《分式方程》教案
八年级数学上册《分式方程及解法》教案、教学设计
-教师针对分式方程的解法进行详细讲解,特别是换元法、消元法等难点。
-设计具有针对性的练习题,让学生在练习中巩固所学知识,逐步突破难点。
4.实践应用,提高能力
-设计实际应用题,让学生将分式方程应用于解决实际问题,提高数学应用能力。
-教师及时给予反馈,指导学生调整解题策略,提高解题效果。
(四)课堂练习
1.设计具有代表性的练习题,涵盖分式方程的各种解法。
-练习一:求解分式方程,如:$\frac{2x+1}{3} = \frac{4}{x}$
-练习二:实际问题转化为分式方程,如:某商品原价为x元,打8折后的价格为0.8x元,求原价。
2.学生独立完成练习题,教师巡回指导,解答学生疑问。
(五)总结归纳
1.分式方程的定义:给出分式方程的一般形式,讲解分母、分子和未知数之间的关系。
-解释:分式方程就是含有分数的方程,其中分数的分母和分子可以是各种代数式。
2.分式方程的解法:
-换元法:通过设未知数,将分式方程转化为整式方程,然后求解。
-消元法:将方程两边的分母消去,转化为整式方程求解。
-通分法:将方程两边的分式通分,转化为整式方程求解。
7.创设良好的学习氛围,激发学生学习兴趣
-教师应以亲切、热情的态度对待学生,营造轻松、愉快的学习氛围。
-通过表扬、鼓励等方式,激发学生的学习积极性,提高他们的自信心。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以学生熟悉的购物打折、银行利率等实际问题为例,引导学生思考如何用数学知识解决这些问题。
4.针对不同学生的需求,给予个性化的指导,帮助他们克服学习中的困难,提高学习效果。
三、教学重难点和教学设想
人教版八年级数学上册:15.3分式方程(教案)
-鼓励学生在日常生活中发现并解决分式方程问题,提高数学素养
7.课后作业(课后自主完成)
-针对本节课所学内容,布置课后习题,巩固所学知识
-鼓励学生自主探索、拓展学习,提高解题能力
五、教学反思
在本次分式方程的教学中,我发现学生们对于分式方程的概念和求解方法的理解总体上是不错的。他们能够跟随我的讲解,逐步掌握去分母、移项等基本操作。然而,我也注意到,部分学生在面对高次分式方程或者分式方程组时,会感到困惑,这成为了他们学习的难点。
举例:重点讲解分式方程2/(x-3) = 1/(x+2),突出求解过程中每一步的关键操作,如交叉相乘去分母,合并同类项等。
2.教学难点
-分式方程去分母的技巧:对于复杂的分式方程,如何选择合适的去分母方法,避免出现计算错误。
-高次分式方程的求解:涉及高次方程的求解,如何运用降次或其他数学方法简化问题。
人教版八年级数学上册:15.3分式方程(教案)
一、教学内容
人教版八年级数学上册:15.3分式方程
1.分式方程的定义与特点
2.分式方程的求解方法:去分母、去括号、移项、合并同类项、系数化为1
3.应用题:利用分式方程解决实际生活中的问题
4.分式方程的常见类型及解题技巧
a.简单分式方程
b.复杂分式方程
c.高次分式方程
三、教学难点与重点
1.教学重点
-分式方程的定义及其基本性质:理解分式方程中分子、分母的关系,掌握分式方程的基本形式。
-分式方程的求解方法:重点讲解去分母、去括号、移项、合并同类项、系数化为1的步骤,强调每一步的运算规则。
-分式方程的验根方法:教会学生如何检验求得的解是否满足原方程,确保解的正确性。
人教版八年级上册数学《 分式方程》(优质教案)
人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
分式的教案(优秀5篇)
分式的教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!分式的教案(优秀5篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
分式方程教案小班
分式方程教案小班一、教学目标1. 了解分式的基本概念和性质;2. 学会解分式方程;3. 能够应用分式方程解决实际问题。
二、教学重点1. 分式的基本概念及分式方程的解法;2. 分式方程在实际问题中的应用。
三、教学难点分式方程的解法及其应用。
四、教学过程1. 导入(5分钟)教师通过一个简单的实例引入分式的概念,例如:小明有一束花,他将花分给三个朋友,每人分得其中的1/3。
请问这束花原本有多少朵?通过这个问题,引导学生思考分式的意义和使用场景。
2. 讲解(20分钟)(1)分式的定义与基本性质教师讲解分式的定义,即分数的分子和分母,以及分式的基本性质,如约分、通分和比较大小等。
(2)分式方程的解法教师通过几个简单的分式方程示例,引导学生掌握分式方程的解法。
例如,解方程2/x = 1/4,解方程(x+2)/3 = 5/6等。
3. 练习(25分钟)教师设计一些练习题,供学生进行自主练习。
例如:(1)解方程:5/x = 2/3,4/(x+1) = 2/5,等等。
(2)应用题:小明每天有5个小时的时间做作业,他计划将时间的1/5用于写作业,1/4用于看书,剩下的时间用于玩游戏。
