向量法求异面直线所成的距离

合集下载

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。

向量法求异面直线所成的距离

向量法求异面直线所成的距离

向量法求异面直线所成的距离
异面直线是指不在同一平面上的两条直线。

求解这两条异面直线所成的距离,可以使用向量法。

向量法可以通过向量的数量积和向量的模长求得两条直线之间的距离。

下面我们通过实例来详细说明向量法如何求解两条异面直线之间的距离。

假设有两条异面直线,它们的方程分别为:
直线1:
$x = 3 + 2t$
$y = 1 - t$
$z = -2 + 3t$
首先我们需要确定两条直线上的任意两个点,然后用这两个点之间的连线构成的向量来表示两条直线之间的直线向量。

所以我们任意选择直线1上的两个点 $A(3,1,-2)$ 和$B(5,-1,4)$ ,计算它们之间的向量:
$\vec{AB} = \overrightarrow{AB} = \begin{pmatrix} 5 - 3 \\ -1 - 1 \\ 4 - (-2) \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 6 \end{pmatrix}$
同样,我们任意选择直线2上的两个点 $C(1,2,5)$ 和 $D(5,6,15)$,计算它们之间的向量:
然后,我们需要求解两条直线之间的最短距离,也就是求解这两个向量的数量积:
$\vec{AB} \cdot \vec{CD} = 2 \times 4 + (-2) \times 4 + 6 \times 10 = 52$
接下来,我们需要计算两个向量的模长:
因此,两条直线之间的距离为:
因此,两条异面直线所成的距离为 $\frac{13}{19}$。

高二数学用平面法向量求空间距离

高二数学用平面法向量求空间距离

PA n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
x
小结:
1、怎样利用向量求距离?
①点到平面的距离:连结该点与平面上任意一点的向量 在平面定向法向量上的射影(如果不知道判断方向, 可取其射影的绝对值)。
二、求点到平面的距离
如图点P为平面外一点,点A为平面内的任
一点,平面的法向量为n,过点P作平面a的垂
ห้องสมุดไป่ตู้
线PO,记PA和平面a所成的角为,则点P
到平面的距离 nP
d | PO |
| PA | sin
a
O A
| PA | | n PA | | n || PA |
| n PA| |n|
A
B x
D
y C
三、求直线与平面间距离
例4、已知正方形ABCD的边长为4,CG⊥平面ABCD,
CG=2,E、F分别是AB、AD的中点,求直线BD到平面
GEF的距离。
z
G
PA n
d
n
xD
C
F
A
E
B
y
四、求平行平面与平面间距离
例5、在边长为1的正方体ABCD-A1B1C1D1中,M、N、 E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点,求 平面AMN与平面EFDB的距离。 z
z S
B
Ay
xC
D
; 太阳能路灯

最后也悲伤如老汉。所谓才华、才学、才识,只有变为才能并施于生活的时候,才有用。别忘了,才和能在造词的时候是联在一起的。人们爱说一句话:行善。其实行善之小端是施舍,大端是以满腔的能耐作用社会。 书中并无黄金屋,读而有识,笃做笃行

用向量法求空间距离

用向量法求空间距离

ABC Dmn1图向量法求空间距离向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。

1.异面直线n m 、的距离分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在上的射影长,即||n d =证明:如图1,设CD 为公垂线段,取b a ==,||||)(⋅=⋅∴⋅++=⋅∴++=||||||n n AB d ⋅==∴2平面外一点P 到平面α的距离如图2,先求出平面α的法向量,在平面内任取一定点A ,则点p 到平面α的距离d 等于在上的射影长,即||n d =因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。

再通过向量的代数运算,达到计算或证明的目的。

一般情况下,选择共点且不共面的三个已知向量作为基向量。

[例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2,底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。

