韦达定理PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例5:若一原方程x2 - 3x - 2=0的两根为x1 , x2 ; 则:(1)以-x1 , - x2 为两根的方程是?
11
(2)x1 以x2
ห้องสมุดไป่ตู้
,
为两根的方程是?
4.已知两数的和与积,求这两个数
例6:解方程:
(x2 1) x 1
(x 1) x2 1
2
SUCCESS
THANK YOU
2019/8/19
x= b b2 4ac 2a
b b2 4ac x1
2a
b b2 4ac x2
2a
x1 x2
b
b2 4ac 2a
+
=
2b =
2a
-b a
b b2 4ac 2a
x1x2 b
b2 4ac b *
2a
b2 4ac 2a
求它的另一个根及k的值。
例3:已知关于x方程x2-(k+1) x+ k2_1 =0,是否存在k,
使方程中的两个实数根的倒数等于1/2,若存在,求出 满足条件的k,若不存在,请说明理由。
3.已知与原方程的两根关系,构造一个新方程
例4:求一元二次方程x2+3x - 2=0的两根之和
与两根之积 为根的一元二次方程。
例1:已知x2-2x-1=0的两根是x1 , x2 ,求
(1)
11 x1 x2
(2) x12+x22
(3)
x2 x1 x1 x2
(4)| x1-x2 |
本题不能求根公式直接计算,应该应用两根之 和与两根之积进行变形转换。
2.利用两根关系,确定方程中未知系数的值
例2:已知方程x2-(k+1) x+3k=0的一个根是2 ,
(b)2
(b2 4a2
4ac)
b2 b2 4ac
4a2
4ac 4a2
=
c a
推论
如果一元二次方程x2+bx+c=0两个根为x1 , x2,
那么
x1 x2 -b
x1x2 c
SUCCESS
THANK YOU
2019/8/19
韦达定理常见题型总结:
1.不解方程,进行变形求值
韦达定理
一元二次方程的根与系数的关系: (韦达定理)
如果一元二次方程ax2+bx+c=0(a≠0)两个根为
x1
,
x2,那x1么 x2
b, a
c
x1x2
. a
注:能用韦达定理的条件为△≥0即b2 4ac 0
韦达定理的证明:
一元二次方程 ax2+bx+c=0(a≠0) 的求根公式: