专题一:集合与不等式(知识点梳理)
专题一 第四讲 不等式
又∵f(x)<c的解集为(m,m+6), 2 a ∴m,m+6是方程x2+ax+ -c=0的两根. 4 2m+6=-a, 由一元二次方程根与系数的关系得 a2 mm+6= -c, 4 答案:9 解得c=9.
线性规划问题
一、基础知识要记牢 线性规划实质上是数形结合思想的一种具体体现,即将 最值问题直观、简便地寻找出来.它还是一种较为简捷的求 最值的方法,具体步骤如下: (1)根据题意设出变量,建立目标函数; (2)列出约束条件; (3)借助图形确定函数最值的取值位置,并求出最值; (4)从实际问题的角度审查最值,进而作答.
作出可行域,如图中阴影部分所
[答案] (1)A
(2)C
线性规划实质是把代数问题几何化,即数形结合的 思想. 需要注意的是:其一,准确无误地作出可行域;其 二,画目标函数所对应的直线时,要注意与约束条件中 的直线的斜率进行比较,避免出错; 其三,一般情况 下,目标函数的最大值或最小值均在可行域的端点或边 界上取得.
二、经典例题领悟好 [例2] (1)(2013· 陕西高考)若点(x,y)位于曲线y =|x|与y ( )
= 2所围成的封闭区域, 则2x-y的最小值是 A.-6 C.0 B.-2 D.2
(2)(2013· 湖北高考)某旅行社租用A,B两种型号的客车安 排900名客人旅行,A,B两种车辆的载客量分别为36人和60 人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总 数不超过21辆,且B型车不多于A型车7辆,则租金最少为 ( A.31 200元 C.36 800元 B.36 000元 D.38 400元 )
[答案] (1)A (2)D
(1)解一元二次不等式的基本思路:先化为一般形式ax2+ bx+c>0(a>0),再求相应一元二次方程ax2+bx+c=0(a>0)的 根,最后根据相应二次函数图像与x轴的位置关系,确定一元 二次不等式的解集. (2)解简单的分式、指数、对数不等式的基本思想是利用 相关知识转化为整式不等式(一般为一元二次不等式)求解.
精品高中数学专题:集合与常用逻辑用语、不等式、函数
专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒p)A Bp是q的必要不充分条件(q⇒p,p⇒q)B Ap是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(p⇒q,q⇒p)A与B互不包含1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A-B的定义是解答本题的关键,要和补集区别开来.答案(1)D(2)D解析(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2. 反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用数轴解决. 答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈C .∀xD ∈∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈Q ”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D. 二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3}, 集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}. 故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎨⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎨⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真, 当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧ a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。
知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图
知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。
专题第1讲 集合与不等式
b } a
我们把只含有一个未知数,并且未知数的 最高次数是2的不等式,称为一元二次不等式. 如关于x的一元二次不等式
ax2+bx+c>0
其中a,b,c是常数. 一元二次不等式的解集如何求呢?
一元二次不等式的解法
一般地, 如果对于一元二次方程
ax2+bx+c=0(a>0)
有两个不等的根 x1 =
大于符号取两边
小于符号取中间
y
O
y
x1 x2 x
Ox 1
x2
x
一元二次不等式解法小结
(, x1 ) ( x2 ,)
{x | x
b } 2a
R
φ
( x1 , x2 )
φ
三 分式不等式
定义:分母中含有未知数的不等式叫分式不
等式。 解法:右边化零;系数化正;化为整式不等 式(组)。 注意:(1)标准化之前不要去分母,只有分 母恒正或恒负时才可以直接移项;(2)解不 等式中的每一步要求“等价”即同解变形; (3)结果用集合的形式表示。
a b b a; a b b a a b, b c a c a b a c b c; a b, c d a c b d a b, c 0 ac bc;a b, c 0 ac bc a b 0, c d 0 ac bd
三、集合的基本运算
集合的并集
符号表 示 图形表 A∪B
集合的交集
A∩B
集合的补集
若全集为U,则集 合A的补集为∁UA
示
{x|x∈A, {x|x∈A, 且x∈B} {x|x∈U, 且x∉A}
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
大学数学高数微积分专题一第1讲集合常用逻辑用语不等式课堂讲解
围,还可以考虑从集合的角度来思考,将问题转化为集合间
的运算.
热点分类突破
(1)(2013·课标全国Ⅰ)已知命题p:∀x∈R,2x<3x;命 题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( )
A.p∧q B.綈p∧q C.p∧綈q D.綈p∧綈q
本
讲 栏
(2)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:
目 开
C.存在一个有理数,它的平方是有理数
关 D.存在一个无理数,它的平方不是有理数
(B )
解析 (1)通过否定原命题得出结论.
原命题的否定是“任意一个无理数,它的平方不是有理数”.
热点分类突破
(2)已知命题p:抛物线y=2x2的准线方程为y=-
1 2
;命题q:
若函数f(x+1)为偶函数,则f(x)关于x=1对称.则下列命题是
大学数学高数微积分专题一第1讲 集合常用逻辑用语不等式课堂讲解
第1讲 集合与常用逻辑用语
【高考考情解读】
1.本讲在高考中主要考查集合的运算、充要条件的判定、含
本 讲
有一个量词的命题的真假判断与否定,常与函数、不等
栏 目
式、三角函数、立体几何、解析几何、数列等知识综合在
开 关
一起考查.
2.试题以选择题、填空题方式呈现,考查的基础知识和基本
D.(-∞,-1]∪(0,1)
热点分类突破
弄清“集合的代表元素”是解决集合问题的关键.
解析 (1)∵B={(x,y)|x∈A,y∈A,x-y∈A},
A={1,2,3,4,5},
本
讲 栏
∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,
目 开
集合&不等式知识点
集合&不等式1.集合与元素(1)一般地,我们把研究对象统称为 ,把一些元素组成的总体叫做 . (2)集合中元素的三个特性: 、 、 . (3)集合中元素与集合的关系元素与集合的关系:对于元素a 与集合A ,或者 , 或者 .二者必居其一. (3)常见集合的符号表示数集 自然数集 正整数集 整数集 有理数集 实数集符号(4)集合的表示法: 、 、 .2.集合间的基本关系 关系 定义 记法相等 集合A 与B 的所有元素都 子集 A 中任意一元素均为B 中的元素真子集A 中任意一元素均为B 中的元素,且B 中至少有一个元素 A中的元素注1:空集∅是一个特殊而又重要的集合,它不含任何元素,∅是任何集合的 ,∅是任何非空集合的 ,解题时不可忽视∅.注2:含n 个元素的集合,子集数为 ,真子集数为 ,非空真子集数为 。
3.集合的基本运算(1)交集的性质:=B A ____________,=A A ___________,=∅ A ___________,⊆B A __________,⊆B A _________;(2)并集的性质:=B A _____________,=A A __________,=∅ A ___________, ________B A ⊆,_________B A ⊆;(3)⇔=A B A ________________,⇔=A B A ______________;(4)补集的性质:=A C A u _________,=A C A u __________,=)(A C C u u ____________; (5)摩根定律:B C A C B A C u u u =)(,B C A C B A C u u u =)(; 4、()B A card = 。
1.1.1集合的含义与表示1、集合的定义:由一些确定的、互异的对象构成的一个整体就叫做集合。
简称:集。
2、元素:集合里的各个对象叫做这个集合的元素。
四川省对口高考数学复习专题一:集合、不等式(含均值不等式与对勾函数)、充要条件(冉春)
镇(乡) 学校 班级 考号 姓名 ……○……题……○……不……○……得……○……超……○……过……○……此……○……密……○……封……○……总复习专题一:集合与不等式(含均值不等式与对勾函数、充要条件)编辑,整理:冉春第一部分:讲义部分:一、集合1、定义:把一些确定的研究对象,不考虑顺序、不重复地放在一起,就构成一个集合,集合里的每一个研究对象叫做元素。
集合中元素的三要素:确定性、互异性、无序性。
集合用{ }表示,用大写字母A,B,C 等表示,元素用小写字母a 、b 、c 表示。
例:中国古代四大名著就构成一个集合,记作集合A={西游记,红楼梦,三国演义,水浒传}。
集合里的研究对象必须是确定的,如长得很高的人、很帅的人、很接近1的数,都不能构成一个集合。
集合里的元素不能重复(即相同的元素只写一次),如{1,2,2}不能构成一个集合。