图2A BC M N1A 1B1C 图3几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 ,、)0,0,0(A)81,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则)2,0,0(),0,43,43(),81,41,43(1==-=AA AM MN ,设向量),,(z y x n =与平面AMN 垂直,则有)0()1,1,3(8),81,83(81830434********>-=-=∴⎪⎪⎩⎪⎪⎨⎧-==⇒=⎪⎪⎭⎪⎪⎬⎫=+=++-⇒⎪⎭⎪⎬⎫⊥⊥z zz z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是5521)1()3(|)1,1,3()2,0,0(||||,cos |||22201011011=+-+-⋅==><⋅=AA n AA AA d [例2]如图5,在正四棱柱1111D C B A ABCD -中,已知2=AB ,,51=AA E 、F 分别为D D 1、B B 1上的点,且.11==F B DE (Ⅰ)求证:⊥BE 平面ACF ;(Ⅱ)求点E 到平面ACF 的距离.分析:题中几何体易找到共点且相互垂直的三个基向量,故可通过建立空间直角坐标系来达到解题目的。

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

高考专题向量法求空间距离

高考专题向量法求空间距离

高考专题:向量法求空间的距离基础知识梳理(1)点到平面的距离(如图1):平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅.(2)异面直线的距离(如图2):设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅(3)线到平面的距离(如图3):平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅.(4)平面到平面的距离(如图4):平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅.图1nPM αb a图2n PMlαMPn图3β图4nPM αl典型例题剖析例1:如图,已知正方体1111D C B A ABCD -的棱长为1,求异面直线1AA 与1BD 的距离。

变式:如图,已知正方体1111D C B A ABCD -的棱长为1,求面对角线C B 1与体对角线1BD 的距离。

例2:在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点. 求1B 到面EFBD 的距离ABCD1A 1B 1C 1D ABCD1A 1B 1C 1D变式:在直三棱柱ABC —A 1B 1C 1中,AB 1⊥BC 1,AB =CC 1=a ,BC =b.(1)设E ,F 分别为AB 1,BC 1的中点,求证:EF ∥平面ABC ; (2)求证:A1C 1⊥AB ;(3)求B 1到平面ABC 1的距离.例3:三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。

异面直线之间距离公式

异面直线之间距离公式

异面直线之间距离公式异面直线之间的距离公式是一个重要的几何定理,在几何学和物理学中有广泛的应用。

它可以用来计算两条不相交的直线之间的最短距离,而不需要求解两条直线的交点。

本文将简要介绍异面直线之间距离公式的概念和推导方法,并通过实际例子展示其应用。

异面直线指的是不在同一个平面上的直线。

在三维空间中,我们可以用参数方程或者点向式方程来表示一条直线。

假设我们有两条异面直线,分别用参数方程表示为:L1: x = x1 + a1t, y = y1 + b1t, z = z1 + c1tL2: x = x2 + a2s, y = y2 + b2s, z = z2 + c2s其中(x1, y1, z1)和(x2, y2, z2)是两条直线上的已知点,(a1, b1, c1)和(a2, b2, c2)是两条直线的方向向量,t和s是参数。

异面直线之间的距离可以通过求解它们的最近点来得到。

最近点是指两条直线上的点,它们的距离最短。

假设最近点分别为P和Q,它们分别在L1和L2上。

那么向量PQ就是两条直线之间的最短距离的方向向量。

我们可以通过以下步骤来推导异面直线之间距离的公式。

1. 首先,我们可以得到向量PQ的方向向量为:d = PQ = (x2 - x1, y2 - y1, z2 - z1)2. 由于向量d是与两条直线的方向向量正交的向量,即与(a1, b1,c1)和(a2, b2, c2)垂直。

因此,我们可以得到以下两个方程:(a1, b1, c1) · d = 0(a2, b2, c2) · d = 0其中·表示向量的点乘运算。

3. 将d的分量代入以上两个方程,我们可以得到一个关于t和s的线性方程组:(a1(x2 - x1) + b1(y2 - y1) + c1(z2 - z1))t = -a1(x1 - x2) - b1(y1 - y2) - c1(z1 - z2)(a2(x2 - x1) + b2(y2 - y1) + c2(z2 - z1))s = -a2(x1 - x2) - b2(y1 - y2) - c2(z1 - z2)4. 解这个线性方程组,我们可以得到t和s的值。

