向下落,山岳被侵蚀,房屋衰朽倒塌,人的一生从婴儿到老年到死亡等等。
2.电冰箱与空调是让热”由低温环境传递到高温环境。
这是不是自发进行的?说明理由。
提示:不是自发进行的。
这一过程是通过电流做功来实现的。
因此热”不能自发地从低温物体传给
高温物体,而不引起其他变化。
3.课本P73思考与讨论”
提示:
这是因为宏观自然过程都具有一定的方向性,所以第二类永动机虽然不违背能量守恒定律,但它不会自然而然地发生,是不可能制成的。