《无机材料物理性能》第5讲

合集下载

无机材料物理性能PPT课件

无机材料物理性能PPT课件

电子位移极化
弹性模型 +e
-e
建立牛顿方程: ma= -kx - eEoe it 电偶极矩: = -ex= Eoe it{1/[(k/m)o2- 2]}e2/m 弹性振子的固有频率 : o=(k/m)1/2 有: = e Eloc 得:
动态
e
e2 m
2 0
1
2
静态
e2 e2
e
m2 0
k
电子位移极化
+ 空腔表面上的电荷密度: -P cos 绿环所对应的微小环球面的表面积dS:
dS=2rsin rd dS面上的电荷为: dq= -P cosdS
根据库仑定律:dS面上的电荷作用在球心单位正电 荷上的P方向分力dF:
dF= -(-PcosdS/4o r2 ) cos
由 qE=F
1×E=F E=F
有立方对称的参考点位置,如果所有原
子都可以用平行的点型偶极子来代替,
则E3 =0。
Eloc=E外+E1+P /3o=E+P /3o
克劳修斯一莫索蒂方程
根据
D= o E+P

P =D- o E=( 1- o ) E
= o ( r- 1) E

Eloc=E外+E1+P /3o=E+P /3o
=E+ o ( r- 1) /3o
对具有两 种以上极化质点的介质,上式变为:
r r
1 2
1
3 0
nkk
k
三、介质的总极化
第一种,位移极化: 位移式极化------弹 性的、瞬间完成的、不消耗能量的极化。
第二种,松弛极化:该极化与热运动有 关,其完成需要一定的时间,且是非弹 性的,需要消耗一定的能量。

无机材料物理性能-习题讲解

无机材料物理性能-习题讲解

2. 已知金刚石的相对介电常数r=5.5,磁化 率=-2.17×10-5,试计算光在金刚石中的传 播速度
c c c v n rr r (1 ) 3 108 5.5 (1 2.17 105 ) 1.28108 m / s
引起散射的其它原因还有:缺陷、杂质、晶粒界 面等。
7. 影响热导率的因素有哪些?
温度的影响:

低温:主要是声子传导。自由程则有随温度的升高而迅速降低的特点,低温时,上限为晶粒的距离, 在高温时,下限为晶格的间距。


高温下热辐射显著,光子传导占优势;
在低温时,热导率λ与T3成比例。高温时,λ则迅速降低。 结晶构造的影响 :声子传导与晶格振动的非谐和有关。晶体结构越复杂,晶格振动的非谐和越大, 自由行程则趋于变小,从而声子的散射大, λ 低。
9.证明固体材料的热膨胀系数不因内含均匀 分散的气孔而改变
对于内含均匀分散气孔的固体材料,可视为固相 与气相组成的复合材料,其热膨胀系数为:
V KW / K W /
i i i i i i i
由于空气组分的质量分数Wi≈0,所以气孔对热膨 胀系数没有贡献。
10. 影响材料散热的因素有哪些?
第三章
材料的光学性能
---习题讲解
1. 试述光与固体材料的作用机理
在固体材料中出现的光学现象是电磁辐射与固体材料中的 原子、离子或电子之间相互作用的结果。一般存在两种作 用机理: 一是电子极化,即在可见光范围内,电场分量与传播过程 中遇到的每一个原子都发生相互作用,引起电子极化,即 造成电子云和原子核的电荷中心发生相互位移,所以当光 通过介质时,一部分能量被吸收同时光速减小,后者导致 折射。 二是电子能态转变:即电磁波的吸收和发射包含电子从一 种能态向另一种能态转变的过程。材料的原子吸收了光子 的能量之后可将较低能级的电子激发到较高能级上去,电 子发生的能级变化与电磁波频率有关。

《无机材料物理性能》课后习题答案解析

《无机材料物理性能》课后习题答案解析

课后习题《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。

解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e EEe e Et t t στεσεεεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0123450.00.20.40.60.81.0σ(t )/σ(0)t/τ应力松弛曲线0123450.00.20.40.60.81.0ε(t )/ε(∞)t/τ应变蠕变曲线)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

第五讲 硅—无机非金属材料

第五讲  硅—无机非金属材料

知识点一.硅1.硅的化学性质。

在常温下,硅的化学性质不活泼,不与O 2、Cl 2、H 2SO 4、HNO 3等反应,但可与氟气、氢氟酸和强碱反应。

①硅和氟气反应:Si+2F 2==SiF 4。

②硅和氢氟酸反应:Si+4HF==SiF 4↑+2H 2↑。

③硅和氢氧化钠溶液反应:Si+2NaOH+H 2O==Na 2SiO 3+2H 2↑。

④硅在氧气中加热:Si+O 2SiO 2。

2. 硅的工业制法。

SiO 2+2C Si(粗硅)+2CO ↑(注意产物)提纯:Si+2Cl 2SiCl 4 ;SiCl 4+2H 2Si+4HCl ↑3.晶体硅的用途。

用来制造半导体器件,制成太阳能电池、芯片和耐酸设备等。

知识点二. 二氧化硅1.物理性质:硬度大、熔点高,难溶于水。

2.化学性质:①酸性氧化物的通性:SiO 2是酸性氧化物,是H 2SiO 3的酸酐,但不溶于水:△无机非金属材料的主角-硅SiO2+CaO CaSiO3SiO2+2NaOH=Na2SiO3+H2O (Na2SiO3是强的粘合剂)②弱氧化性:SiO2+2C Si+2CO↑③特性:SiO2+4HF=SiF4↑+2H2O要点解释:(A)由于玻璃的成分中含有SiO2,故实验室盛放碱液的试剂瓶用橡皮塞而不用玻璃塞。

(B)未进行磨砂处理的玻璃,在常温下是不易被强碱腐蚀的,故盛放碱液可以用玻璃瓶(不能用玻璃塞)。

(C)因为氢氟酸腐蚀玻璃,与玻璃中的SiO2反应,所以氢氟酸既不能用玻璃塞、也不能用玻璃瓶保存,而应保存在塑料瓶或铅皿中。

3.用途:①SiO2是制造光导纤维的主要原料。

②石英制作石英玻璃、石英电子表、石英钟等。

③水晶常用来制造电子工业的重要部件、光学仪器、工艺品等。

④石英砂常用作制玻璃和建筑材料。

4.SiO2与CO2化学性质的比较CO2+H2O H2CO3SiO2+CaO CaSiO3SiO2+2C Si+2CO↑知识点三.硅酸(H4SiO4、H2SiO3)△1.不稳定性:H2SiO3SiO2 +H2O2.极弱酸性:不能使酸碱指示剂变色:H2SiO3+2NaOH=Na2SiO3+2H2O制备:Na2SiO3+CO2+H2O=H4SiO4↓(白色胶状)+Na2CO3或Na2SiO3+2HCl==H2SiO3↓+2NaCl,H4SiO4=H2SiO3+H2O(不稳定、易分解)知识点四. 硅酸盐1.常用的硅酸盐是Na2SiO3,俗称“泡花碱”,易溶于水,其水溶液称为水玻璃,是一种矿物胶,密封保存。

无机材料物理性能第5讲-33页PPT精品文档

无机材料物理性能第5讲-33页PPT精品文档
型、磁铅石型、钙钛矿型、钛铁矿型 和钨青铜型等6种
铁氧体的磁性与结构
尖晶石型铁氧体
所有的亚铁磁性尖晶石几乎都是反型的 阳离子出现于反型的程度,取决于热处理条件 锰铁氧体约为80%正型尖晶石,这种离子分布随热
处理变化不大
铁氧体磁性材料:反尖晶石结构
M 2 O 2 (F3 e )2(O 2 )3
M2+---Ni2+、Co2+、Cu2+,亦可是Mn、Mg混合
铁氧体的磁性与结构
亚铁磁性
由于铁氧体内总是含有两种或两种以上 的阳离子,这些离子各具有大小不等的 磁矩,反向占位的离子数目也不相同, 因此晶体内由于磁矩的反平行取向而导 致的抵消作用通常并不一定会使磁性完 全消失而变成反铁磁体,往往保留了剩 余磁矩,表现出一定的铁磁性,这称为 亚铁磁性或铁氧体磁性 。
生产上为了获得高磁导率的磁性材料, 一方面要提高材料的Ms值,这由材料的 成分和原子结构决定;
另一方面要减小磁化过程中的阻力,这 主要取决于磁畴结构和材料的晶体结构。
铁氧体磁性材料
软磁材料(Soft
Magnetic Materials) 磁材料适合于交变磁 场的器件,如变压器 的铁芯,这时,铁芯 的发热量少。此外, 还可用于电机和开关 器件(磁导体)
Fx
VM B X
V为样品的体积,若外磁场已知, 则M可由力的侧定计算出。
物质磁性的本质
电子的磁矩
电子磁矩由电子的轨道磁矩和自旋磁矩组成 物质的磁性不是由电子的轨道磁矩引起,而
是主要由自旋磁矩引起 孤立原子的磁矩决定于原子的结构 某些元素具有各层都充满电子的原子结构,
其电子磁矩相互抵消,因而不显磁性
J m B

无机材料物理性能知识总结

无机材料物理性能知识总结

第一章物理基础知识与理论物理性能本质:外界因素(作用物理量)作用于某一物体,如:外力、温度梯度、外加电场磁场、光照等,引起原子、分子或离子及电子的微观运动,在宏观上表现为感应物理量,感应物理量与作用物理量呈一定的关系,其中有一与材料本质有关的常数——材料的性能。