异面直线距离的求法

异面直线距离的求法

异面直线距离的求法“哎呀,这异面直线距离可真是个让人头疼的问题啊!”异面直线距离的求法呢,主要有这么几种常见的方法。

一种是直接法,就是找出或作出异面直线的公垂线段,然后计算其长度。

比如说,在一个正方体中,面对角线和体对角线就是异面直线,我们可以通过一些几何关系找到它们的公垂线段。

再比如,看这个例子,有一个三棱锥,其中两条异面直线,我们可以通过仔细观察和分析,找到与这两条异面直线都垂直的线段,这就是公垂线段啦,然后利用一些已知条件去算出它的长度。

还有定义法,根据异面直线距离的定义,转化成求两平行平面之间的距离。

就好像有两个平行的平面,异面直线分别在这两个平面上,那这两个平面之间的距离就是异面直线的距离。

另外,还有一种叫转化法。

可以把异面直线的距离问题转化为线面距离或面面距离问题来求解。

比如把异面直线中的一条放到一个平面内,另一条直线和这个平面平行,那就把求异面直线距离转化成了求线面距离。

向量法也是常用的。

通过建立空间直角坐标系,利用向量的方法来求异面直线的距离。

这个方法对于一些复杂的图形很有效。

总之呢,求异面直线距离的方法要根据具体的题目情况来选择,灵活运用这些方法,多做一些题目,就能更好地掌握啦。

“嘿,小王啊,你看这个图形,用哪种方法求异面直线距离比较好呢?”“我觉得可以用直接法先试试。

”“对,先观察一下,看看能不能找到公垂线段。

”在实际解题过程中,一定要认真分析图形的特点和条件,选择最合适的方法来求解异面直线距离,这样才能又快又准确地得出答案。

就像上次给学生们讲的那道题,乍一看好像挺复杂,但仔细分析后,发现用定义法就能很轻松地解决。

所以啊,遇到问题不要慌,静下心来好好分析,肯定能找到解决办法的。

希望这些解释能让你对异面直线距离的求法有更清楚的认识和理解,以后遇到这类问题就不会再犯难啦!。

异面直线距离求法

异面直线距离求法

异面直线距离求法异面直线指的是在三维空间中,不在同一个平面上的两条直线。

计算异面直线之间的距离是很有实际意义的,比如在计算机图形学中,可以用来确定两条直线之间的最短距离,以便进行图像渲染和碰撞检测等操作。

我们需要明确两条异面直线的定义和特点。

异面直线可以由它们的方程表示,一般形式为:L1: A1x + B1y + C1z + D1 = 0L2: A2x + B2y + C2z + D2 = 0其中,A1、B1、C1和D1是L1的系数,A2、B2、C2和D2是L2的系数。

对于异面直线,它们的方向向量不平行,这意味着它们在三维空间中不会相交或重合。

接下来,我们介绍一种常用的方法来计算异面直线之间的距离,即利用点到直线的距离公式。

假设我们要计算L1上的一点P1到L2的距离,可以通过以下步骤进行计算:步骤1:首先,我们需要找到L2上离P1最近的点P2。

我们可以利用向量和点的关系来求解。

将L2的方程代入P1的坐标,得到方程组:A2x + B2y + C2z + D2 = 0x = x1y = y1z = z1通过求解这个方程组,我们可以得到P2的坐标。

