隐函数、参数方程的求导、高阶导数

合集下载

隐函数及参数方程的求导方法,高阶导数

隐函数及参数方程的求导方法,高阶导数

偏导数
z x
f x ( x, y),
z y
f y( x, y),
一般说来仍然是 x , y 的函
如数果,这两个函数关于
它x们,的y偏的导偏数导是数也f 存(x在,,y)的二阶偏导数.
则称
依照对变量的不同求导次序, 二阶偏导数有四 个:
z x
x
x
z x
2z x2
f xx( x, y) zxx;
3
x
x y y x

z x
1 1 y
2
y x2
y x2 y2 ,
x
z 1 1
y
1
y
2
x
x x2 y2 ,
x
2z x y
y
y x2 y2
(1) ( x2
y2 ) ( y) (0 2 y) (x2 y2 )2
y2 x2 ( x2 y2 )2
,
2z y x
x
感谢下 载
感谢下 载
(1)n1(n 1)!.
例 11

y
=
sin
x求,dn y
dx n
.
解 dy cos x sin x ,
dx
2
d2 y dx 2
cos
x
2
sin
x
2
2

d3 y dx 3
cos
x
2
2
sin
x
3
2

dn y dx n
sin
x
n 2
.
五、 高阶偏导数
函数 z = f ( x , y ) 的两个
第三模块 函数的微分学

12,13隐函数和由参数方程所确定的函数的导数.

12,13隐函数和由参数方程所确定的函数的导数.
y= 3 2
y=3 3 2
故切线方程为 即
3 3 y − 3 = − (x − 2) 2 4
求由方程 y5 + 2y − x − 3x7 = 0 确定的 y = y(x) 在 x = 0 处的导数 dy 隐函数 . dx x = 0 解 方程两边对 x 求导 例5

dy 5y + 2 −1− 21x6 = 0 dx dx 6 dy 1+ 21x ∴ = 4 dx 5y + 2
π πa 直 坐 为 0, )的 对 的 角 θ = 角 标 ( 点 应 极 为 2 2 dy 2 而 =− d x θ=π π
2
故 求 线 程 所 切 方 为
aπ 2 y− = − ( x − 0) 2 π 即 aπ x+ y = . 2 π 2
例3
抛射体运动轨迹的参数方程为
的运动速度的大小和方向. 求抛射体在时刻 t 的运动速度的大小和方向 解 先求速度大小: 先求速度大小 速度的水平分量为 故抛射体速度大小 故抛射体速度大小 铅直分量为
d(ln y) dh(x) = dx dx d(ln y) d(ln y) d y 1 ′ = ⋅y Q = ⋅ d y dx y dx 1 ′ ∴ ⋅ y′ = h (x), y′ = yh (x). ′ y

易求导
(2) 适用范围
y = [u(x)]v( x) 的 数 1) 幂 函 : 指 数 导 .
y =ψ[ϕ−1(x)] 可导, 且 可导, 确定的函数
dy dy dt dy 1 ψ′(t) = ⋅ = . = ⋅ dx dt dx dt dx ϕ′(t) dt
一个半径为a的圆在定直线上滚动时 的圆在定直线上滚动时,圆周上任一 例1 一个半径为 的圆在定直线上滚动时 圆周上任一 定点的轨迹称为摆线 计算由摆线的参数方程: 定点的轨迹称为摆线, 计算由摆线的参数方程 摆线 x = a(t − sint), 摆线 y = a(1− cost) dy . 所确定的函数 y = y (x) 的导数 dx dx dy dy dy dt dt [a(1−cost)]' = ⋅ = = 解 dx dt dx dx [a(t −sint)]' dt t asint = (t ≠ 2kπ,k ∈Z ). = cot a(1− cost) 2

3.4 隐函数的求导及高阶导数

3.4 隐函数的求导及高阶导数
上式两边对 x 求导得
1 y
y (cos x ln x
sin x x
)
y y (cos x ln x sin x
1
x
sin x
(cos x ln x
sin x
x sin x
)
x
)
方法二:将 y x
改写成 y e
sin x ln x
例 解 两边取对数
y x ( 2 x ) ( 3 x ) p5 ( x )
2 3
其中 p 5 ( x ) 为 x 的 5 次多项式,
108 x p 5 ( x )
6
y
(6)
108 6!.
例 设 x 4 xy y 4 1 , 求 y 在点 ( 0 ,1 )处的值 . 解 方程两边对 x 求导 , 得