请问他每天玩游戏多少个小时?4. 拓展(15分钟)教师引导学生思考分式方程在实际生活中的应用场景,并结合一些实际问题进行拓展讨论。
例如:(1)甲、乙、丙三个人一起做一件工作,甲独自完成这项工作需要6小时,乙独自完成需要8小时,丙独自完成需要12小时。
请问他们同时工作需要多少小时才能完成?(2)某项工程由甲、乙两人合作完成,甲独自花20天完成,乙独自花30天完成,他们共同工作需要多少天才能完成?5. 归纳总结(10分钟)教师对整个教学内容进行归纳总结,帮助学生掌握分式方程的基本概念、解题方法和应用技巧。
六、教学反思通过本节课的教学,学生能够初步掌握分式方程的解法,理解分式的基本概念和性质,并且能够应用分式方程解决一些实际问题。
进一步培养学生的逻辑思维能力和解决实际问题的能力。
《分式方程》教案
《分式方程》教案一、教学目标1.知识与技能目标:使学生理解分式方程的概念,掌握解分式方程的方法,能够正确求解各种类型的分式方程。
2.过程与方法目标:通过分式方程的求解过程,培养学生分析问题和解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生良好的学习习惯和团队合作精神。
二、教学内容1.分式方程的概念:介绍分式方程的定义,让学生理解分式方程的特点。
2.分式方程的求解方法:讲解解分式方程的一般步骤,包括移项、通分、去分母等。
3.分式方程的应用:通过具体的例题,让学生学会将实际问题转化为分式方程,并运用所学知识解决问题。
三、教学重点与难点1.教学重点:分式方程的求解方法,包括移项、通分、去分母等步骤。
2.教学难点:分式方程中分母的处理,特别是分母为零的情况。
四、教学步骤1.导入新课:通过一个简单的分式方程例子,引导学生思考如何求解分式方程,激发学生的兴趣。
2.讲解分式方程的概念:介绍分式方程的定义,让学生理解分式方程的特点。
3.讲解分式方程的求解方法:讲解解分式方程的一般步骤,包括移项、通分、去分母等。
通过具体的例题,让学生跟随教师的步骤进行求解。
4.解答例题:给出几个不同类型的分式方程例题,让学生独立解答,并邀请学生分享解题过程和答案。
5.分组讨论:将学生分成小组,给出一些实际问题,让学生将问题转化为分式方程,并运用所学知识解决问题。
小组内进行讨论和交流,共同解决问题。
6.总结与拓展:对分式方程的求解方法进行总结,强调注意事项,如分母为零的处理等。
同时,给出一些拓展题目,让学生进行挑战和练习。
7.作业布置:布置一些分式方程的练习题,让学生巩固所学知识。
五、教学评价1.课堂参与度:观察学生在课堂上的参与程度,包括积极回答问题、参与小组讨论等。
2.解题能力:通过学生的解题过程和答案,评价学生对分式方程求解方法的掌握程度。
3.小组合作:评价学生在小组讨论中的合作精神,包括积极参与、分享思路、互相帮助等。
分式方程教案
分式方程教案一、教学目标1.理解分式方程的概念,掌握分式方程的解法,并能够正确求解分式方程。
2.通过对分式方程的求解过程进行归纳和总结,培养学生的观察、分析、推理和概括能力。
3.通过对分式方程的求解过程进行反思和评价,培养学生的批判性思维和严谨的学习态度。
二、教学重点和难点1.教学重点:分式方程的解法及其在实际问题中的应用。
2.教学难点:如何通过观察和分析找到分式方程的解,并能够正确地将其转化为整式方程进行求解。
三、教学过程1.导入新课:通过实例引入分式方程的概念和意义,引导学生理解分式方程与整式方程的区别和联系。
2.新课教学:通过讲解、演示和讨论等多种方式,引导学生掌握分式方程的解法,包括去分母、去括号、移项、合并同类项等步骤。
同时,通过例题和练习题的讲解和练习,让学生更好地理解和掌握分式方程的解法。
3.巩固练习:通过多种形式的练习题,让学生进一步巩固分式方程的解法,并能够正确地求解分式方程。
4.归纳小结:通过总结和归纳,让学生更好地理解分式方程的概念和意义,掌握分式方程的解法及其在实际问题中的应用。
四、教学方法和手段1.教学方法:讲解、演示、讨论、练习等多种方式相结合。
2.教学手段:采用多媒体教学,通过动画、图像等手段增强学生对分式方程的理解和掌握。
五、课堂练习、作业与评价方式1.课堂练习:通过多种形式的练习题,包括填空题、选择题、判断题等,让学生更好地掌握分式方程的解法。
2.作业布置:根据教学内容和学生实际情况,布置适量的作业题,让学生回家后继续练习分式方程的解法。
3.评价方式:采用多种评价方式相结合,包括作业批改、课堂练习、小组讨论、期中考试等多种方式,全面了解学生的学习情况。
六、辅助教学资源与工具1.教学软件:采用数学软件等辅助教学。
2.教学资料:参考多种教学资料,包括教科书、参考书、网络资源等。
3.实验室资源:利用数学实验室资源进行实验操作和实践,增强学生的实践能力。
七、结论通过本节课的教学,学生已经掌握了分式方程的概念和意义,以及分式方程的解法及其在实际问题中的应用。
数学人教版八年级上册15.3分式方程(教案)
今天的学习,我们了解了分式方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节分式方程的课程后,我进行了深入的思考。首先,我发现学生在理解分式方程的概念上还存在一些困难。尽管我通过实际案例引入,但部分学生仍然难以将现实问题转化为数学模型。在今后的教学中,我需要更多地运用生活中的实例,帮助学生建立起数学与实际问题的联系。