步骤2:计算P1和P2之间的距离。

我们可以利用点到直线的距离公式来计算,即:d = |(P2 - P1)·n| / |n|其中,·表示向量的点积运算,n是L2的方向向量。

通过这种方法,我们可以计算出异面直线L1和L2之间的距离。

需要注意的是,如果两条直线平行或重合,它们之间的距离是不存在的。

除了上述方法,还有其他一些求解异面直线距离的方法,比如利用向量的投影和参数方程等。

这些方法各有特点,可以根据具体的情况选择使用。

总结起来,异面直线距离的计算是一项基础的几何计算,对于三维空间中的各种问题都有着重要的应用价值。

通过合适的方法,我们可以准确地计算出异面直线之间的距离,从而解决实际问题。

希望本文可以对读者理解异面直线距离的计算方法有所帮助。

高二数学用平面法向量求空间距离

高二数学用平面法向量求空间距离

d
PA n n
A1
N
D1
F E
C1
M B1 D
C B
y
x
A
小结:
1、怎样利用向量求距离? ①点到平面的距离:连结该点与平面上任意一点的向量 在平面定向法向量上的射影(如果不知道判断方向, 可取其射影的绝对值)。 ②点到直线的距离:求出垂线段的向量的模。 ③直线到平面的距离:可以转化为点到平面的距离。 ④平行平面间的距离:转化为直线到平面的距离、点到 平面的距离。 ⑤异面直线间的距离:转化为直线到平面的距离、点 到平面的距离。也可运用闭合曲线求公垂线向量的模 或共线向量定理和公垂线段定义求出公垂线段向量的 模。
应用空间向量解立体几何之
用平面法向量求空间距离
一、求异面直线的距离
方法指导:①作直线a、b的 方向向量a、b,求a、b的法 向量n,即此异面直线a、b 的公垂线的方向向量; ②在直线a、b上各取一点 A、B,作向量AB; ③求向量AB在n上的射影 d,则异面直线a、b间的距 离为
M
a
A
n
a
N
B
b
d AB cos AB, n
y
x
二、求点到平面的距离
如图点P为平面外一点,点A为平面内的任 一点,平面的法向量为n,过点P作平面a的垂 线PO,记PA和平面a所成的角为,则点P 到平面的距离 d | PO | P n
| PA | sin
a
O
A
| n PA | | PA | | n || PA | | n PA | |n|
结论1
点 P 到平面a的距离可以通过, 在平面a内任取一点 A,求向量 PA在 平面a的法向量 n 上的投影来解决.

高二数学用平面法向量求空间距离

高二数学用平面法向量求空间距离
④平行平面间的距离:转化为直线到平面的距离、点到 平面的距离。
⑤异面直线间的距离:转化为直线到平面的距离、点 到平面的距离。也可运用闭合曲线求公垂线向量的模 或共线向量定理和公垂线段定义求出公垂线段向量的 模。
结论1
点 P 到平面a的距离可以通过,
在平面a内任取一点 A,求向量PA在
平面a的法向量n上的投影来解决.
例3、已知正方形ABCD的边长为4,
CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
G
xD F
A
E
C B y
练习: SA 平面ABCD,DAB ABC 90,
SA AB BC a,AD 2a, z 求A到平面SCD的距离。 S
PA n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
x
小结:
1、怎样利用向量求距离?
①点到平面的距离:连结该点与平面上任意一点的向量 在平面定向法向量上的射影(如果不知道判断方向, 可取其射影的绝对值)。
②点到直线的距离:求出垂线段的向量的模。
③直线到平面的距离:可以转化为点到平面的距离。
d AB cos AB, n
n
例2:已知正方体ABCD-A1B1C1D1的棱长为1,
求异面直线DA1与AC的距离。z
D1
C1
A1
B1
D A x
C y
B
练习:如图,
ABCD是正方形,SB 面ABCD,且SA与 面ABCD所成的角为45,点S到面ABCD的 距离为1,求AC与SD的距离。
A
B x

