第二章 热力学第二定律与热化学
热力学第二定律
三、Cd 放入 PbCl2 溶液转变成 CdCl2 溶液和 Pb
Cd(s) + PbCl2(aq.) Cd Cl2(aq.) + Pb(s)
已知此过程是自发的,在反应进行时有 ∣Q∣的热量放出(放热反应,Q 0)
欲使此反应体系回复原状,可进行电解 反应,即对反应体系做电功。可使 Pb 氧 化成 PbCl2,CdCl2 还原成 Cd。
② 若非B成立,则非A也成立 A B(A包含B);
③ 若 ① ② 成立,则 A = B , 即表述 A、B 等价。
BA (B包含A)
AB (A包含B)
I. 证明若Kelvin表 达不成 立 (非B),则 Clausius表述也不成立(非A)
若非B,Kelvin表达不成立,即可用一热机 (R)从单一热源(T2)吸热 Q2 并全部变为功 W ( = Q2 ) 而不发生其他变化 (如图)。
机” ,往往需要特殊的技巧,很不方便; 同时也不能指出自发过程能进行到什么
程度为止。
ii)解决的方向: 最好能象热力学第一定律那样有一个数学
表述,找到如 U 和 H 那样的热力学函数 (只要计算U、H 就可知道过程的能量 变化 )。 在热力学第二定律中是否也能找出类似的 热力学函数,只要计算函数变化值,就可 以判断过程的 (自发) 方向和限度呢?
它究竟能否实现,只有热力学第二定律才能 回答。但回答是:
“第二类永动机是不可能存在的。” 其所以不可能存在,也是人类经验的总结。
2.对热力学第二定律关于 “不能仅从单一 热源取出热量变为功而没有任何其他变 化” 这一表述的理解,应防止两点混淆:
i)不是说热不能变成功,而是说不能全部 变为功。
这是一个自发过程,在理想气体向真空 膨胀时(焦尔实验)
北京大学-物理化学-第2章-热力学第二定律
2.1 变化的方向性------不可逆性
除可逆过程外,一切变化都有一定的方 向和限度,都不会自动逆向进行。热力 学的不可逆过程。
各类变化过程的不可逆性不是孤立而是 彼此相关的,而且都可归结为借助外力 使系统复原时在环境留下一定量的功转 化为热的后果。
有可能在各种不同的热力学过程之间建 立起统一的普遍适用的判据,并由此去 判断复杂过程方向和限度。
热机效率(efficiency of the engine )
功功W与任,所另何吸一热的部机热分从之Q高c比传温值给(T称低h )为热温热源(T机吸c ) 热效热源率Qh.,,或将一称热部为机分热所转机作化转的为
换系数,用 表示。 恒小于1。
W Qh Qc
Qh
Qh
(Qc 0)
或
nR(Th
卡诺定理的意义:(1)引入了一个不等号 I R , 原则上解决了化学反应的方向问题;(2)解决了热
机效率的极限值问题。
卡诺定理:
所有工作在同温热源与同温冷源之间的热 机,其效率不可能超过可逆机。 Carnot循环:第二定律发展中重要里程碑。
指明了可逆过程的特殊意义
原则上可以根据Clausius或Kelvin说法来判断一个过程的 方向,但实际上这样做是很不方便,也太抽象,还不能指 出过程的限度。Clausius从分析Carnot过程的热功转化关 系入手,最终发现了热力学第二定律中最基本的状态函 数——熵。
即ABCD曲线所围面积为 热机所作的功。
卡诺循环(Carnot cycle)
•根据绝热可逆过程方程式
: 过程2 T V 1 h2
T V 1 c3
过程4:
T V 1 h1
TcV4 1
物理化学第2章 热力学第二定律
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:
第二章 热力学第二定律
p r ir B V A
δQir δQr ,故 dS > 又 dS = T T δQir δQr 将 dS = 与 dS > 合并, 合并, T T
得: d S
ir ≥ r
δQ T
第2定律的数学表达式 定律的数学表达式 T是环境还是系统温度? 是环境还是系统温度? 是环境还是系统温度
=C
n m
特点: 数学概率大;故体系自动 特点: >1, 大,数学概率大;故体系自动 , 从概率小的状态向概率大的状态移动, 从概率小的状态向概率大的状态移动,其逆过 程不可能自动实现. 程不可能自动实现.