例题1:下列各组对象能组成集合的是( )①一切很大的书;②所有的等腰三角形;③函数y=2x-10的图象上的所有点. A. ①②B .②③C .①③D .①②③练习1:下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数 2、表示集合的方法:列举法和描述法(1)列举法 如小于5的正整数构成一个集合,{1,2,3,4},里面的元素用逗号隔开 (2)描述法 如{x|x <5},如{x:1<x <3},注意{x|x <3且x ∈R}中的x ∈R 一般省略不写,因为我们现在学的都是实数集。
即{x|x <3且x ∈R}={X|X <3}注意{x ∈Z|1<x <3}与{x|1<x <3且x ∈Z}均可,一般后者常见,注意都是有限集。
3、集合分类:集合根据元素个数是否有限,分为无限集和有限集 A={x|1<x <6}是无限集,B={x|1<x <6且x ∈Z}={2,3,4,5}是有限集3、只要构成两个集合的元素是一样的,就称这两个集合相等。
专题-不等式基本性质(解析版)
专题10不等式基本性质1.设{}2560,A x x x x R =--=∈,{}260,B x mx x x R =-+=∈,且A B B ⋂=,则m 的取值范围为 . 【难度】★★【答案】1024m m >=或2.设集合{}{}2135,322,A x a x a B x x A B =+≤≤-=≤≤⊆恒成立,则实数a 的取值范围为 . 【难度】★★ 【答案】(,9]-∞3.设全集{}R y x y x U ∈=,|),(,⎭⎬⎫⎩⎨⎧∈=--=,,,123|),(R y x x y y x A ,{}R y x x y y x B ∈+==,,1|),(,则UC AB =.热身练习【难度】★★ 【答案】(){}2,3⎧⎪⎪⎨⎪⎪⎩基本性质比较大小不等式基本性质不等式范围问题不等式综合1.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇔a +c >b +d ;知识梳理模块一:(4)可乘性:a>b,c>0⇔ac>bc;a>b,c<0⇔ac<bc;a>b>0,c>d>0⇔ac>bd;(5)可乘方:a>b>0⇔a n>b n(n⇔N,n≥2);(6)可开方:a>b>0⇔na>nb(n⇔N,n≥2);(7) a>b,ab>0⇔11a b<;a>b>0,0<c<d⇔a b c d>.【例1】判断下列命题的真假。
(1)若a>b,那么ac>2bc2。
()(2)若ac>2bc2,那么a>b。
()(3)若a>b,c>d,那么a-c>b-d。
一轮复习专题34 不等式(知识梳理)
专题34不等式(知识梳理)一、不等式的有关概念1、不等式的定义:用数学符号“≠、>、<、≥、≤”连接的两个数或代数式表示不等关系的式子叫不等式。
不等式的定义所含的两个要点:(1)不等符号<、≤、>、≥或≠;(2)所表示的关系是不等关系。
2、不等式b a ≥的含义:不等式b a ≥应读作“a 大于或者等于b ”,其含义是指“或者b a >,或者b a =”,等价于“a 不小于b ,即若b a >或b a =之中有一个正确,则b a ≥正确。
不等式中的文字语言与符号语言之间的转换:大于大于等于小于小于等于至少至多不少于不多于>≥<≤例1-1.判断(正确的打“√”,错误的打“×”)(1)某隧道入口竖立着“限高5.4米”的警示牌,是指示司机要安全通过隧道,应使车的整体高度h 满足关系为5.4≤h 。
(√)(2)用不等式表示“a 与b 的差是非负数”为0>-b a 。
(×)(3)不等式2≥x 的含义是指x 不小于2。
(√)(4)若b a <或b a =之中有一个正确,则b a ≤正确。
(√)【解析】(1)∵“限高5.4米”即为“高度不超过5.4米”。
不超过用“≤”表示,故此说法正确。
(2)∵“非负数”即为“不是负数”,∴0≥-b a ,故此说法错误。
(3)∵不等式2≥x 表示2>x 或2=x ,即x 不小于2,故此说法是正确的。
(4)∵不等式b a ≤表示b a <或b a =,故若b a <或b a =中有一个正确,则b a ≤一定正确。
二、实数比较大小的依据与方法1、实数的两个特征(1)任意实数的平方不小于0,即R a ∈⇔02≥a 。
(2)任意两个实数都可以比较大小,反之,可以比较大小的两个数一定是实数。
2、实数比较大小的依据(1)如果b a -是正数,那么b a >;如果b a -等于零,那么b a =;如果b a -是负数,那么b a <。
高中不等式知识点总结