异面直线距离求解方法

异面直线距离求解方法

浅议异面直线距离求解方法638404 四川省武胜中心中学校 段 方 建求异面直线的距离问题,是立体几何中的一个重、难点。

在现行教材中占有十分重要的地位,但学生在学习中遇到此类问题时,常感到困难,无所适从。

本文就人教版高中数学第二册(下B )的习题9.8第4题求解方法的分析、探讨。

归纳了几种求异面直线的距离问题的常用方法,仅供参考。

题目:已知正方体''''D C B A ABCD -的棱长为1,求直线'DA 与AC 的距离。

一、利用定义求异面直线的距离利用定义求异面直线的距离,首先应作出异面直线的公垂线段,或转化为线面、面面距离求解,则要求作出线面、面面距,并证明。

然后再将其放置于平面几何图形中利用相关策略求解,解答的关键是要找到所求的“线段”,按“作”、“证”、“求”的步骤求解。

解:如图,连结C A '',则AC ∥面D C A '',连结D B BD '',分别与C A AC '',交于O O ',连O D C D D A ''',,,过O 作OE ⊥D O '于E∵C A ''⊥,面D D B B '' ∴C A ''⊥OE又OE ⊥,D O ' ∴OE ⊥面D C A ''因此OE 即为直线'DA 与AC 的距离.在Rt △D O O '中,,O O OD D O OE '•='•可求得.33=OE 二、利用向量方法求异面直线的距离利用向量方法求异面直线的距离,首先要针对题目要求建立恰当的空间直角坐标系,然后求出两条异面直线的公共法向量,再计算两条异面直线上各取一点连结的线段在公共法向量上的射影长,即应用d =解:如右图所示,建立空间直角坐标系.可知:)0,1,1(-=)1,1,0(--='A D设),,1(μλ=n 且0,0='•=•A D n n即.001=--=+-μλλ且∴),1,1,1(=n 又)0,0,1(=,∴33==d ,故异面直线'DA 与AC 的距离是33. 三、利用等体积法求异面直线的距离利用等体积法求异面直线的距离,就是说将距离看成几何体体积表示的一个要素,一般是指可以将其看成高线的时候,可以把几何体的体积通过换底换高,用不同的方式表示,进而建立方程的办法求解,其基本思想就是利用体积不变性。

异面直线距离的三种向量解法

异面直线距离的三种向量解法

异面直线距离的三种向量解法
周华生
【期刊名称】《河北理科教学研究》
【年(卷),期】2005(000)003
【摘要】用综合法求异面直线距离需要较强的技巧(见[1]),新教材用向量处理立体几何问题,为求异面直线距离提供了较方便的方法,本文介绍三种解法可供参考。

【总页数】3页(P16-17,15)
【作者】周华生
【作者单位】江苏省常熟市中学,215500
【正文语种】中文
【中图分类】G52
【相关文献】
1.如何用“向量法”求异面直线的距离
2.利用空间向量求异面直线的距离
3.利用向量法求解异面直线的距离
4.从一课本习题的解法谈异面直线的距离
5.两条异面直线间距离解法浅议
因版权原因,仅展示原文概要,查看原文内容请购买。

两条异面直线的距离公式

两条异面直线的距离公式

两条异面直线的距离公式概述:两条异面直线的距离公式是解决空间几何问题中的一个非常重要的工具,它可以用来计算两条不共面的直线之间的最短距离。

这个公式是基于向量和点的概念建立的,但是理解起来相对简单,只需要一些基本的向量和几何知识即可掌握它的应用。

正文:在平面几何中,我们可以轻松地计算两条直线之间的距离。

但是在三维空间中,情况要复杂得多。

这是因为两条不共面的直线之间有许多可能的距离,因此,我们需要找到一种方法来计算它们之间的最短距离,这就是两条异面直线的距离公式。

首先,我们需要了解什么是异面直线。

如果两条直线不在同一个平面内,那么它们就是异面直线。

这就意味着没有办法通过平移或旋转使得它们重合。

因此,在三维空间中,异面直线的距离是唯一确定的,并且是两条不共面直线之间的最短距离。

为了计算两条异面直线之间的距离,我们需要首先找到它们的交点。

这个交点可以通过求解两个方程来得到,每个方程描述一条直线的位置。

然后,我们需要找到一个点位于第一条直线上,另一个点位于第二条直线上,并且它们之间的距离是我们要求的最短距离。

这可以通过以下公式来计算:d = |(P1 – P2) · n| / |n|其中d是两条直线之间的最短距离,P1和P2分别是两条直线上的点,n是垂直于两条直线的向量。