二,规定熵
δQr nC p ,m = dT 定压下:dS = 定压下: T T
则: S = ∫T
T2
1
nC p ,m T
dT
T2 ln T1
理想气体: 理想气体: S
= nC
p ,m
δ 恒容可逆变温: ★ 恒容可逆变温: Qr = dUV
= nCV ,m dT
则: S = ∫T
T2
1
nC V ,m T
dT
理想气体: 理想气体: S
= nC V ,m
T2 ln T1
★可逆变T,p,V 可逆变 , ,
§4. 熵的物理意义和规定熵
一,熵的物理意义 理想气体等温混合熵变△ 理想气体等温混合熵变△mixS = - R∑nilnxi > 0 说明:混合后系统熵值大于混合前系统熵值; 说明:混合后系统熵值大于混合前系统熵值; 混合后: , 气体混在一起 不易区分,混乱; 气体混在一起, 混合后:A,B气体混在一起,不易区分,混乱; 混合前: , 气体分别放置 容易区分,有序; 气体分别放置, 混合前:A,B气体分别放置,容易区分,有序; 由教材中的例题可得: 由教材中的例题可得: 蒸发过程△ 例3.3 → 蒸发过程△S > 0,则同物质 Sg > Sl; , 升温过程△ 例3.5 → 升温过程△S > 0,则同物质 S高温>S低温; , 膨胀过程△ 例3.6 → 膨胀过程△S > 0,则同物质 S低压>S高压; , 结论: 结论:更混乱的状态熵值大于相对有序状态熵值
第二章 热力学第二定律
从而使众多 小卡诺循环的总 效应与任意可逆 循环的封闭曲线 相当,所以任意 可逆循环的热温 商的加和等于零, 或它的环程积分 等于零。
对于任意可逆循环,可用一连串极小的卡诺循环来代替。 (Qi ) R (Qi ) R 0 0 因此, 或
TI
TI
任意可逆循环的热温商之和等于零。
若任意一循环由可逆过程Ⅰ (A→B ) 和Ⅱ( B → A )构成, 则必有
V2 R(T2 T1 ) ln V1 T2 T1 T1 W R 1 V Q2 T2 T2 RT2 ln 2 V1
ηR 只与T1 、 T2 有关;热机须工作于两热源( 以T 为标志 )间,
否则η =0 ;0 K 不可能达到,故η <1 。
第四节
卡诺定理: 1、ηR ≥ η任意 ;
∵
T2V2γ-1 = T1V3γ-1
T2V1γ-1 = T1V4 γ-1 ∴ (V2/ V1) = (V3 / V4 ) W = -(Q1 +Q2 ) = RT2 ln(V2/ V1) -RT1 ln (V3 / V4 )
= R(T2 - T1 ) ln(V2/ V1)
热机从高温(T2 ) 热源吸热Q2 ,作功为W ,向低温(T1 ) 热源 放热Q1 。则热机效率η 为
ΔS体=
第六节 B Q R
熵变的计算
ΔS环= -
A
Q实际 T环
T
一、等温过程中熵变的计算 (一) 理想气体等温过程 ΔU = 0 ,QR = Wmax
ΔS体=
例 1 ΔS体 ΔS环
pdV p1 V2 = nR ln = nR ln T p2 V1
( 无论可逆或不可逆过程,将体系始终态的 p V T 变化代入上式计算) 。故始终态相同, ΔS体相同。 ( 按实际过程计算Q实际 )
物理化学第二章 热力学第二定律2.1
风的走向
• 空气的流动形成风 • 风的流动:从高压处流向低压处
• 风的流动因磨擦将空气的势能变为 热能而散失。 • 风的逆向流动是不可能的。
电的输送
• 电流总是从电压高的一端流向电压低的 一端,即电子由电压低的一端流向电压 高的一端。
• 电子的流动须克服电路的电阻,其结果 是电能(功)转变为热能(电灯光等)。
= -ln(V4/V3)= -ln(V1/V2)
(V2/V1)-1 = (V3/V4)-1 ∴ V2/V1=V3/V4 =Rln(V1/V2)(T2-T1)=R(T2-T1)ln(V2/V1)
W= RT2ln(V1/V2)+RT1ln(V3/V4)
• 热机的效率:
热机作功与获取能量之比
• 从外界获取的热量是Q2 • =-W/Q2 • =(T2-T1)/T2 • =1-(T1/T2)
∵ I>R
T2
Q2
W’ W W ’’
Q2 R
I
Q1’
Q1
T1
• 可逆热机的效率必定等于卡诺热机的效率 • 由卡诺定理, 提高热机效率的最好方法是提高高温热 源的温度. • 将卡诺热机逆向运行便成为致冷机. • 定义致冷机效率: • =|Q1/W|=T1/(T2-T1) • 致冷的温差愈小, 其效率愈高. • 值可>1 • 热机效率 <1 (可逆及不可逆热机) • 热机的效率永远小于1, 故热不可能完全变为功. • 理论上: • →1 (T→0K)