数学人教版八年级上册15.3分式方程(教案)
一、教学内容
本节课选自数学人教版八年级上册第15章第3节“分式方程”。教学内容主要包括以下方面:
1.了解分式方程的定义,掌握分式方程的一般形式;
2.学会解分式方程的步骤和方法,特别是如何去分母、如何化简方程;
3.能够解决实际问题中涉及的分式方程,例如速度、浓度、比例分配等问题;
在实践活动方面,我发现学生们对实验操作非常感兴趣,这有助于他们更好地理解分式方程在实际问题中的应用。但我也注意到,有些小组在操作过程中出现了混乱,没有明确分工。为了提高实践活动的效果,我将在下一次活动中提前给学生分配好任务,确保每个成员都能参与到活动中。
另外,课程总结环节,我意识到有些学生对所学知识点,导致学生遗忘。因此,我决定在今后的教学中,每节课结束后都进行一个小测验,帮助学生巩固所学知识。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,演示分式方程在解决实际问题时如何运用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
初中数学分式方程教案
初中数学分式方程教案教案内容:一、教学内容:本节课的教学内容选自人教版初中数学八年级上册第四章第一节《分式方程》。
本节课的主要内容有:分式方程的定义、分式方程的解法以及分式方程的应用。
二、教学目标:1. 理解分式方程的定义,掌握分式方程的解法。
2. 能够运用分式方程解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点:重点:分式方程的定义,分式方程的解法。
难点:分式方程的解法,分式方程的应用。
四、教具与学具准备:教具:黑板、粉笔、多媒体设备。
学具:课本、练习本、铅笔、橡皮。
五、教学过程:1. 实践情景引入:教师可以通过展示一些实际问题,引导学生发现这些问题可以用分式方程来表示。
例如,某商品的原价是100元,商店进行了一次8折优惠活动,请问优惠后的价格是多少?2. 例题讲解:教师可以通过讲解一些典型的分式方程题目,引导学生掌握分式方程的解法。
例如,解方程:$$\frac{x2}{3}= \frac{4x}{2}$$3. 随堂练习:教师可以布置一些随堂练习题,让学生独立完成,以巩固所学知识。
例如,解方程:$$\frac{2x+1}{5}= \frac{3x}{4}$$4. 分式方程的应用:教师可以通过讲解一些分式方程在实际问题中的应用,让学生体会分式方程的重要性。
例如,某工厂生产A、B两种产品,生产A产品需要2小时,生产B产品需要3小时,如果每天工作8小时,那么一天可以生产A、B产品各多少件?六、板书设计:板书内容主要包括分式方程的定义、解法以及应用。
例如:分式方程:$$\frac{x2}{3}= \frac{4x}{2}$$解法:去分母,得:2(x2)=3(4x)去括号,得:2x4=123x移项,得:2x+3x=12+4合并同类项,得:5x=16系数化为1,得:x=$$ \frac {16}{5}$$七、作业设计:1. 解方程:$$\frac{3x1}{4}= \frac{52x}{3}$$答案:x=$$ \frac {13}{18}$$2. 某商店进行了一次8折优惠活动,原价是100元的商品,优惠后的价格是80元,请问原价是多少?答案:原价是100元。
八年级数学上册《分式方程的解法》教案、教学设计
二、学情分析
八年级学生在数学学习上已具备了一定的基础,对整式方程的解法有较好的掌握。但在面对分式方程时,可能会因为分母不为零的条件、解法的多样性等问题感到困惑。此外,学生在解决实际问题时,可能难以将问题转化为分式方程,需要教师在教学过程中给予引导。
4.反馈与指导:针对学生的练习情况,给予及时反馈和指导,帮助学生纠正错误,提高解题能力。
(五)总结归纳
在总结归纳环节,我将引导学生进行以下思考:
1.分式方程解法的要点:总结分式方程解法的步骤和关键点,加深学生的记忆。
2.解题策略:讨论解题过程中遇到的问题及解决方法,提高学生的解题策略。
3.情感态度与价值观:强调数学学习的重要性,激发学生对数学的热爱,培养学生的自信心。
-能够将实际问题抽象成分式方程,并熟练运用所学的解法求解。
2.过程与方法方面的重难点:
-学生在解题过程中,对解题策略的选择和运用。
-学生在小组合作中,如何有效沟通、分享解题思路。
-学生对解题规律的总结,以及逻辑思维和抽象思维能力的培养。
3.情感态度与价值观方面的重难点:
-培养学生对分式方程解法的兴趣,克服对数学学习的恐惧心理。
3.提出问题:通过提问方式引导学生思考,如“整式方程与分式方程有什么区别和联系?”、“分式方程的解法有哪些?”等问题,激发学生的探究欲望。
(二)讲授新知
在讲授新知环节,我将按照以下步骤进行:
1.分式方程的定义:讲解分式方程的定义,强调分母不为零的条件。
2.解法讲解:详细讲解交叉相乘法、通分法等解分式方程的方法,并通过示例进行演示。
《分式方程》(第3课时)教案doc初中数学