注意: y 是 x 的函数.
对方程两边取对数,按隐函数的求导法则求导. 高阶导数及其物理意义
思考题
求 f (a ).
设 g ( x ) 连续 , 且 f ( x ) ( x a ) 2 g ( x ),
解答
g ( x ) 可导
( a ) 2 ( x a ) g ( a ) ( a a ) 2 g ( a ) a f x x x x
例 设 y arctan x , 求 y x 0 , y x 0 . 解
y 1 1 x
2
y (
1 1 x
) 2

2x (1 x )
2 2
2x y 2 3 2 2 (1 x ) (1 x )
3 3 , 2 2

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)
原则是: 按照高阶导数的定义, 运用隐函数及参 数方程所确定的函数的求导法则逐阶进行求 导.

d y 设 x + x y + y = 4, 求 . 2 dx
2 2
2

对方程两边关于 x 求导:
2 x + y + x y′ + 2 y y ′ = 0
故 2x + y y′ = − x + 2y
想想如何求二阶导数?

(
)
1 2 1+ t 2 d y = 2 = = 2 2t 2 ′ 4t dx (ln(1 + t ) ) 1 + t 2
⎛ t ⎞′ ⎜ ⎟ ⎝ 2⎠
⎛ 1 + t 2 ⎞′ 2t 2 − 1 − t 2 ⎜ 3 ⎜ 4t ⎟ ⎟ 2 t 4 −1 d y 4t ⎝ ⎠ = = = 3 3 ′ 2t 8t dx (ln(1 + t 2 ) ) 1+ t 2

1 (1 − x)(1 − 2 x)(1 + x ) y′ = 3 3 (1 + 5 x)(1 + 8 x)(1 + x 4 )
⎧ −1 −2 2x 5 8 4 x3 ⎫ − − − ⎨1 − x + 1 − 2 x + 2 1 + 5x 1 + 8 x 4⎬ 1+ x 1+ x ⎭ ⎩
2
四、 隐函数及参数方程 确定的函数的高阶导数
F ( x, f (x) ) ≡ 0
对上式两边关于 x 求导:
d F ( x , y) = 0 dx
然后, 从这个式子中解出 y ′, 就得到隐函数的导数.

求由方程 F ( x , y ) = xy − e x + e y = 0 ( x ≥ 0 ) 所确定的隐函数的导数 y′, 并求 y′

隐函数参数方程求导

隐函数参数方程求导
dx dx
a sin t sin t a a cos t 1 cos t
dt
dy dx
t 2

sin 2
1 cos
1.
当 t 时, x a(2 1), y a.
2
2
所求切线方程为

y a x a( 1) y x a(2 2 )

x


2

y

cos
x
-sin
x

sin

x

2

2

y= -sin
x=-cos
x

sin

x

3
2

y4= -cos x=sin x ……
y (n) sin x n 即 (sin x)(n) sin x n
2
13
四、高阶导数
如果函数 y f (x) 的导函数 y f (x)仍是 x
的可导函数,就称y f (x) 的导数为函数 f (x)
的二阶导数,记作
y,f
(x)
,d2 y d x2

d2 f (x) d x2

y

(
y),f
(x)

[
f
(x)]
,d 2y dx2
两边对x求导
(含导数 y的方程)
3
例1. 求由方程 xy e x e y 0所确定的隐函数
y的导数 dy , dy dx dx
x0 .
解: 方程两边对x求导,
y x dy e x e y dy 0

第三节高阶导数隐函数导数参数方程求导

第三节高阶导数隐函数导数参数方程求导

dy dy
dx d2y
dx x x d2y
dx2 d3y
dx2 x x
d3y
dx3
dx3 x x
dny dny
dxn
dxn x x5
4.求高阶导数举例: 例1: y ax b,求y.
解:
例 2解: :
y a, y 0.
s sint ,求s.
s cos t ,
s 2 sint .
y
2 y3
1
1 y2
,
( y 0).