的效率最大, 此效率与工作物质无关, 只与两热源的
温度有关, 此书的基本结论即为卡诺定理. • 卡诺当时是用热质论来证明卡诺定理的, 后来 Kelvin和Claudius对卡诺的工作进行了修正, 用热力
第二章 热力学第二定律(简明教程物理化学)
§2.1 热力学第二定律的经典表述
1. Clausius说法:不可能把热从低温物体传到高温物 体而不引起其它变化。 2. Kelvin & Plank说法:不可能从单一热源吸热使之 完全变为功而没有任何其它变化。 3.第二类永动机是不可能造成的。 第二类永动机乃是一种能够从单一热源吸热,并 将所吸收的热全部变为功而无其他影响的机器。 强调说明: 1. 第二类永动机是符合能量守恒原理的; 2. 热可以完全变为功,注意其限制条件; 3. 可以判断过程进行的方向。
T2
2.卡诺热机的效率只与热源温度有关,而与工作 介质无关。 卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。 单一热源:T1=T2, = 0,即热不能转化为功。
证明卡诺定理1:
反证法 假定I > R , 则|W’ | > | W |
高温热源T2
吸热Q2 吸热 Q 22 放热 Q
* 不同种理气 (或理想溶液)的等温混合过程,并 V 符合分体积定律,即 xB B
V总
1mol A,T,V
1mol B,T,V
n=nA + nB T, 2V
mix S R nB ln xB
B
二、定容或定压变温过程
定容
S
T2
T1
Qr
T
nCV ,m
T1
T2
若CV,m为常数
第二章 热力学第二定律
不可能把热从低温 物体传到高温物体, 而不引起其它变化
化学与材料科学学院
§2.1 自发过程的共同特征
自发过程:能够自动发生的过程。
经验说明:自然界中一切自发过程都是有方向和限度的。
如: 方向 热: 高温低温 电流:高电势低电势 气体:高压低压 钟摆:动能热
物理化学 热力学第二定律
上式为
B
A
δ
Q T
ir
A B
δ Qr T
0
B
A
δ
Q T
ir
ABS
0
BAS
B A
δ
Q T
ir
S δTQ
> ir =r
Clausius Inequality
(1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。
= r cycle (可逆循环)
意义:的极限 提高的根本途径
Carnot定理的理论意义:
§2-4 熵 (Entropy)
一、熵函数的发现 (Discovery of entropy)
1 T2
T1
即
1 Q2 1 T2
Q1
T1
< ir cycle = r cycle
Q1 Q2 0 T1 T2
1mol He(g) 200K
1m3o0l0HK2(g)
101.3kPa 101.3kPa
解:求末态 过程特点:孤立系统, U = 0
U U (He) U (H 2 )
n
3 2
RT2
200 K
n
5 2
RT2
300 K
0
T2 = 262.5K
1mol He(g) 200K
101.3kPa
1mol H2(g) 300K
对两个热源间的可逆循环:热温商
之和等于0
Q1 Q2 0 T1 T2
对任意可逆循环(许许多多个热源):
pቤተ መጻሕፍቲ ባይዱ
第二章 热力学第二定律 物理化学课件
设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B Qr AT
对微小变化
dS Qr
T
上式习惯上称为熵的定义式,即熵的变化值可 用可逆过程的热温商值来衡量。
2 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必 然比卡诺循环效率低,即
Q1 Q2 Q1
T1
T 2
T1
或
1+
T K
2
dT T
J K-1
24.3J K-1
• 此过程热温商为
Q
T
2
373 K 273 K
32.22
22.18 103
T K
373
3.49
106
• 故开动此致冷机所需之功率为
1780
1 60
W
50%=59.3
W
§2.4 熵的概念
• 1 可逆过程的热温商及熵函数的引出
• 在卡诺循环中,两个热源的热温商之和 等于零,即
Q1 Q2 QB 0
T1 T2
TB
• 那么,任意可逆循环过程的多个热源的 热温商之和是否仍然等于零?