《分式方程》(第3课时)教案doc初中数学[教学目标]1. 明白分式方程的意义, 会解可化为一元一次方程的分式方程.2, 了解分式方程产生增根的缘故, 会判定所求得的根是否是分式方程的增根.3. 会列出方程解决简单的实际咨询题, 并能依照实际咨询题的意义检验所得结果是否合理.此外, 通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程, 体验解决咨询题的差不多策略, 进展应用意识和解决咨询题的技能.[教学过程(第三课时)]1. 情境创设课本以3个实际咨询题, 引导学生学习用分式方程解决实际咨询题的差不多方法, 进一步感受〝实际咨询题一建立方程一求解并讲明〞的过程.有时, 所列出的分式方程尽管有解, 但解却不符合实际情形, 这时原实际咨询题无解, 例3的设置正是为了表达这一点.2. 探究活动采纳〝个人摸索一小组交流一汇报方案’’的方式, 尝试从不同角度寻求解决咨询题的方法, 并能用文字、图表等手段清晰地表达解决咨询题的过程, 并会讲明结果的合理性. 例如:关于例4, 有以下两种解决方案可供选择:假设每小组有x名学生, 可得分式方程: , 解得x=10, 即每小组有10名学生;假设原先每人平均做c面彩旗, 可得分式方程:, 解得x=8, 从而确定每个小组有 10名学生.例5能够仿惯例4设计解决方案, 但由于例5中的数量关系较例4略为复杂, 因此可用表格的方式进行分析, 找出数量之间的相等关系, 从而得到方程.如:依照〝乙公司比甲公司人均多捐20元〞, 得方程:通过例6的探究和求解, 让学生感受在解决实际咨询题时, 存在如此的现象: 所列方程以及求得的根尽管正确, 但不符合咨询题的实际意义, 因此原实际咨询题仍旧无解.解分式方程(组)的检验是不可缺少的步骤.只是要注意检验的目的有两个方面:一方面是看所得数值是不是原方程的增根, 另一个方面, 关于应用题来讲, 还要检查所得的解是否合乎实际意义。
分式方程的教案
分式方程的教案教案目标:通过学习分式方程的解法,使学生能够独立解决分式方程,培养学生的分析问题和解决问题的能力。
教学过程:导入:老师放一道简单的分式方程题目:“x/2 + 3 = 5”。
请学生思考如何解这个方程,并把解法说出来。
解题步骤:1. 引导学生回顾一元一次方程的解法,以复习基础知识。
2. 告诉学生,分式方程也可以通过移项、整理方程、消元的方法来解。
3. 分析分式方程的特点:在方程中存在分数,要求找出使分式方程成立的未知数的取值。
4. 解释移项的原则:把含有未知数的项移到方程的一边,常数项移到方程的另一边。
5. 示例:给学生展示几个简单的分式方程例子,并详细演示解题步骤。
例1:2/x = 4,解法:将2移至等式右边,得x = 2/4 = 1/2。
例2:3/(2y-1) = 6,解法:将3移至等式右边,得2y-1 = 3/6 = 1/2,进一步化简得2y = 1/2 + 1 = 3/2,所以y = (3/2)/2 = 3/4。
6. 给学生一些练习题,让他们自己尝试解题,然后互相交流、讨论答案。
7. 总结分式方程的解题步骤,鼓励学生进行小结和总结。
巩固练习:1. 解方程:2/(x-1) - 1/3 = 4。
2. 解方程:1/y + 3 = 2/(y+1)。
3. 解方程:(x-2)/3 - 1/(x-3) = 1/2。
拓展练习:1. 解方程:1/x + 2/y = 4,其中x和y为正整数。
2. 解方程:1/(x-2) + 1/(x+2) = 1/3。
教学总结:通过本节课的学习,你们已经掌握了分式方程的解法。
解分式方程是在一元一次方程的基础上进行的,但需要更加专注于分式的合理运算。
希望你们能够通过更多的练习,进一步巩固和拓展这节课的知识。
分式方程教案(5篇)
分式方程教案(5篇)分式方程教案(5篇)分式方程教案范文第1篇一、预习导学,呈现问题导入新课思索:你能正确识别分式方程吗?下列关于x的方程,其中是分式方程的有______.(填序号)问题1 什么是分式方程?问题2 为什么方程(4)不是分式方程?它是什么方程?如何看待其分母中的字母?引导同学思索并归纳总结,分式方程的特点是:①含分母;②分母中含有未知数,分母中是否含有未知数是区分分式方程与整式方程的标志.本例中的(4)是关于x的方程,其他字母皆为字母系数,通过本例辨析分式方程与含有字母已知数方程的区分.设计意图在设疑解惑中引导同学关注分式方程形式上的定义,不是简洁让同学重复概念,而是展现一组方程让同学识别,在答疑辨析中调动同学对分式方程概念的理解,加深理解分式方程概念的关键点——分母中含有未知数,设计的方程(3)(4)(6)用意深刻,是对同学思索提出的进展性目标.二、合作探究,问在学问发生处,点拨释疑·你会解分式方程吗?老师出示问题,同学动手解题,探究体验:比较方程(1)(2)的结果有差异吗?为什么?·为什么x=2不是原方程(2)的根?·产生x=2不是原方程(2)的根的缘由是什么?你能用数学语言说明吗? 解(2):方程两边同乘以3(x-2),得3(5x-4)=4x+10-3(x-2),x=2.检验:把x=2代入最简公分母3(x-2)中,3(x-2)=0,x=2称为原方程的增根.·引导同学进一步思索:(1)解分式方程的一般步骤?