高中不等式知识点总结一、学问点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:abba②传递性:ab,bcac③可加性:aba+cb+c④可积性:ab,c0acbc;ab,c0acbc;⑤加法法则:ab,cda+cb+d⑥乘法法则:ab0,cd0acbd⑦乘方法则:ab0,anbn(n∈N)⑧开方法则:ab0,2.算术平均数与几何平均数定理:(1)假如a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)假如a、b∈R+,那么(当且仅当a=b时等号)推广:假如为实数,则重要结论1)假如积xy是定值P,那么当x=y时,和x+y有最小值2;(2)假如和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;遇到肯定值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,依据不等式的性质推导出欲证的不等式。
综合法的放缩常常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过查找不等式成立的充分条件,逐步将欲证的不等式转化,直到查找到易证或已知成立的结论。
4.不等式的解法(1)不等式的有关概念同解不等式:两个不等式假如解集相同,那么这两个不等式叫做同解不等式。
同解变形:一个不等式变形为另一个不等式时,假如这两个不等式是同解不等式,那么这种变形叫做同解变形。
提问:请说出我们以前解不等式中常用到的同解变形去分母、去括号、移项、合并同类项(2)不等式axb的解法①当a0时不等式的解集是{x|xb/a};②当a0时不等式的解集是{x|x③当a=0时,b0,其解集是R;b0,其解集是ф。
(3)一元二次不等式与一元二次方程、二次函数之间的关系(4)肯定值不等式|x|0)的解集是{x|-aoo-a 0 a|x|a(a0)的解集是{x|x-a或xa},几何表示为:oo-a0a小结:解肯定值不等式的关键是-去肯定值符号(整体思想,分类讨论)转化为不含肯定值的不等式,通常有下列三种解题思路:(1)定义法:利用肯定值的意义,通过分类讨论的方法去掉肯定值符号;(2)公式法:|f(x)|af(x)a或f(x)-a;|f(x)|a-a(3)平方法:|f(x)|a(a0)f2(x)a2;|f(x)|a(a0)f2(x)a2;(4)几何意义。
专题01 集合与常用逻辑用语(知识梳理)(新高考地区专用)(解析版)
专题01 集合与常用逻辑用语(知识梳理)一、集合1、集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用英语大写字母A 、B 、C 、…来表示。
2、元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a 、b 、c 、…来表示。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
3、空集的含义:不含任何元素的集合叫做空集,记为∅。
4、元素与集合的关系:之间只能用“∈”或“∉”符号连接。
(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作A a ∈;(2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作A a ∉。
5、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例:集合},1{a A =,则a 不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例:}2,1,0{有}1,2,0{、}2,0,1{、}0,2,1{、}1,0,2{、}0,1,2{等六种表示方法。
6、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
7、常见的特殊集合:(1)正整数集*N 或+N ;(2)非负整数集N (即自然数集,包括零);(3)整数集Z (包括负整数、零和正整数);(4)有理数集Q (包括整数集Z 和分数集→正负有限小数或无限循环小数);(5)实数集R (包括所有的有理数和无理数);注意:①}{整数=Z (√);}{全体整数=Z (×);②},,0|),{(R y R x y x y x ∈∈=⋅表示坐标轴上的点集;③},,0|),{(R y R x y x y x ∈∈>⋅表示第一、三象限的点集;④},,0|),{(R y R x y x y x ∈∈<⋅表示第二、四象限的点集;⑤对方程组解的集合应是点集,例:⎩⎨⎧=-=+1323y x y x 解的集合)}1,2{(; 例1-1.判断下列说法是否正确,并说明理由。
【知识点总结】高中数学人教A版必修第一册知识点总结