§2.4 熵的概念
S Qr Qr TT
• 对理想气体定温可逆过程来说 Qr=-Wr
nRT ln V2
S
V1 nR ln V2 nR ln p1
T
V1
p2
例题3
• (1) 在300K时,5mol的某理想气体由 10dm3定温可逆膨胀到100dm3。计算此过 程中系统的熵变;
• (2)上述气体在300K时由10dm3向真空膨 胀变为100dm3。试计算此时系统的S。 并与热温商作比较。
Q1
大学物理化学 第二章 热力学第二定律学习指导及习题解答
3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
物理化学答案——第二章-热力学第二定律
第二章 热力学第二定律 一、基本公式和基本概念 基本公式1. 热力学第二定律的数学表达式----克劳修斯不等式 ()0A B A B QS Tδ→→∆-≥∑2. 熵函数的定义 ()R QdS Tδ=, ln S k =Ω3. 熵变的计算理想气体单纯,,p V T 变化22,1122,1122,,11ln ln ln ln lnln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ∆=+∆=-∆=+理想气体定温定压混合过程ln i i iS R n x ∆=-∑封闭系统的定压过程21,d T p m T C S n T T∆=⎰封闭系统定容过程 21,d T V m T C S n T T∆=⎰可逆相变 m n H S T∆∆=标准状态下的化学反应 ,()r m Bm B BS S T θθν∆=∑定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 21,21()()d T p m r m r m T C S T S T T T∆∆=∆+⎰4. 亥姆霍兹函数 A U TS ≡-5. 吉布斯函数 G H TS ≡-6. G ∆和A ∆的计算(A ∆的计算原则与G ∆相同,做相应的变换即可)定温过程G H T S ∆=∆-∆组成不变的均相封闭系统的定温过程 21d p p G V p ∆=⎰理想气体定温过程 21ln p G nRT p ∆= 7. 热力学判据熵判据:,()0U V dS ≥亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤8. 热力学函数之间的关系组成不变,不做非体积功的封闭系统的基本方程d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+麦克斯韦关系S VpS T Vp TT p V S T V p S S p V T S V p T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭9. 吉布斯-亥姆霍兹方程2()pG HT T T ∆⎡⎤∂⎢⎥∆=-⎢⎥∂⎢⎥⎣⎦ 基本概念1. 热力学第二定律在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。
《物理化学》02章_热力学第二定律
V2 V4 nRT2 ln nRT1 ln V1 V3
V2 V4 nRT2 ln nRT1 ln V1 V3 W 热机效率: V2 Q2 nRT2 ln V1
BC:绝热可逆膨胀,T2 V2-1 = T1 V3-1 DA:绝热可逆压缩, T2 V1-1 = T1 V4-1 两式相除: V2 /V1 =V3 /V4
不违背第一定律的事情是否一定能成功?
例1: 1/2O2(g)+ H2(g) H2O(l)
r H m (298.15 K) =-286KJ.mol-1
加热不能使其反向进行 例2: OH-+ H+H2O(l) 极易进行
但最终[OH-][H+]=10-14mol2.dm-6 该反应不能进行到底
§2.1 自发过程的共同特征
一.自发过程的方向和限度
自发过程:在一定环境条件下,环境不做非体积功,系