要求同学自己归纳总结,然后争论沟通.①去分母,方程两边同乘以最简公分母,把分式方程转化为整式方程;②解这个整式方程;③验根.使得最简公分母为0的根为原方程的增根,必需舍去.同学提出问题,小组合作探究争论:验根有几种方法?如何检验?适当的练习加强同学对解分式方程的理解,关心同学深刻理解化分式方程为整式方程的数学思想.(2)呈现错例,分析错误缘由.(组织同学开展纠错争论)①确定最简公分母失误;②去分母时漏乘整式项;③去分母时忽视符号的变化;④遗忘验根.设计意图分解因式是要求同学把握的基本技能,引导同学独立思索,总结归纳解题步骤,对错例进行剖析,加深对学问的理解.纠错是数学解题教学的一种重要学习形式.(3)增根从哪里来?为什么要舍去?(4)下面分式方程的解法是否正确?谈谈你的想法?引导同学议一议,深化思索:你对上述解法有什么看法?还有其他解法吗?通过解题表象再深化思索解分式方程的本质.分式方程的增根是它变形后整式方程的根,但不是原方程的根,产生增根的缘由是在分式方程的左右两边乘以为0的最简公分母造成的,所以使最简公分母为0的未知数的值均有可能为增根.着名教学者李镇西说过:“能让同学自己完成的,老师绝不帮忙.”老师引路设问,创设质疑争论的空间,深化对解分式方程本质的理解,拓宽同学的视野.三、敏捷应用,拓展思维思索“无解”与该分式方程有“增根”的意义一样吗?分析方程两边乘以(x+2)(x-2),可得2(x+2)+ax=3(x-2),(a-1)x=-10.明显a=1时原方程无解.当(x+2)(x-2)=0,即x=2或x=-2时,原方程亦无解,当x=2时,a=-4>:请记住我站域名/设计意图分式方程的增根问题是同学理解的难点,部分同学解题过程中存有怀疑,还会与无解相混淆.本课例设计直击难点,关心同学梳理如何争论增根问题,并能利用其解决方程无解的相关问题.老师运用问题串形式组织同学解分式方程不是表面上培育细心,明确算理,而是像几何推理那样步步有据,启发同学经过自己的独立思索去寻求解决问题方案.本课设计尝试从数学的角度提出问题,理解问题.引导同学理解解分式方程的途径是通过转化为整式方程来求解.在解分式方程的过程中体验增根的由来.总结出解分式方程的一般步骤和验根的方法,通过敏捷应用实例分析把方程的相关学问融会贯穿,在富有挑战性问题的引导下,同学在探究、答疑、辨别中体会到,提出一个有价值的问题有时比解决一个问题更重要,本课例的设计让同学学会质疑,学会思索,真正在思维的层面上学会数学解题.分式方程教案范文第2篇关键词:案例―任务驱动;计算机程序语言;教学模式在高校计算机教育中,老师讲授程序语言类课程时,一般是在课堂上进行学问点的介绍、举例、讲解、分析、总结等,同学被动地听讲并记忆,在上机实践环节中,同学提前不做什么预备,上机就是在集成环境中输入并运行笔记或教材上的例题,或是自己参按例题完成课后练习,有错误也不求甚解。
分式方程教案范文
分式方程教案范文教案标题:探索分式方程教学目标:1.理解分式方程的定义及其解的概念。
2.掌握解分式方程的基本方法和技巧。
3.能够运用所学知识解决实际问题。
教学准备:1.教师准备黑板、彩色粉笔、教学PPT等。
2.学生准备笔记本、作业本、直尺、计算器等。
教学流程:一、导入(5分钟)1.引入:教师简要介绍分式方程的概念,如何解决分式方程问题对解题方法和技巧的要求。
2.激发兴趣:教师提出一个简单的分式方程问题,让学生思考如何解决。
二、知识讲解(20分钟)1.分式方程的定义:教师通过情境故事或具体例子,解释分式方程的定义,引导学生理解等式两边含有分数的方程。
2.分式方程的解法:教师将分式方程的解法分为两种情况,即分子为0或分母为0的情况,分别进行讲解。
三、例题演练(30分钟)1.教师先讲解一个简单的例题,解题过程中详细解释思路和步骤。
2.学生个人或小组完成一道例题,并互相检查答案和解法。
3.教师选几组学生上台展示解题过程,并讲解可能遇到的错误和纠正方式。
4.学生在教师的指导下进行讨论和思考,解决其他例题。
四、拓展应用(20分钟)1.学生尝试运用所学知识解决实际问题,如物体下落时间、液体混合比例等。
2.学生个人或小组展示解题过程,教师给予评价和指导。
五、归纳总结(10分钟)1.教师总结本节课的主要知识点和解题方法,强调学生的收获和掌握程度。
2.学生进行知识点的归纳总结,教师进行补充和解答疑惑。
六、作业布置(5分钟)1.教师布置课后作业,要求学生运用所学知识解决几道分式方程的问题。
2.学生查看课后作业内容,并确认自己的学习计划。
教学反思:本节课采用了导入激发兴趣的方法,使学生对分式方程产生了兴趣和好奇心。
通过讲解和演示例题,让学生掌握了解决分式方程的基本方法和技巧。
拓展应用环节帮助学生将所学知识应用到实际问题中,并提高了他们的问题解决能力。
课程重视知识的归纳总结和学生的参与,能够促进学生对所学知识的掌握和理解。
分式方程教案 分式方程数学教案(精选6篇)
分式方程教案分式方程数学教案(精选6篇)解分式方程练习题篇一分式方程的教学设计分式方程的教学设计教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点重点:列分式方程解应用题。
难点:根据题意,找出等量关系,正确列出方程。