隐函数求高阶导数,多次将方程两边分别对x求导
注意利用原方程和含一阶导数的方程,不断将结果化简。一般,
隐函数的导数仍是隐式形式。
21
三、参数方程所确定的函数的导数




程 xy
(t) (t)
t ( , )
唯 一 确 定 函 数y f ( x)
k 1,2,,20,
k 3,4,,20,
y20 x2e2x 20
220 e2x x2 20 219e2x 2x 20 19 218 e2 x 2
2!
220 e2x x2 20x 95 .
13
例y10xex , 求y(n)
解: y ( xex ) xe x x e x ( x 1)e x
气阻力,求:
1、炮弹在时刻 t 的速度; 2、若弹着点 A 也在地平线上,求射程。
解:建立坐标系如图 1、炮弹在时刻 t 的速度;
y
v y v(t)

设 时 刻t 炮 弹 在x(t), y(t),
x(t
)
v0
t
co
s
y(t)

高等数学随堂讲义隐函数及参数方程及高阶导数

高等数学随堂讲义隐函数及参数方程及高阶导数

复杂函数 求导法则:
u v

(n)
u(n) v (n)
n
k (n k ) (k ) uv ( n ) C n u v k 0
莱不尼茨公式
例11
1 y 2 2 2 a b x
y
(n)
例12
y x e 求 y
2 2x
(n)
(二)高阶导数求法
1.显函数
2.隐函数 3.参数方程确定的函数
5 7 y 2 y x 3 x 0 求 y x 0 例1 e xy e 0 求 y 例2
2 2 x y 例3求 在 1 16 9
3 处的切线方程 2, 3 2
一、隐函数的导数
(一)隐函数的导数
(二)对数求导法
一、隐函数的导数
1
y
t
x
参数方程确定的函数的导数
参数方程确定的函数
x (t )
参数方程
t ( x)
1
y
t
y (t )
y 1 ( x )
参数方程确定的函数
x
参数方程确定的函数的导数
d y d y d x ( t ) d x d t d t ( t )
例9
当气球升至500m时停住,有一观测者以 100m/min 的速率向气球出发点走来, 当距离为500 m 时, 仰角的增加率是多少 ?
第三讲
一、隐函数的导数
二、参数方程确定的函数的导数 三、高阶导数
第三讲
一、隐函数的导数
二、参数方程确定的函数的导数 三、高阶导数
三、高阶导数
(一)概念
(二)求法
(一)隐函数的导数

三个求导法则.

三个求导法则.

及y
(7)

y ( 7) 0 。
2、由参数方程所确定的函数的二阶导数
2 x a cost , d y 例 5、设函数 。 (0 t 2 ) ,求 y (或 2 ) dx y b sin t
d y d dy dx ( )/ 2 dt dx dt dx
2
解: (a cost ) a sin t , (b sin t ) a cost ,
2、隐函数的显化
由 x y 3 1 0 ,解得 y 3 1 x 。
有些隐函数不可能显化: e y xy 0 。
3、隐函数的求导法
由于由方程 F(x,y)=0 所确定的函数 y=y(x),能使 F(x,y(x)) 0 成为关于 x 的恒等式。因此,由方程 F(x,y)=0 求 y 对 x 的导数时,只要把其中的 y 看成 是 x 的函数 y( x ) ,同时利用复合函数的求导法则,对 等式两端求对 x 的导数,然后由得出的含 x、y、 y 的等式中解出 y 就可以了。
d2y 记作 f (x), y ,或 2 , dx
f ( x x ) f ( x ) 即 f (x)= lim 。 x 0 x
y =(y),
f (x)=[f(x)],
类似的,y=f(x)的二阶导数的导数叫做y=f(x)的三阶导数;
y=f(x)的三阶导数的导数叫做y=f(x)的四阶导数; … y=f(x)的(n-1)阶导数的导数叫做y=f(x)的n阶导数,
它们分别记作
d dy = ( )。 dx 2 dx dx
d2y
y ,
或 f (x) ,
y(4) ,
… , … ,
y (n) ;