统中自动发生的过程.反之,只有环境做非体积功才 能发生的过程为非自发过程.通常所说的”过程方 向” 既是指自发过程的方向. 举例: ①.气流:高压 低压
②.传热:高温
③.扩散:高浓度
低温
低浓度
④.反应:Zn+CuSO4
对微小变化
Q dS ( )R T
B
Q SB SA S ( )R A T
二.热力学第二定律的数学表达式
对两个热源间的不可逆 循环:热温商之和小于零. Q1 T1 Q2 T2
+
<0
对任意的不可逆 循环:ຫໍສະໝຸດ ∑δQ T1 ir
<0
对不可逆循环,A
ir
B
r
A
物理化学02热力学第二定律
所以:
W
W1
W3
RT2
ln V2 V1
RT1
ln V4 V3
R(T2
T1
)
ln
V2 V1
2019/5/7
21
于是,卡诺热机的热机效率应为:
W
R(T2
T1 )
ln
V2 V1
T2 T1
Q2
RT2
ln
V2 V1
T2
另外: W Q1 Q2 T2 T1
W Q1 Q2
从高温热源取出的热Q2转化为功的比例,称为“热机效率” 号η表尔,即
W
Q2
2019/5/7
20
W W1 W 2W3 W4
•根据绝热可逆过程方程式
过程2: 过程4:
T2V2 1 T1V3 1
T2V1 1 T1V4 1
相除得 V2 V3 V1 V4
孤立系统一旦发生一个不可逆过程,则一定是自发过程。 dS>0
2019/5/7
35
§2.6 熵的物理意义及规定熵的计算(p66)
(1)几率、宏观状态、微观状态 几率,就是指某种事物出现的可能性。
2N
集中到一侧:有序性高;分开:无序性高、混乱度高
2019/5/7
36
由上可知,一种指定的宏观状态可由多种微观状态来实现。 与某一宏观状态相对应的微观状态的数目,称为该宏观状态 的“微观状态数“,也称为这一宏观状态的“热力学几率”, 以符号Ω表示。
但系统体积变大、压力变小了。
2019/5/7
4
自发过程的共同特征 :
(1) 自发过程单向地朝着平衡。 (2) 自发过程都有作功本领。 (3) 自发过程都是不可逆的。 自发过程方向最后归结为热功转换的方向性
第二章:热力学第二定律(物理化学)
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”
物理化学 第二章 热力学第二定律
101.325kPa,变到100℃,253.313 kPa,计
算△S。
S
p S1
S2
T
分析:此题是p、V、T三者都变的过程,若要计 算熵变,需要设计成两个可逆过程再计算。先等 压变温,再等温变压。
S
p S1
S2
T
S
S1
S2
C pm
ln T2 T1
R ln
p1 p2
5 R ln 37315 R ln 101325 114J K 1
-5℃苯(l)→5℃苯(l)
S1
278 Cpm(l) dT 268 T
C pm(l )
ln
T2 T1
126g77 ln 278 268
4 64J K 1
(2) 相变点的相变 5℃苯(l)→5℃苯(s)
S2
H T
9916 08 278
35 66J
K 1
(3) 恒压变温 5℃苯(S)→-5℃苯(S)
4.绝热可逆缩D(p4V4)→A(p1V1)
下面计算每一步的功和热 以1mol理想气体为体系
第一步: U1 0
W1
Q2
RT2
ln V2 V1
第二步:
T1
Q 0 W2 U2 CVmdT
T2
第三步: U3 0 第四步: Q 0
W3
Q1
RT1
ln
V4 V3
T2
W4 U4 CVmdT
T1
解:(1)
S体
nR ln V2 V1
8314 ln10 19 15J
K 1
S环
QR T
nR ln V2 V1
19 15J gK 1
S体 S环 0
第二章热力学第二定律
第⼆章热⼒学第⼆定律第⼆章热⼒学第⼆定律引⾔⼀、热⼒学第⼀定律的局限性:凡是违背第⼀定律的过程⼀定不能实现,但是不违背第⼀定律的过程并不是都能⾃动实现的。
例如: 1.两块不同温度的铁相接触,究竟热从哪⼀块流向哪⼀块呢?按热⼒学第⼀定律,只要⼀块铁流出的热量等于另⼀块铁吸收的热量就可以了,但实际上,热必须温度从较⾼的⼀块流向温度较低的那块,最后两块温度相等,⾄于反过来的情况,热从较冷的⼀块流向热的⼀块,永远不会⾃动发⽣。