教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。
解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。
若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系。
答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0。
5小时。
请同学依据上述等量关系列出方程。
分式的教案(精选4篇)
分式的教案(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!分式的教案(精选4篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
初中数学分式方程教案
初中数学分式方程教案教学目标:1. 理解分式方程的定义和性质;2. 学会解分式方程的步骤和方法;3. 能够应用分式方程解决实际问题。
教学重点:1. 分式方程的定义和性质;2. 解分式方程的步骤和方法。
教学难点:1. 分式方程的求解;2. 应用分式方程解决实际问题。
教学准备:1. 教师准备PPT或黑板,展示分式方程的定义和性质;2. 准备一些实际问题,用于引导学生应用分式方程解决。
教学过程:一、导入(5分钟)1. 引导学生回顾方程的定义和性质;2. 提问:大家学过一元一次方程、一元二次方程等,那么有没有人听说过分式方程呢?二、新课讲解(15分钟)1. 讲解分式方程的定义:分式方程是分母中含有未知数的方程;2. 讲解分式方程的性质:分式方程的解与整式方程的解类似,可以通过去分母、移项、合并同类项等步骤求解;3. 讲解解分式方程的步骤:a. 去分母:方程两边同时乘以最简公分母;b. 移项:将含有未知数的项移到方程的一边,将常数项移到方程的另一边;c. 合并同类项:将含有未知数的项合并,将常数项合并;d. 系数化为1:将方程两边同时除以未知数的系数;e. 验根:将求出的未知数的值代入原方程,检验是否成立。
三、实例讲解(15分钟)1. 出示一个分式方程实例,引导学生按照解分式方程的步骤进行求解;2. 引导学生注意验根的重要性,避免出现增根。
四、课堂练习(10分钟)1. 布置一些分式方程的练习题,让学生独立完成;2. 引导学生互相交流解题思路和解题方法。
五、应用拓展(10分钟)1. 出示一些实际问题,引导学生应用分式方程解决;2. 引导学生注意在解决实际问题时,要检验方程的解是否符合题意。
六、总结(5分钟)1. 回顾本节课所学内容,让学生总结分式方程的定义、性质和解题步骤;2. 强调分式方程在实际问题中的应用。
教学反思:本节课通过讲解分式方程的定义、性质和解题步骤,让学生掌握了分式方程的基本知识。
在实例讲解和课堂练习环节,学生能够独立解决问题,并在应用拓展环节,能够将分式方程应用于实际问题的解决。
八年级分式方程教案
八年级分式方程教案一、教学目标:1. 让学生掌握分式方程的定义和基本性质。
2. 培养学生解决实际问题能力,提高分析问题和解决问题的能力。
3. 培养学生合作交流意识,提高学生数学思维能力。
二、教学内容:1. 分式方程的定义及基本性质。
2. 解分式方程的方法和技巧。
3. 分式方程在实际问题中的应用。
三、教学重点与难点:1. 重点:分式方程的定义、解法及应用。
2. 难点:分式方程的解法,特别是含字母系数和分式系数的分式方程。
四、教学方法:1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生在解决实际问题中掌握分式方程的应用。
3. 采用合作交流法,培养学生的团队协作能力和沟通能力。
五、教学过程:1. 引入:通过生活中的实际问题,引导学生思考分式方程的定义和应用。
2. 讲解:讲解分式方程的定义、基本性质和解法。
3. 练习:让学生独立解决一些简单的分式方程问题。
4. 拓展:引导学生思考分式方程在实际问题中的应用。
5. 总结:对本节课的内容进行总结,强调分式方程的重要性和应用价值。
6. 作业布置:布置一些有关的练习题,巩固所学知识。
后续章节待您提供要求后,我将为您编写。
六、教学评价:1. 评价学生对分式方程定义和基本性质的理解。
2. 评价学生解决实际问题时运用分式方程的能力。
3. 评价学生在合作交流中对分式方程的解法和应用的掌握。
七、教学资源:1. 教材:八年级数学教材及相关分式方程教学辅导书。
2. 课件:制作与教学内容相关的课件,辅助讲解和展示。
3. 练习题:提供一定数量的练习题,用于巩固所学知识。
八、教学进度安排:1. 第1课时:介绍分式方程的定义和基本性质。
2. 第2课时:讲解分式方程的解法和技巧。
3. 第3课时:通过案例分析,讲解分式方程在实际问题中的应用。
4. 第4课时:进行分式方程的综合练习。
5. 第5课时:总结本单元内容,进行复习和检测。
九、教学反思:在教学过程中,教师应不断反思自己的教学方法和解题策略,以便更好地指导学生。
《分式方程》教案