高等数学2-3高阶导数隐函数求导

高等数学2-3高阶导数隐函数求导
y

利用隐函数求导法.
将方程两边对x求导,得 cos y y 1 e y x e y y 0
解出 y , 得
ey y cos y xe y
3. 对数求导法
作为隐函数求导法的一个简单应用, 介绍 对数求导法, 它可以利用对数性质使某些函数的 求导变得更为简单. 方 法 先在方程两边取对数, 然后利用隐函数的
一、高阶导数的定义
高阶导数也是由实 际需要而引入的.
问题:变速直线运动的加速度. 设 s s(t ),则瞬时速度为 v(t ) s(t )
t的变化率 加速度 a是 速度v对时间
a( t ) v ( t ) [ s( t )]' 这就是二阶导数的物理意义
将f ( x )的导数称为 f ( x )的 二阶导数.
4
因x=0时y=0, 故
例2. 求椭圆
在点
处的切线方程.
解: 椭圆方程两边对 x 求导 x 2 y y 0 8 9 3 9 x y x 2 x2 4 16 y y 3 3 y3 3
2 2
3 3 故切线方程为 y 3 ( x 2) 2 4
例 设 y x sin x ( x 0), 求y. 解 等式两边取对数得 ln y sin x ln x 上式两边对x求导得 1 1 y cos x ln x sin x y x 1 y y(cos x ln x sin x ) x
x
三、由参数方程所确定的函数的导数
x (t ) 若参数方程 y ( t ) 确定 y与x的 函数关系 称此为由参数方程所确定的函数. x x 2t , t 如 消去参数 t 2 2 y t , 2 2 1 x x 2 y x yt 2 2 4

高阶导数与隐函数的导数

高阶导数与隐函数的导数
y′ = 1 1+ x2
⎛ 1 ⎞′ − 2x y′′ = ⎜ 2 ⎟ = ⎝ 1 + x ⎠ (1 + x 2 ) 2
2 ⎛ −2 x ⎞′ 2( 3 x − 1) = y′′′ = ⎜ 2 2 ⎟ (1 + x 2 ) 3 (1 + x ) ⎠ ⎝
− 2x ′′(0) = ∴f (1 + x 2 ) 2
(k )
莱布尼兹(Leibniz)公式
例6
设 y = x e , 求y
2 2x 2x 2
( 20 ) 2x ( 20 ) 2
( 20 )
.
2x ( 19 ) 2
解 设u = e , v = x , 则由莱布尼兹公式知
y
= (e ) ⋅ x + 20(e ) ⋅ ( x )′ 20( 20 − 1) 2 x (18 ) + (e ) ⋅ ( x 2 )′′ + 0 2! 20 2 x 2 19 2 x = 2 e ⋅ x + 20 ⋅ 2 e ⋅ 2 x 20 ⋅ 19 18 2 x + 2 e ⋅2 2! = 2 20 e 2 x ( x 2 + 20 x + 95)
代入 x = 0, y = 1, y ′
x=0 y =1
1 = 得 y ′′ 4
x=0 y =1
=−
1 . 16
y = x + e x 的反函数的导数 . 例3 求
dy 解 方法1 ∵ = 1+ ex dx 1 dx = ∴ dy 1+ ex
方法2 等式两边同时对 y 求导
dx x dx +e ⋅ 1= dy dy
π
n! 1 (n) n n ( ) = ( −1) a ax + b (ax + b )n+1

10由参数方程确定函数导数、高阶导数

10由参数方程确定函数导数、高阶导数

et et
sin t 在t cos t
2
处.
二、高阶导数
1、高阶导数的定义
问题:变速直线运动的加速度.
设 s f (t), 则瞬时速度为v(t) f (t) 加速度a是速度v对时间t的变化率
a(t) v(t) [ f (t)].
定义 如果函数f ( x)的导数f ( x)在点x处可导,即
( f ( x)) lim f ( x x) f ( x)
x0
x
存在,则称( f ( x))为函数f ( x)在点x处的二阶导数.
记作
f
( x),
y,
d2y dx 2

d
2 f (x) dx 2
.
二阶导数的导数称为三阶导数,
f ( x),
y,
d3y .
dx 3
三阶导数的导数称为四阶导数,
f (4) ( x),
设函数x (t)具有单调连续的反函数 t 1( x),注
y [ 1( x)]