2.对于化学反应:以上化学反应计量⽅程告诉我们,在上述条件下,反应⽣成1mol NO 2,则放热57.0KJ,若1mol NO 2分解,吸热57.0KJ ,均未违反热⼒学第⼀定律,但热⼒学第⼀定律不能告诉我们,在上述条件下的混合物中,究竟是发⽣NO 2的分解反应,还是NO 2的⽣成反应?假定是⽣成NO 2的反应能⾃动进⾏,那么进⾏到什么程度呢?这些就是过程进⾏的⽅向和限度问题,第⼀定律⽆法解决,要由第⼆定律解决。
⼆、热⼒学第⼆定律的研究对象及其意义:1.研究对象:在指定条件下,过程⾃发进⾏的⽅向和限度:当条件改变后,⽅向和限度有何变化。
2.意义:过程⾃发进⾏的⽅向和限度是⽣产和科研中所关⼼和要解决的重要问题。
例如:在化⼯及制药⽣产中,不断提出新⼯艺,或使⽤新材料,或合成新药品这⼀类的科学研究课题,有的为了综合利⽤,减少环境污染,有的为了改善劳动条件不使⽤剧毒药品,……等。
这些⽅法能否成功?也就是在指定条件下,所需要的化学反应能否⾃动进⾏?以及在什么条件下,能获得更多新产品的问题。
当然,我们可以进⾏各种实验来解决这⼀问题,但若能事先通过计算作出正确判断,就可以⼤⼤节省⼈⼒,物⼒。
理论计算认为某条件下根本不可能进⾏的反应,就不要在该条件下去进⾏实验了。
NO(g)+12O 2(g)2(g)KJH m r 0.57298..=?KJ H m r 0.57298..-=?NO(g)+12O 2(g)NO 2(g)§2–1 ⾃发过程的共同特征⼀、⾃发过程举例:1.理想⽓体⾃由膨胀2.热量由⾼温物体传向低温物体3.锌投⼊硫酸铜溶液中发⽣置换反应:Zn + CnSO4→ Cu + ZnSO4⼆、⾃发过程的共同特征:由上述例⼦可以分析,所有⾃发变化是否可逆的问题,最终都可归结为“热能否全部转变为功⽽没有其他变化”这样⼀个问题。
物理化学 第二章 热力学第二定律
卡诺定理的意义:
(1)引入了一个不等号 i r ,原则上解决了热机 效率的极限值问题。 (2)证实了热不能完全转化为功,因为T1 /T2 = 0 是 不可能的。
卡诺定理(1)的证明: i r 证明:反证法 假设: i 热机效率大于 r :
高温 T2
Q’2 Q2
i
W Q
' 2
r
上式的意义:系统由状态 A 到状态 B,S有唯一的值, 等于从 A 到B 可逆过程的热温商之和。
熵的特别提醒:
(1)熵(S)是状态函数;热温商(Qr/T)是与途径 相关的概念; (2)可逆过程热温商(Qr/T)不是熵(S) ;它只 是过程熵变(ΔS)的一种量度,一种测定方法; (3)熵(S)是广度性质,具有加和性;但 Sm 是强 度性质。
这个设计就相当于热从低温热源传到高温热源而 没有发生其它变化 ---违背热力学第二定律
因此 B A
卡诺定理(2)的证明:
2. 如果A带动B,使B倒转:
高温 T2
Q’2
Q2
假设A可逆热机效率大于B
A
W
Q
' 2
B
W
Q2
A®
W W
' Q2 Q2
B®
Q2 W
Q ’2 W
卡诺定理(2)的证明:
证明: 1. 如果B带动A,使A倒转:
高温T2
Q’2
Q2
假设B可逆热机效率大于A
B
W Q
' 2
A
W Q2
B®
W W
' Q2 Q2
A®
Q2 W
Q ’2 W
低温T1
循环净结果为: 1. 两热机均恢复原态 2. 高温热源得热: Q2 Q2 3. 低温热源失热:
物理化学第二章 热力学第二定律
第四节
卡诺定理
一、卡诺定理:所有工作于同温热源和同温冷源之间 的热机,以可逆机的效率最大。 证明:(1)设 I 热机效率大于R,以I 带动 R 倒转: 设I>R ,W1=W2=W
则 Q‘h < Qh
循环一周,热机恢复原态。
低温热源失热: (Qh-W)- (Q'h-W)=Qh- Q'h> 0 高温热源得热: (Qh- Q‘h) > 0 违反Clausius说法,说明假设I>R不成立。
Q1
T1
(
Q2
T2
Ti
Q3
T3
Q4
T4
... 0
Qi
)r 0
( T
Q
)r 0