《分式方程》教案(1)[教学目标]1.知道分式方程的意义,会解可化为一元一次方程的分式方程.2,了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.3.会列出方程解决简单的实际问题,并能根据实际问题的意义检验所得结果是否合理.此外,通过经历“实际问题一建立数学模型(方程)一解释、应用与拓展”的过程,体验解决问题的基本策略,发展应用意识和解决问题的技能.[教学过程(第一课时)]1.情境创设问题是数学的心脏,遵循《标准》关于“方程是刻画现实世界的一种有效的数学模型”的理念,同以往一样,我们仍然从问题开始,让学生从实际问题数量关系的探索中,发现一类未知数出现在分母中的新方程——分式方程.除课本提供的3个实例外,教师可以根据学生的实际情况,补充一些与学生生活相关的实际问题,激发学生学习分式方程的兴趣.2.探索活动探索活动(一):可以采用不同的方式,探寻各个实际问题中的数量关系.例如:对于情境(一),可以用表格揭示服装加工中的工作总量与工作时间、个人工作效率之间的数量关系:根据问题中的相等关系,得xx 20124=+ 对于情境(二),可以用数位填空的方式表示两位数的构成:原两位数改变后的两位数于是,可得方程47410104=++⨯x x 对于情境(三),可以用线段示意图表示行程问题:由于自行车早出发40min ,但与汽车同时到达,多行驶了40min ,所以可得方程:604031515=-x x 探索活动(二):探索分式方程的解法. 仍以问题为先导,发动学生研究如何解分式方程?20124x x =+ 学生可能会出现多种思路,例如: 其一,分式方程与含有分数系数的一元一次方程“形似”,容易想到通过类比提出猜想:解分式方程也应该先去分母(卡通人语).猜想是否正确?实践之,检验之.要强调检验的必要性,通过检验能初步说明猜想的正确性.然后告诉学生,解分式方程的一般方法是先去分母,把不熟悉的方程转化为熟悉的方程来解决.其二,移项进行减法运算,化简,得0)1(204=+-x x x 由分式的值为0的概念,得4x —20=0,从而得解x =5.正确否?可代人检验.其三,利用分式的基本性质,使方程两边的分式的分子为它们的最小公倍数,如xx 612055120=+,由分式相等的概念,得5x +5=6x ,从而得x =5. 应注意的是,如果学生提出后两种解决问题的思路,教师则要在给予充分肯定后,引导学生继续探讨,得出解分式方程的一般方法;如果没有学生提出,则不必刻意追求,避免干扰本课主题——分式方程的一般解法.3.例题教学例1给出了解分式方程的一般过程及完整的书写格式,若有必要,教师可增补例题,让学生学会求解并规范表述.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.3 分式方程
第1课时 分式方程及其解法
【出示目标】
1.理解分式方程的意义.
2.了解分式方程的基本思路和解法.
3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法.
【预习导学】
自学指导:阅读教材P149-151,完成下列问题.
1.填空:
(1)分母中__不含有__未知数的方程叫做整式方程
(2)分母中含有未知数的方程叫做分式方程.
2.判断下列说法是否正确:
①2x +32=5是分式方程;②34-4x =4x +3
是分式方程; ③x 2x =1是分式方程;④1x +1=1y -1
是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.
【自学反馈】
1.下列方程中,哪些是分式方程?哪些是整式方程?
①x -22=x 3;②4x +3y
=7; ③1x -2=3x
;④x (x -1)x =-1; ⑤3-x π=x 2;⑥2x +x -15
=10; ⑦x -1x =2;⑧2x +1x
+3x =1. 解:①⑤⑥是整式方程,因为分母中没有未知数.
②③④⑦⑧是分式方程,因为分母中含有未知数.
【教师点拨】判断整式方程和分式方程的方法就是看分母中是否含有未知数.
2.解分式方程的一般步骤是:(1)__去分母__;(2)__解整式方程__;(3)__验根__;(4)__小结__.
【合作探究】
活动1 小组讨论
【例1】 解方程:2x -3=3x
. 解:方程两边乘x (x -3),得2x =3(x -3).
解得x =9.
检验:当x =9时,x (x -3)≠0.
所以,原分式方程的解为x =9.
【例2】 解方程:x x -1-1=3(x -1)(x +2)
. 解:方程两边乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3.
解得x =1.
检验:当x =1时,(x -1)(x +2)=0.
所以x =1不是原方程的解.所以,原方程无解.
活动2 跟踪训练
1.解方程:
(1)12x =2x +3; (2)x x +1=2x 3x +3
+1; (3)2x -1=4x 2-1; (4)5x 2+x -1x 2-x
=0. 解:(1)方程两边乘2x (x +3),得x +3=4x .去分母:x +3=4x .化简得:3x =3.解得x =1. 检验:将x =1代入2x (x +3)≠0.所以x =1是方程的解.