再设函数x (t), y (t)都可导, 且(t) 0, 子
由复合函数及反函数的求导法则得


dy dx
dy dt
dt dx
dy dt
1 dx
(t) (t)
dt
dy

即 dy dx
dt dx
(t) (t )
x x0
f (u0 ) ( x0 ).
即 因变量对自变量求导,等于因变量对中间变 量求导,乘以中间变量对自变量求导.(链式法则)
隐函数求导法则
隐函数求导步骤: A、对方程两边求导; B、方程仅含x的式子按正常求导;凡含y的 式子要按复合函数求导,且结果必有y(或 dy )

高阶隐函数导数

高阶隐函数导数

e xy ( y xy ' ) 3 y 2 y' 5 0
ye xy ( xe xy 3 y 2 ) y' 5 0
y'
5 xe xy
ye xy 3 y2
★ 对数求导法
观察函数
(x1)3x1 y(x4)2ex ,
yxsix n.
方法:
先在方程两边取对数, 然后利用隐函数的
求导方法求出导数.
解 : (e y xy )' x (sin x )' x
(e y )' x ( xy )' x cos x
e y y'x (1 y x y'x ) cos x
e y y'x y x y'x cos x
y'x
cos ey
x x
y
例 3x ln x y ) (求 y '
解 : x ' 1 ( x y )' x y
二阶导数的导数称为三阶导数,
f(x),
y,
d3y .
dx3
三阶导数的导数称为四阶导数,
f(4)(x), y(4),
d4y .
dx4
一般, 函 地数 f(x)的n1阶导数的导数称 函数 f(x)的n阶导,记 数作
f(n)(x),y(n), dny或 dnf(x). dnx dnx
二阶和二阶以上的导数统称为高阶导数. 相应 ,f(x)称 地为零 ;f(x)阶 称导 为数 一 .
解 ycoxssin(x)
ysixn coxs 2()
sinx()s2 inx(2)
yco x sc2ox 2 s2()sinx(23)
(sx i)n (n)six nn (2 )

隐函数及参数方程导数

隐函数及参数方程导数
将此恒等式两边同时对x求导,
注意到 y 是x的函数,
是x的复合函数,
复合函数求导法:
0
=
y
0
=
x
0
=
y
0
=
x
隐函数及由参数方程所确定的函数的导数 相关变化率 例 解 法一 隐函数求导法. 法二 反函数求导法
隐函数及由参数方程所确定的函数的导数 相关变化率
例 解 切线方程 法线方程 通过原点.
*
隐函数及由参数方程所确定的函数的导数 相关变化率


*
隐函数及由参数方程所确定的函数的导数 相关变化率
或解
*
练习

隐函数及由参数方程所确定的函数的导数 相关变化率
两曲线在该点
切线斜率乘积为负 1 .
,
)
2
,
2
(
是两曲线的交点
*
隐函数及由参数方程所确定的函数的导数 相关变化率

练习
*
可确定显函数

开普勒方程
显式?
显化.
*
2. 隐函数求导
隐函数及由参数方程所确定的函数的导数 相关变化率
隐函数求导法则
用复合函数求导法则,
并注意到
将方程两边对 x 求导.
变量 y 是 x 的函数.
隐函数不易显化或不能显化,
如何求导