结论:任意可逆 循环过程的热温 商之和等于零
如图任意可逆循环。在曲线上任意取A,B两点,把 循环分成AB和BA两个可逆过程。根据任意可逆 循环热温商的公式:
( T
B
Q
T2
Q2
2、开不成立克也不成立
T2
Q1 Q2
Q2
A
Q1
W
B
Q1
W
Q1
T1
热机吸热Q2,做功W,放 给低温热源Q1, Q2-Q1=W 若Q1可自动地由低到高温 热源,相当于从单一高温热源 吸热Q2 -Q1全部用来做功W。
T1
热机A吸热Q2,全部做功 W, Q2=W 带动另一可逆机由低热源 吸热Q1,放热 Q1+Q2 ,相当 于Q1自动从低传至高温热源。
第一节
自发过程的特征
一、自发过程(spontaneous process) 任其自然、无需施加任何外力,就能自动发生 的过程。 例如:水:(地势)高低,气体:(压力)大 小,热:(温度):高低,…… 二、自发过程的共同特征(spontaneous process) 1、自发过程具有方向性和限度;
物理化学第二章热力学第二定律(材料版)
η IR = 1 +
Q2 Q1
Q1 Q2 + <0 T1 T2
对于微小的不可逆循环过程:
δQ1 T1
+
δQ2 T2
<0
对于不可逆循环过程:
∮
δQIR T
< 0
任意一个不可逆循环过程的热温商代数和小于零
2.3.2 熵变与不可逆过程的热温商
设有一个循环,A→B为不可逆过程,B→A为可逆
过程,整个循环为不可逆循环。
可逆循环。
Q1
T1
Q2
T2
0
Q1
T1
Q2
T2 0
Q3
T3
Qi
Ti
0
QR
T
∮表示沿闭合曲线进行的积分;
QR表示无限小的可逆过程中的热效应;
T 是热源的温度。 众多小卡诺循环的总效应与任意可逆循环的封闭曲
线相当,所以任意可逆循环过程的热温商代数和为零。
熵的引出
T
如果Cv,m不随温度变化,即Cv,m是常数,则得 T2 Δ S = n Cv,m ln T1
p、V、T 都改变的过程熵变
系统始态为p1、V1、T1,终态为p2、V2、T2。这种情况 一步无法计算,要分两步计算,有三种分步方法:
T2 nCV ,m dT V S nR ln( 2 ) T 1 V1 T V T2 = n R ln( 2 ) + n CV,m ln T1 V1
特征:不可逆性 任何自发过程的逆过程是不能自动 进行的。当借助外力,系统恢复原状后,会给环境留 下不可磨灭的影响。
功可自发地全部变为热,但热不可能全部转变为功 而不引起任何变化。一切自发过程都是不可逆的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节、热力学第二定律 第二节、熵 第三节、功函和自由能 第四节、热力学函数之间的基本关系及应用 第五节、自发过程的五种判据 第六节、偏摩尔量与化学位 第七节、化学平衡
第一节
热学第二定律
一、自发过程的方向性及特征
二、热力学第二定律
一、自发过程的方向性及特征
1.自发过程的定义 2.自发过程的方向与限度 3.自发过程的共同特征 4.影响自发过程的因素
熵的引入,揭示了自发过程的本质,阐明第二定律实质。 Ⅰ、卡诺循环 Ⅱ 、Clausius不等式及其推导 Ⅲ 、Clausius不等式的分析及应用
Ⅰ、卡诺循环(Carnot cycle)
1824 年,法国工程师 N.L.S.Carnot (1796~1832)设计 了一个循环,以理想气体为 工作物质,从高温 (Th )热源吸 收 Qh的热量,一部分通过理 想热机用来对外做功W,另一 部分 Qc的热量放给低温 (Tc )热 源。这种循环称为卡诺循环
物体,但环境却付出了功。
Kelvin :理想气体的等温膨胀可将热全部变为
功,但体系状态改变了(体积变大)。
第二节
熵
第二节、熵
一、熵的概念及统计意义
1.熵的概念 2. 熵的统计意义 3.熵的性质及量纲
二、Clausius 不等式及其应用
1.熵的概念
当体系处于某一宏观状态时,由于分子热运动的 不断进行,其微观状态在不断地变化着。那么, 对应着同一种宏观状态。可以有多少种交替变幻 的微观状态呢?
这就是热力学第二定律所阐明的不可逆过程的本质。
3.熵的性质及量纲
性质:熵是状态函数,且为容量性质。 量纲:Jol/K ,Cal/K
二、Clausius 不等式及其应用
熵是集合体现微观性质的物理量。正如
Boltzmann 公式 S k ln
所显示的:微观混乱度Ω值越大,相应的熵S值也越大。
卡诺循环(Carnot cycle)
1mol 理想气体的卡诺循环在pV图上可以分为四步:
过程1:等温(Th )可逆膨胀由 p1V1到 p V2 2 (A B)
U1 0
W1
nRTh
ln V2 V1
Qh W1
所作功如AB曲线下的面积所示。
卡诺循环(Carnot cycle)
过程2:绝热可逆膨胀由 p2V2Th 到 p3V3Tc (B C)
C1 2 2
C0 1 2
数学几率
1/2 1/2 1/4 2/4 1/4
构成体系分子数 4abcd
体系的宏观状态 与宏观状态相对应的
微观分布方式 微观状态 微观状态数
ⅠⅡ
(4,0)
abcd 0
C4 1 4
(3,1)
abc d
abd c
acd b bcd a
C1 4 4
(2,2) (1,3) (0,4)
不可能把热从低温物体传到高温物体,而不引起其他变化。 (不会自动进行)
Relvin(开尔文)于1852年提出:
不能从单一热源取出热,使之完全变为功,而不引起其他变化。
“第二类永动机”是不可能造成的。
说明:
两种说法之中 “不引起其他变化”是后置前 提条件,也是关键所在:
Clausius :致冷机可将热由低温物体传给高温
ab cd
ac bd ad bc bc ad bd ac cd ab
a bcd
b acd c abd d abc
0 abcd
C2 6 4
C1 4 4
C0 1 4
数学几率 1/16 4/16
6/16
4/16 1/16
S k ln k:波尔兹曼常数, k R 1.380710-23 J K-1
N
熵的性质:是状态函数,是体系的容量性质
— 热力学概率,微观状态数
— 由体系状态决定,随构成体系分子数的
增加而增加(平均看来)
2.熵的统计意义
(从统计角度揭示了自发过程的内因 ,从而阐明了第二定律本质) (1) 对于同一体系来讲:宏观上越均匀,微观上混合程度
(亦称为混乱度或无序性)越大,相应的微观状态数 Ω与熵S越大。反之亦然。
自发过程是无外界条件干扰情况下进行的热力学 不可逆过程。若将变化的中心内容作为体系,则 内因:体系的始态与终态之间的差异,
这种差异决定了自发过程的可能性. 外因:过程进行的条件。
这种外界条件决定着自发过程的现实性。 外因诱发变化过程的发生,且影响体系的终态。
二、热力学第二定律
Clausius(克劳修斯)于1854年提出:
Q2 0
W2 U2
Tc Th
CV
,m
dT
所作功如BC曲线下的面积所示。
卡诺循环(Carnot cycle)
过程3:等温(TC)可逆压缩由 p3V3 到 p4V4 (C D)
( 4 )自发过程的限度: 表面看来,是以达到做功本领最小为限度。 实质上是,以熵S达到相应条件下的最大值为限度。 即,以达到相应条件下出现几率最大的状态为限度。
(5)由于热量是无序运动的表现,而功则是有序运动的结果。 所以,功转变为热可以自发地进行(S增大), 而热转变为功则不会自发地进行(S减小)。 这就决定了热功交换的不可逆性。
Eg:将某一容器分为体积相等的两部分,记为Ⅰ、Ⅱ。
Ⅰ
Ⅱ
构成体系分子数 1(a) 2(a,b)
体系的宏观状态 与宏观状态相对应的
微观分布方式
(1,0) (0 ,1) (2, 0)
微观状态 微观状态数
ⅠⅡ
a0
C1 1 1
0a
C0 1 1
ab 0
C2 1 2
(1, 1) (0, 2)
ab ba 0 ab
(2) 某种条件下的平衡态,就是在该条件下所能达到的宏 观上最均匀的状态。也就是微观状态函数Ω与熵值S 最大的状态。其出现的几率也最大(在该条件下); 反之亦然。
(3) 自发过程的方向性: 表面看来,是由某种条件下的不平衡到该条件 下的相对平衡。实质上是,由熵S值较小的状态 到熵S出现几率较大的状态。即由该条件下出 现几率较小的状态到出现几率较大的状态。
1.自发过程的定义
自发过程: 在一定条件下,不必加任何外力便
可以自动进行的过程。
2.自发过程的方向与限度
方向: 由该条件下的不平衡到相对平衡。
限度: 至该条件下做功本领为最小。
3.自发过程的共同特征
自发过程具有方向的单一性和限度。 自发过程不会自动逆向进行。 即自发过程是热力学的不可逆过程。
4.影响自发过程的因素