现在,让我们逐步地理解这个公式。

首先,我们需要找到两个点,它们分别在两条直线上。

为了找到这些点,我们可以用以下公式:P1 = A1 + t1D1P2 = A2 + t2D2其中,A1和A2是第一条直线和第二条直线上的一个已知点,D1和D2是它们的方向向量,t1和t2是直线参数。

通过求解以上两个方程,我们可以找到两条直线的一个公共点P。

如果这两条直线共面,则它们的交点无限多,我们就需要选择其中一个。

接下来,我们需要找到n向量,它垂直于两条直线。

n 可以通过向量积来计算:n = D1 x D2然后,我们可以通过点积计算P1和P2之间的向量与n之间的夹角的余弦值:cosθ = (P1 –P2) · n / (|P1 –P2| × |n|)由于n是垂直于两个向量的向量,因此它们的点积等于0。

异面直线两点间的距离公式证明

异面直线两点间的距离公式证明

异面直线两点间的距离公式证明说到异面直线两点间的距离,这个话题其实挺有意思的。

想象一下,咱们在三维空间里,常常会碰到一些比较“调皮”的直线。

它们就像是天上飞的鸟儿,虽然都是直线,可是却不一定在同一个平面上,唉,真是各有各的生活,谁也不干涉谁。

这样一来,咱们就得想办法来计算这两条直线上的点之间的距离,别说,听起来还真有点难度。

不过,别担心,今天我就带大家一块儿来聊聊这玩意儿,绝对不让你们昏昏欲睡,保证轻松幽默,让你捧腹大笑。

得说,异面直线这东西就像是两位性格迥异的朋友,一位喜欢在阳光下潇洒,另一位却偏爱阴影里的小世界。

虽然它们就那么“并行不悖”,但咱们想要找出它们之间的距离,绝对不是件简单的事情。

想象一下,如果你要用尺子量两条直线之间的距离,那得多不靠谱啊,根本就没有共同的基础。

不过,别怕,数学家们想到了一个绝妙的办法,真是聪明绝顶!他们使用了一个叫做“法向量”的东西,哎呀,这可真是一个神奇的概念。

法向量就像是一根线索,把异面直线的点之间的关系给串联起来。

用法向量,咱们能找到那条最短的线,哇,真是简直是数学界的“直通车”啊!为了找到这条线,咱们需要两个点,一个在直线A上,另一个在直线B上。

假设你有点紧张,那没关系,慢慢来。

把这两个点的坐标写出来,像是在做购物清单,什么都不能少。

我们得知道这两条直线的方向,没错,就是它们的“脾气”!方向向量就像是它们的个性,只有搞清楚了,才能找到最短的那条距离。

然后,我们用一个公式来帮我们算。

这公式里有个点积,看着可能会让人头疼,但其实也就是个数学游戏。

别担心,把这几个步骤捋一捋,像是在做一道简单的菜肴。

你先把两个点的坐标代入公式,再利用法向量,咕噜咕噜一搅拌,最后就能得出距离了。

说白了,这就跟做饭时需要一些调味料,少了什么味道都不对。

记得在这里,调皮的法向量可不能少。

距离算出来之后,你就会发现,这玩意儿居然比想象中简单多了。

就像是在解一个小谜题,一点一点拼凑,最终露出了真相。

异面直线上两点间的距离公式

异面直线上两点间的距离公式

异面直线上两点间的距离公式在三维空间中,我们经常需要计算两个点之间的距离。

当这两个点在同一平面上时,我们可以使用平面上两点间的距离公式来计算它们之间的距离。

但是,当这两个点不在同一平面上时,我们需要使用异面直线上两点间的距离公式来计算它们之间的距离。

异面直线上两点间的距离公式如下:d = |(ax1 + by1 + cz1 + d) - (ax2 + by2 + cz2 + d)| / √(a^2 + b^2 + c^2)其中,(x1, y1, z1)和(x2, y2, z2)是两个点的坐标,a、b、c和d是直线的方程系数,d是直线的截距,| |表示绝对值,√表示平方根。

这个公式的推导过程比较复杂,我们不在这里详细讲解。

但是,我们可以通过一个简单的例子来理解这个公式的应用。

假设我们有两个点A(1, 2, 3)和B(4, 5, 6),它们分别在以下两个平面上:平面1:2x + 3y - z = 4平面2:x - 2y + 3z = 5我们需要计算点A和点B之间的距离。

由于这两个点不在同一平面上,我们不能使用平面上两点间的距离公式来计算它们之间的距离。

相反,我们需要使用异面直线上两点间的距离公式。

我们需要找到这两个平面的法向量。

平面1的法向量为(2, 3, -1),平面2的法向量为(1, -2, 3)。

这两个法向量可以通过平面的方程系数得到。

接下来,我们需要找到这两个平面的交点,也就是它们所在的直线。

我们可以通过将这两个平面的方程联立,解出它们的交点坐标。

这个过程比较繁琐,我们不在这里详细讲解。

最终,我们得到这两个平面的交点坐标为(-1, 1, 0)。

现在,我们可以得到这两个平面所在的直线的方程。

我们可以选择其中一个平面的方程作为直线的方程,例如平面1的方程2x + 3y - z = 4。

我们可以将这个方程转化为参数方程的形式:x = ty = (4 - 2t) / 3z = (2t - 4) / 3这个参数方程表示了这条直线上的所有点。

向量法求异面直线的距离公式

向量法求异面直线的距离公式

向量法求异面直线的距离公式全文共四篇示例,供读者参考第一篇示例:向量法求异面直线的距离公式是一种用向量的方法来计算异面直线之间的距离的公式。

在三维空间中,有时候我们需要求出两条不在同一平面上的直线之间的距离,这时就可以使用向量法来解决这个问题。

下面我们将详细介绍向量法求异面直线的距离公式的推导和应用。

我们假设有两条异面直线,分别用参数方程表示为:直线1:r1(t) = a1 + tb1其中a1,a2分别为直线1和直线2的某一点,b1,b2为方向向量,t,u为参数。

我们首先要确定这两条直线之间的距离,可以通过向量的投影来实现。

假设有一条从直线1上的某一点a1到直线2上的垂足点P的向量p,则有p = a2 - a1 + s(b1 x b2)(1)其中x表示向量叉乘,s为比例因子。

p为两条直线之间的距离向量,我们需要求出它的模长作为实际距离。

为了简化运算,可以令p与b1垂直,即p·b1 = 0,代入公式(1)中得到:(a2 - a1 + s(b1 x b2)) · b1 = 0将s代入公式(1)中,即可求出向量p。

我们求出p的模长即可得到两条异面直线之间的距离。

需要注意的是,如果两条直线平行,则它们之间的距离为0;如果两条直线相交,则直线之间的距禀为0。

向量法求异面直线的距离公式在实际工程和物理问题中有着广泛的应用。

比如在建筑设计中,我们需要确定两个不在同一平面上的梁之间的距离;在机械设计中,我们需要确定两个不在同一平面上的零件之间的距禀。

掌握向量法求异面直线的距离公式对于解决实际问题具有重要意义。

第二篇示例:向量法求解异面直线距离的问题是解析几何中的一个重要问题。

异面直线是指两条不在同一平面内的直线,它们之间的距离是在空间几何学中一个非常基础的问题。

在实际问题中,当我们需要求解两条异面直线之间的距离时,使用向量法可以简化计算,提高效率。

首先我们来了解一下向量的相关知识。

在空间直角坐标系中,我们可以用一个有方向和大小的有向线段来表示一个向量。

向量法求异面直线所成的距离

向量法求异面直线所成的距离

A' m E
n
n
A
b
F
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
EF n d
n
aAΒιβλιοθήκη m EnAb
F
3、正方体A C 1 中,棱长为1,求异面直线AC和 A 1 D 的距离
A
B
D
C
A1
B1
D1
C1
课时小结
方法(1):直接找到或证明公垂线,再求
(2)用模型公式 d l2 m 2 n 2 2 m co n
(3).转化成点到平面的距离 a
EF n d
复习回顾
异面直线的距离:夹在这两条异面直线间的公垂线段 的长度
例1、(教材113)如图,正方体AC1的棱长为1,点M是棱AA1 的中点,点O是BD1的中点,求证:OM是异面直线AA1与BD1 的公垂线,并求OM的长
D1 C1
A1
B1
O
MD
C
A
B
方法1:直接找到或证明公垂线,再求
例2:如图,两条异面直线a,b所成的角为 ,在直线a,b上
分别取点 A ' ,E和点A,F,使 AA ' a,AA ' b
AA ( ' 称为异面直线的公垂线 ),已知
A'Em ,A Fn,E Fl 求公垂线的长
a
a
A'
E
m
A' m E
n
A
b
F
n
A
b
F
(2)用模型公式 d l2 m 2 n 2 2 m co n
(3).转化成点到平面的距离

利用空间向量求异面直线的距离

利用空间向量求异面直线的距离

利用空间向量求异面直线的距离
常立忠
【期刊名称】《中学生数理化(学研版)》
【年(卷),期】2011(000)007
【摘要】设P是直线a上的任一点,Q是直线b上的任一点,n是直线a、b的公垂线的方向向量,异面直线间的距离为d,
【总页数】1页(P11-11)
【作者】常立忠
【作者单位】广东省东莞市东华高级中学
【正文语种】中文
【中图分类】G633.63
【相关文献】
1.利用空间向量求空间角和空间距离 [J], 王青锋
2.利用空间向量求空间距离 [J], 王莉
3.利用行列式求两异面直线间的距离 [J], 钱云;戴泽俭
4.利用添加辅助平面求两异面直线间距离 [J], 吴晓
5.利用空间向量求点到平面的距离 [J], 张怡临
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾
异面直线的距离:夹在这两条异面直线间的公垂线段 的长度
例1、(教材113)如图,正方体AC1的棱长为1,点M是棱AA1 的中点,点O是BD1的中点,求证:OM是异面直线AA1与BD1 的公垂线,并求OM的长
D1 C1
A1
B1
O
MDCຫໍສະໝຸດ AB方法1:直接找到或证明公垂线,再求
例2:如图,两条异面直线a,b所成的角为 ,在直线a,b上
EF n d
n
a
A' m E
n
A
b
F
3、正方体AC1 中,棱长为1,求异面直线AC和 A1D 的距离
A
B
D
C
A1
B1
D1
C1
课时小结
方法(1):直接找到或证明公垂线,再求
(2)用模型公式 d
(3).转化成点到平面的距离
EF n d
n
l2 m2 n2 2mncos
a
A' m E
分别取点 A' ,E和点A,F,使 AA' a, AA' b
( AA' 称为异面直线的公垂线 ),已知
A'E m, AF n, EF l 求公垂线的长
a
a
A'
E
m
A' m E
n
A
b
F
n
A
b
F
(2)用模型公式 d l2 m2 n2 2mncos
(3).转化成点到平面的距离
n
A
b
F
相关文档
最新文档