隐函数及由参数方程所确定的函数的导数 相关变化率
(2)
仰角增加率
(3)
,
1
tan
,
500
=
=
a


h
a
a
tan
1
sec

隐函数及其参变量函数的求导方法

隐函数及其参变量函数的求导方法
这即是参数方程所表示 函数的求导法 .
x (t ) 从而导函数的参数式表 示式为: ( t ) . y ( t ) ( t 0 ) dy 当t 0给定时,则 t t0 . dx ( t 0 )
平面曲线参数方程的一般形式
x ( t ), y ( t ),
t [ , ]为参数.
(t )2 (t )2 0. 这里x ( t )与y ( t )都可导,且
若 (t ) 0时, 有
dx dx d t dx 1 ( t ) d y d t d y d t d y ( t ) dt (此时看成 x 是 y 的函数 )
隐函数和参数方程求导 相关变化率
张世涛
主要内容:
一、隐函数的导数 二、由参数方程函数的导数
由方程 F( x, y ) 0 所确定的函数 y y( x ) 称为隐函数.
y f ( x ) 形式的函数称为显函数 .
F ( x, y) 0
例如: 例如:
y f ( x)
隐函数的显化
可确定显函数 可确定 y 是 x 的函数 , 但此隐函数不能显化 .
问题:隐函数不易显化或不能显化时如何求导?
隐函数求导法
若 确定了隐函数 y y( x ) ,怎样求y ? 两边对 x 求导
(含导数 y 的方程)
注意: 视 y=y(x) , 应用复合函数的求导法直接对方程 F(x, y)=0 两边求导,然后解出 y 即得隐函数的导数.
( ( t ) 0)
问: 能否用显式求导法求出( x
sin x
) ?
( x 1) x 1 例5 设 y , 2 x ( x 4) e

导数公式及导数的运算法则

导数公式及导数的运算法则

导数公式及导数的运算法则导数是微积分中的重要概念之一,它描述了函数在其中一点处的变化速率。

导数公式和导数的运算法则是求导过程中常用的工具。

本文将详细介绍导数的公式及运算法则,包括常见的导数公式、基本运算法则、链式法则、求高阶导数、隐函数求导、参数方程求导等。

一、导数公式1.常数的导数公式:若y=c(c为常数),则y'=0。

2.幂函数的导数公式:若y=x^n(n为常数),则y' = nx^(n-1)。

3.指数函数的导数公式:若y=a^x(a为常数且a>0),则y' =a^xlna。

4.对数函数的导数公式:若y=loga(x)(a为常数且a>0,且a≠1),则y' = 1/(xlna)。

5.三角函数的导数公式:若y=sin(x),则y' = cos(x);若y=cos(x),则y' = -sin(x);若y=tan(x),则y' = sec^2(x)。

6.反三角函数的导数公式:若y=arcsinx,则y' = 1/sqrt(1-x^2);若y=arccosx,则y' = -1/sqrt(1-x^2);若y=arctanx,则y' =1/(1+x^2)。

二、导数的基本运算法则1.和差法则:若y=u±v,则y'=u'±v'。

2.数乘法则:若y = cu(c为常数),则y' = cu'。

3.乘积法则:若y = u·v,则y' = u'v + uv'。

4.商法则:若y = u/v,则y' = (u'v - uv')/v^2(v≠0)。

5.复合函数法则(链式法则):若y=f(g(x)),则y'=f'(g(x))·g'(x)。

三、高阶导数高阶导数是指求得导函数后再对导函数求导的过程,常用的高阶导数符号有y''、y''',分别表示二阶导数、三阶导数等。

隐函数求导法高阶导数

隐函数求导法高阶导数
继续对 $y'$ 进行求导,得到 $y'' = frac{d}{dx}(y') = frac{d}{dx}(-frac{frac{partial F}{partial x}}{frac{partial F}{partial y}})$。
隐函数求导法的注意事项
02
01
03
确保隐函数是可微的,否则无法使用隐函数求导法。
解出关于$y'$的方程,得到$y'$的表达式。
4. 代入原方程
将求得的$y'$代入原隐函数关系式中,得到关于$x$的一阶导数表达式。
一阶隐函数求导的实例
假设有隐函数关系式$x^2 + y^2 = 1$,对$x$ 求导得到
01
解得 03
02
$frac{d}{dx}(x^2) + frac{d}{dx}(y^2) = 0$
3. 注意符号和变量的使用
在求导过程中,需要正确使用符号和变量, 避免混淆和错误。
03
二阶隐函数求导
二阶隐函数求导的步骤
1. 确定函数关系
首先需要确定隐函数的关系式,即$F(x, y) = 0$。
2. 对$y$求一阶导数
使用隐函数求导法则,将$F(x, y)$对$y$求一阶导数,得到$dy/dx$。
隐函数求导法的步骤
确定函数关系
首先需要确定自变量和因变量之间的函数关 系,通常表示为一个方程。
对方程两边同时求导
使用适当的求导法则对函数关系式进行求导。
解出因变量的导数
将求导后的方程解出因变量的导数表达式。
继续求导
重复上述步骤,直到求出所需的高阶导数。
隐函数求导法的实例
假设有隐函数 $F(x,y) = 0$,其中 $F(x,y)$ 是可 微的。

隐函数的导数、参数式函数的导数

隐函数的导数、参数式函数的导数

d 2y dx 2

dt dx
dt
例 求摆 y x 线 a a((1 t c siottn ))s在 t2处的方切 程. 线

dy dx
dy

dt dx
asint a acost
分子分母不要颠倒
sint 1 cost
dy dx
t 2

sin 2
1 cos
(ey)eyy; [lny2(1)]y22y y1. (2)解出 y(允许表达式y中 ). 含有
因为y是x的函数, 所以 y 2 是x的复合函数,
例 设曲C线 的方程x为 3y33xy,求过 C上点 (3,3)
22 的切线方 ,并程证明曲 C在线该点的法线通. 过
解 方程两边 x求对导 , 3 x 2 3 y 2 y 3 y 3 x y
高等数学Ⅰ
第三节 高 阶 导 数
3.间接法:利用已知的高阶导数公式, 通过四则
运算, 变量代换等方法, 求出n阶导数. 常用高阶导数公式
( 1 )( a x ) ( n ) a x ln n a( a 0 ) (ex)(n) ex
(2 )(ski)(n n x ) k nsik n x n ( ) 2
(3 )(cko )(n x ) sk nco k s x n ( ) 2
( 4 ) ( x ) ( n ) ( 1 ) ( n 1 ) x n
(5)(lx n )(n)(1)n1(nx n 1)!(1x)(n)
(1)n
n! xn1
y

( 3,3) 22
y x2 y2 x
1.
( 3,3 ) 22

13 隐函数及由参数方程所确定的函数的导数与高阶导数

13 隐函数及由参数方程所确定的函数的导数与高阶导数

d2y dx 2
d (dy ) dx dx
( tan t) (a cos3 t )
sec2 t 3a cos2 t sin t
sec4 t 3a sin t
22
首页
上页
返回
下页
结束

练习:
求下列函数y的二阶导数:
(1) y x cos x;
(2) y2 2xy 1;
(3) x2 y2 xy 1;
ey ex

( (
x y
1) 1)
y x
.
5
首页
上页
返回
下页
结束

二、由参数方程所确定的函数的导数





x y
(t) (t)


y与x间 的



系,
称 此 为 由 参 数 方 程 所 确定 的 函 数.
例如
x 2t,
y
t
2
,
t x 2
消去参数 t
y t2 ( x)2 x2 24
y
y
v( x) ln u( x)
v( x)u( x)
u( x)
u(
x)v(
x)
v(
x)
ln
u(
x)
v(
x)u( u( x)
x)
3
首页
上页
返回
下页
结束

练习. 求下列函数的导数:
(1) y cos( x2 3x) (3) x y sin(xy) (5) y sin(2x2 3) (7) xy sin(x y)
dt
dy