(2)方程两边乘3(x +1),得3x =2x +3x +3.解得x =-32
. 检验:将x =-32
代入(3x +3)≠0. 所以x =-32
是方程的解. (3)方程两边乘x 2-1,得2(x +1)=4.解得x =1.
检验:将x =1代入x 2-1=0,所以x =1不是方程的解.所以,原方程无解.
(4)方程两边乘x (x +1)(x -1),得5(x -1)-(x +1)=0.解得x =32
. 检验:将x =32
代入x (x +1)(x -1)≠0. 所以x =32
是原方程的解. 【教师点拨】方程中分母是多项式,要先分解因式再找公分母.
2.解分式方程:(1)x x -1=32x -2
-2; (2)x -3x -2+1=32-x
; (3)2x 2x -1=1-2x +2
. 解:(1)方程两边乘2x -2,得2x =3-2(2x -2).解得x =76
. 检验:当x =76时,2x -2≠0.所以x =76
是原方程的解. (2)方程两边乘x -2,得x -3+x -2=-3.
解得x =1.
检验:当x =1时,x -2≠0.所以,x =1是原方程的解.
(3)方程两边乘(2x -1)(x +2),得2x (x +2)=(2x -1)(x +2)-2(2x -1).
解得x =0.
检验:当x =0时,(2x -1)(x +2)≠0.所以,x =0是原方程的解.
【课堂小结】
解分式方程的思路是: 分式方程――→去分母两边都乘以最简公分母一化二解三检验整式方程―→验根
【随堂训练】
教学至此,敬请使用学案随堂训练部分.
第2课时 分式方程的应用
【出示目标】
能将实际问题中的相等关系用分式方程表示,并进行方法总结.
【预习导学】
自学指导:阅读教材P152-153,完成下列问题.
1.列方程解应用题的一般步骤是: (1)____审题设未知数__. (2)____找等量关系列方程__. (3)____解方程__. (4)____验根是否符合实际意义__. (5)____答题__. 2.类比一般方程,列分式方程解应用题的一般步骤是: (1)____审题设未知数__.
(2)____找等量关系列方程__.
(3)____去分母化分式方程为整式方程__.
(4)____解整式方程__.
(5)____验根是否符合实际意义__.
(6)____答题__.
【自学反馈】
重庆市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半.后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半.乙型挖土机单独挖这块地需要几天?
甲型挖土机4天完成了一半,那么甲型挖土机每天挖__12÷4=18
__,如果设乙型挖土机单独挖这块地需要x 天,那么一天挖__1x __;两台挖土机一天共挖__18+1x
__;两台一天完成另一半.所以方程为:__18+1x =1,2)__;解得x =__83__,即乙单独挖需__83
__天. 【教师点拨】认真分析题意.根据等量关系列方程.
【合作探究】
1.甲乙两人分别从相距36千米的A ,B 两地相向而行,甲从A 出发到1千米时发现有东西遗忘在A 地,立即返回,取过东西后又立即从A 向B 行进,这样两人恰好在AB 中点处相遇.已知甲比乙每小时多走0.5千米,求二人的速度各是多少?
分析:
路程 速度 时间 甲 18+1×2 x +0.5 18+1×2x +0.5
等量关系:t 甲=t 乙.
解:设乙的速度为x 千米/小时,则甲的速度为(x +0.5)千米/小时.
根据题意,列方程得
18+1×2x +0.5
=18x . 解得x =4.5.
检验:当x =4.5时,x (x +0.5)≠0.所以,x =4.5是原方程的解.则x +0.5=5.
答:甲的速度为5千米/小时,乙的速度为4.5千米/小时.
【教师点拨】等量关系是时间相等,那么就要找到相等时间里每个人所走的路程,甲的路程比乙的路程多两个1千米.
2.A 、B 两地相距135千米,有大、小两辆汽车从A 地开往B 地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2∶5,求两辆汽车的速度.
解:设大汽车的速度为2x 千米/小时,小汽车的速度为5x 千米/小时.
根据题意,列方程得135-2x ×52x =135-12×5x 5x
. 解得x =9.
检验:当x =9时,10x ≠0.所以,x =9是原方程的解.
则2x =18,5x =45.
答:大汽车的速度是18千米/小时,小汽车的速度是45千米/小时.
【教师点拨】等量关系是大汽车5小时后剩下路程所走的时间,等于小汽车去掉30分钟路程所用的时间.
3.一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?
解:设规定日期是x 天,则甲队独做需x 天,乙队独做需(x +3)天,根据题意,列方程得 2x
+错误!=1.解得x =6. 检验:当x =6时,x (x +3)≠0.所以,x =6是原方程的解.
答:规定日期是6天.
【课堂小结】
1.列分式方程解应用题,应该注意解题的六个步骤.
2.列方程的关键是要在准确设元(可直接设,也可间接设)的前提下找出等量关系.
3.解题过程注意画图或列表帮助分析题意找等量关系.
4.注意不要遗漏检验和写答案.
【随堂训练】
教学至此,敬请使用学案随堂训练部分.。