高中数学新教材人教A版必修第一册知识点总结专题01 集合与常用的逻辑用语 (3)知识点一集合的概念 (3)知识点二集合间的关系 (4)知识点三集合的基本运算 (5)知识点四充分条件与必要条件 (5)知识点五全称量词与存在量词 (6)专题02 一元二次方程、函数与不等式 (7)知识点一不等式的性质 (7)知识点二基本不等式 (7)知识点三二次函数与一元二次方程、不等式 (8)专题03 函数的概念与性质 (9)知识点一函数的概念与分段函数 (9)知识点二函数的三要素 (10)知识点三函数的单调性 (12)知识点四函数的奇偶性 (14)知识点六幂函数 (16)专题04指数函数与对数函数的概念、简单性质 (17)知识点一指数运算、对数运算与幂运算 (17)知识点二指数函数与对数函数的概念及图像 (18)知识点三比较大小(常与0、1、-1作比较) (18)知识点四函数的零点 (19)专题05 指数型与对数型复合函数的性质 (20)知识点一复合函数简单的单调性与奇偶性问题 (20)知识点二复合函数的单调性 (20)知识点三复合函数的最大值与最小值 (21)知识点四最值问题(含有参数) (22)知识点五恒成立问题 (22)专题06 三角函数的图像与性质 (23)知识点一任意角和弧度制 (23)知识点二常用的角的集合表示方法 (23)知识点三弧度与弧度制 (24)知识点四三角函数定义 (25)知识点五三角函数在各象限的符号 (26)知识点六特殊角的三角函数值: (26)知识点七同角三角函数的关系与诱导公式 (26)知识点八两角和与差公式的基本应用 (27)知识点九辅助角公式 (27)知识点十二倍角公式 (27)知识点十一降幂公式 (27)知识点十二基本三角函数的图像与性质(正弦、余弦与正切) (28)知识点十三函数y=Asin(ωx+φ)的图像 (29)知识点十四三角函数的实际应用 (30)专题07 三角函数的综合运用 (30)专题01 集合与常用的逻辑用语知识点一集合的概念1.集合的有关概念(1)集合的描述:我们把研究对象称为元素,把一些元素组成的总体叫做集合.元素通常用小写字母a,b,c,⋯表示,集合通常用大写字母A,B,C,⋯表示.(2)集合元素的特性:确定性:集合中的元素是确定的,即给定一个元素可以判断该元素在或者不在该集合中。
高中数学必修+选修全部知识点精华归纳总结
高中数学必修+选修全部知识点精华归纳总结高中数学是一门重要的学科,对于我们的逻辑思维和解决问题的能力培养具有重要意义。
以下是对高中数学必修和选修的全部知识点进行的精华归纳总结。
一、集合与函数(一)集合1、集合的概念:一些确定的、不同的对象构成的整体。
2、集合的表示方法:列举法、描述法、韦恩图。
3、集合的运算:交集、并集、补集。
(二)函数1、函数的概念:设 A、B 是非空数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的三要素:定义域、值域、对应法则。
3、函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x₁、x₂,当 x₁<x₂时,都有 f(x₁)<f(x₂)(或 f(x₁)>f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:设函数 f(x)的定义域为 D,如果对于定义域 D 内任意一个x,都有 f(x)=f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内任意一个 x,都有 f(x)=f(x),那么函数 f(x)就叫做偶函数。
二、基本初等函数(一)指数函数1、指数函数的概念:函数 y=a^x(a>0 且a≠1)叫做指数函数。
2、指数函数的图象和性质(二)对数函数1、对数函数的概念:函数y=logₐx(a>0 且a≠1)叫做对数函数。
2、对数函数的图象和性质(三)幂函数1、幂函数的概念:形如y=x^α(α 为常数)的函数叫做幂函数。
2、常见幂函数的图象和性质三、立体几何(一)空间几何体1、柱、锥、台、球的结构特征2、空间几何体的三视图和直观图3、空间几何体的表面积和体积(二)点、直线、平面之间的位置关系1、平面的基本性质2、空间中直线与直线的位置关系3、空间中直线与平面的位置关系4、空间中平面与平面的位置关系四、平面解析几何(一)直线与方程1、直线的倾斜角和斜率2、直线的方程:点斜式、斜截式、两点式、截距式、一般式。
高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学必记知识点归纳总结
第一章 集合
一、集合的概念与表示:
1、集合的定义:把研究的对象统称为元素,把一些元素组成的总体叫做集
合。
2、集合的表示:常用大写拉丁字母,,,A B C 表示,集合中的元素一般用小写拉丁字母,,,a b c 表示
3、集合三性:确定性、互异性、无序性。
4、元素与集合的关系:属于(A a ∈) , 不属于(A a ∉)
只要构成两个集合的元素是一样的,就称这两个集合相等。
5、 常见集合:正整数集:*N 或+N ,整数集:Z ,有理数集:Q ,实数集:
R .