第二章第四讲---隐函数求导和参数式求导

第二章第四讲---隐函数求导和参数式求导

第四讲隐函数的导数和参数式求导一、隐函数的导数若由方程可确定y 是x的函数,则称此函数为隐函数.若能由这种形式表示的函数, 称为显函数.例如,可确定显函数可确定y 是x的函数,但此隐函数不能显化.问题: 隐函数不易显化或不能显化如何求导?隐函数求导方法:用复合函数求导法直接由方程两边对x求导.y(含导数的方程)解0=+-+dxdy e e dx dy x y y x 解得:,yxex ye dx dy +-=,,00==y x 000===+-=∴y x yxx ex y e dxdy .1=方程两边对求导:x例1 求由方程所确定的隐函数的导数0=+-yxe e xy .,0=x dxdy dx dy y1)对幂指函数)()(x v x u y =可用对数求导法求导:uv y ln ln =y y '1u v ln '=uv u '+)ln (uv u u v u y v'+'='隐函数求导的这种方法需要说明以下几点:例2. 求的导数.解: 两边取对数:两边对x 求导xx x x y y 1sin ln cos 1⋅+⋅=')1sin ln (cos x x x x y y ⋅+⋅='∴)sin ln (cos sin xx x x x x+⋅=2) 有些显函数用对数求导法求导很方便.再如,两边取对数=y ln 再当作隐函数求导,两边对x 求导='yy b a ln x a -x b ++bax ln +-]ln ln [x b a ]ln ln [a x b -二、参数式求导例如参数方程⎩⎨⎧==,,22t y tx 2x t =222)(x t y ==42x =xy 21='∴消去参数问题: 消参困难或无法消参如何求导?t 若参数方程确定y 与x 间的函数关系,称此为由参数方程所确定的函数。

()()x t y t ϕψ=⎧⎨=⎩则0≠')(t ϕ时,有=x y d d x t t y d d d d ⋅tx t y d d d d 1⋅=)()(t t ϕψ''=可导, 且其中若参数方程可确定一个y 与x 间的函数关系,()()x t y t ϕψ=⎧⎨=⎩函数具有单调连续的反函数,这个反函数与()x t ϕ=1()t t ϕ-=()y t ψ=构成了复合函数,1[()]y t ψϕ-=复合函数求导法则反函数求导法则)()(t t ψϕ''=0≠')(t ψ时,有=y x d d y t t x d d d d ⋅ty t x d d d d 1⋅=(此时x 看成是y 的函数)若上述参数方程中二阶可导,)()(d d t t x y ϕψ''=)(t x ϕ=且则由它确定的函数可求二阶导数.利用新的参数方程,可得)(22dx dy dx d dxy d =dx dt t t dt d ))()((ϕ'ψ'=)(1)()()()()(2t t t t t t ϕϕϕψϕψ'⋅''''-'''=.)()()()()(t t t t t 3ϕϕψϕψ''''-'''=d ()d ()y t x t ψϕ'='()()()d t dx t ψϕ'='1()()()d t dx dt t dtψϕ'='tt t a tt a t t x y cot cos sin sin cos )()(d d -=-=''=2233ϕψ解:)(dx dydx d dx y d =22(cot )ddtt dt dx =-2213csc sin cos t a t t =ta tcos sec 34=例3求由参数方程所确定的函数的二阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学应用教程 例2.27
2.2.4 由参数方程所确定的函数的求导法
高等数学应用教程
2.2.5 高阶导数
高等数学应用教程
2.2.5 高阶导数
例2.28
高等数学应用教程 例2.29
2.2.5 高阶导数
所以
高等数学应用教程 小结
பைடு நூலகம்
2.2 导数的运算
隐函数的求导法 对数求导法 由参数方程所确定的函数的求导法 高阶导数的概念及求导法
高等数学应用教程
第2章 导数与微分
2.2 导数的运算
➢ 2.2.3 隐函数的求导法
➢ 2.2.4 由参数方程所确定的
函数的求导法
➢ 2.2.5 高阶导数
高等数学应用教程
2.2.3 隐函数的求导法
2.2.3 隐函数的求导法
高等数学应用教程 例2.22
2.2.3 隐函数的求导法
两个函数, 容易得,
高等数学应用教程
2.2.3 隐函数的求导法
高等数学应用教程 例2.23
2.2.3 隐函数的求导法
高等数学应用教程 课堂练习 P53, 9 (2)
2.2.3 隐函数的求导法
例2.24
高等数学应用教程 例2.25
2.2.3 隐函数的求导法
高等数学应用教程
2.2.3 隐函数的求导法
例2.26
高等数学应用教程 2.2.4 由参数方程所确定的函数的求导法
作业
P52 习题2-2: 9(1);10; 11(1); 12(2); 13(2)
相关文档
最新文档