6、集合的表示方法:列举法、描述法.
二、集合间的基本关系:
1、子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集
合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.
2、集合相等:如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(B A ⊆),称集合A 与集合B 相等。
记作A B =。
3、真子集:如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集
合B 的真子集.记作:A B.
4、空集:把不含任何元素的集合叫做空集.记作:∅.规定:空集是任何集合的子集. 空集是任何非空集合的真子集.
5、集合的子集个数:如果集合A 中含有n 个元素,则集合A 有n 2个子集,
21n -个真子集.
三、集合间的基本运算:
1、并集:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集
合A 与B 的并集.记作:A B .即{},A B x x A x B =∈∈U 或
2、交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称
为A 与B 的交集.记作:A B .即{},A B x x A x B =∈∈且
3、全集、补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成
的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U A , 即{|,}U C A x x U x A =∈∉且.
说明:求并集、交集与补集时可借用数轴处理.
4.集合的主要性质和运算律
四、充分条件与必要条件:
1、 充分条件、必要条件与充要条件的定义:
若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.
若p q ⇔,则p 是q 的充要条件(充分必要条件).
2、充分条件、必要条件与充要条件常形式:
若p q ⇒,但q p ,则p 是q 充分不必要条件;
若p q ,但q p ⇒,则p 是q 必要不充分条件;
若p q ⇒且q p ⇒,则p 是q 的充要条件;
若p q 且q p ,则p 是q 的既不充分也不必要条件.
3、充分条件、必要条件与集合的关系:
=
第二章 不等式
一、不等式的性质:
1、大小关系与不等关系:
0a b a b >⇔-> 0a b a b =⇔-= 0a b a b <⇔-<
2、不等式的基本性质:
①(对称性)a b b a >⇔>
②(传递性),a b b c a c >>⇒>
③(可加性)a b a c b c >⇔+>+
(同向可加性),a b c d a c b d >>⇒+>+
④ (可乘性) 若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <;
⑤(乘方法则) 0(,1)n n a b a b n N n >>⇒>∈>且
⑥(倒数法则) b
a b a b a b a 110;110>⇒<<<⇒>> 二、区间: 区间是集合的另一种表示方式.
[][)(],;(,);,,,;a b a x b a b a x b a b a x b a b a x b ≤≤<<≤<<≤闭区间: ,即:开区间: ,即:左闭右开: ,即:左开右闭: ,即:()(]()[)(),,,;,,,,,.
a x a a x a
b x b b x b x R -∞<-∞≤+∞>+∞≥-∞+∞∈无穷区间:
,即:,即:,即:,即:,即:
三、一元二次不等式的解法:
“三个二次”的关系
求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->
解集的步骤: 一化:化二次项前的系数为正数.
二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边.
求根公式与韦达定理:
()2
1,212120(0)2:,b ax bx c a x a b c x x x x a a -±++=≠=+=-⋅=一元二次方程求根公式:韦达定理根与系数关系
四、分式不等式的解法:
()(1)0()()0()()(2)0()()0()f x f x g x g x f x f x g x g x <⇔⋅<>⇔⋅> ()()0()(3)0()0
()()()0()(4)0()0
()f x g x f x g x g x f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩⋅≥⎧≥⇔⎨≠⎩ 规律:把分式不等式等价转化为整式不等式求解.
五、指数不等式的解法:
⑴当1a >时, ()()()()f x g x a
a f x g x >⇔> ⑵当01a <<时, ()()()()f x g x a a f x g x >⇔<
规律:根据指数函数的性质转化.
六、对数不等式的解法:
⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩
⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩
规律:根据对数函数的性质转化.
七、含绝对值不等式的解法: 绝对值的定义:(0).(0)
a a a a a ≥⎧=⎨-<⎩ 最简单的绝对值不等式的解法: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③(0)ax
b
c c ax b c c +≤⇔-≤+≤≥ ④(0)ax b c c c c ax b ax b +≥⇔≥≤-≥++或
规律:关键是去掉绝对值的符号.
八、恒成立问题:
⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:
①当0a =时 0,0;b c ⇒=>
②当0a ≠时00.a >⎧⇒⎨∆<⎩
⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:
①当0a =时0,0;b c ⇒=<
②当0a ≠时00.a <⎧⇒⎨∆<⎩。