晶体结构:原子规则排列,主要体现是原子排列具有周期性,或者称长程有序。

非晶体结构:不具有长程有序。

点阵:晶体内部结构概括为是由一些相同点子在空间有规则作周期性无限分布,这些点子的总体称为点阵。

晶体由(基元)沿空间三个不同方向,各按一定的距离(周期性)地平移而构成,(基元)每一平移距离称为周期。

晶格的共同特点是具有周期性,可以用(原胞)和(基失)来描述。

分别求立方晶胞、面心晶胞和体心晶胞的原胞基失和原胞体积?(1)立方晶胞:(2)面心晶胞(3)体心晶胞晶体格子(简称晶格):晶体中原子排列的具体形式。

晶列的特点:(1)一族平行晶列把所有点包括无遗。

(2)在一平面中,同族的相邻晶列之间的距离相等。

(3)通过一格点可以有无限多个晶列,其中每一晶列都有一族平行的晶列与之对应。

(4 )有无限多族平行晶列。

晶面的特点:(1)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平行晶面. (2)所有的格点都在一族平行的晶面上而无遗漏;(3)一族晶面平行且等距,各晶面上格点分布情况相同;(4)晶格中有无限多族的平行晶面。

格波:晶体中的原子在平衡位置附近的微振动具有波的形式。

色散关系:晶格振动谱,即频率和波矢的关系。

声子:晶格振动的能量是量子化的,晶格振动的量子单元称作声子,声子具有能量ħ ,与光子的区别是不具有真正的动量,这是由格波的特性决定的。

声学波与光学波的区别:前者是相邻原子的振动方向相同,波长很长时,格波为晶胞中心在振动,可以看作连续介质的弹性波;后者是相邻原子的振动方向相反,波长很长时,晶胞中心不动,晶胞中的原子作相对振动。

德布罗意假设:一切微观粒子都具有波粒二象性。

第五讲 多孔材料和层状材料

第五讲 多孔材料和层状材料
通过控制孔道尺寸和形状来得到特殊分子筛性质的多孔材料沸石的微孔将反应物的尺寸限制在约10以下即使通过孔道修饰与改性也受到原来孔径尺寸的限制而难以改变孔径大小为250nm范围内的介孔材料的出现为这些努力提供了可能
第五讲 多孔材料和层状材料
无机化学新材料领域中,孔道材料及层状 材料是具有理论和实际应用价值的一类材料, 在国防、生产和生活多领域得到应用。本讲简 要介绍多孔材料及插层化学等基本知识。
分子筛转பைடு நூலகம்机理:
一.固相转化机理
一.液相转化机理
合成途径:起初发现天然沸石存在于地下火山孔洞中, 从而初期的合成沸石都是模拟地质上生成沸石的环境,采用 高温水热技术。 后来发现地表处也存在天然沸石,而采用低温水热合成 技术(25-150º C)。 1954年末,A型分子筛和X型分子筛开始工业化,一系列 低硅铝比(Si/Al=2.5)的人工合成沸石如NaY等合成及应用。 1959年我国合成了A型分子筛和X型分子筛,随后合成了 Y型分子筛,目前主要用于石油炼制和石油化工中吸附和催化 材料。 优点:纯度高,孔径的均匀性和离子交换性好,应用范 围广,天然沸石具有价格优势。

从十二元环微孔到超大微孔
1988 年 , Davis M E 等 十 八 元 环 园 形 孔 口 磷 酸 铝 VPI-5 (12.7Å×12.7Å), (H2O)42[Al18P18O72],从此出现了超大微孔的概念。 大多为微孔金属磷酸盐且为一微孔道结构。 结构特点: 骨架结构由不同的配位态金属等基本结构单元组成,如[AlO4] 等; 骨架中具有未饱和交联的P=O,P-OH,Al-OH等端基结构; 由于这类结构易于在多胺基、长链和较大分子的结构导向剂存 在下生成,有时还需在F-离子体系中生成,因而骨架中常存在F-,其 次结构中的非键合作用往往与结构导向剂分子相连接。 应用: 大分子催化的研究加快,也使以具有超大微孔结构化合物为主 体的主-客体化学及相应先进材料的研究与应用加快。

第五讲材料的热稳定性

第五讲材料的热稳定性
压电陶瓷器件
37
本章小结
材料的热容
经典理论 量子理论 影响因素
材料的膨胀
物理本质 影响因素
材料的热传导
基本概念 物理机制 影响因素
材料的热稳定性
热应力 提高抗冲击断裂性能的措施
38
表示热学性能的参数比较
热容(比热容)热膨胀系数
定义
C Q T
TБайду номын сангаас
1 lT
dl dT
物理本质 经典理论 作用力曲线
龟裂前一次温度
普通耐火材料: 加热到一定温度保温 急冷 重复操作直到试件失重20 %。
操作次数 7
第四节 材料的热稳定性
热稳定性的表示方法 热应力及第一热应力断裂抵抗因子 抗热冲击损伤性 提高抗热冲击断裂性能的措施 梯度功能材料
8
2. 热应力及第一热应力断裂抵抗因子
热应力:由于材料热膨胀或收缩引起的内应力。
➢ 材料从陶瓷过渡到金属的过程中,耐热性逐渐降低,机 械强度逐渐升高。
➢ 热应力在材料两端均很小,在材料中部过渡区达到峰值 (比突变界面的应力峰值小得多),
➢ 具有缓和热应力的功能。
金属和陶瓷构成的材料特性 (a)无梯度 (b)有梯度
28
航天方面
90年代初,日本开发了小动力火箭燃烧器和热遮蔽材料用的梯 度功能材料,目前已研制出能耐1700℃的ZrO2/Ni梯度功能材 料,用作马赫数大于20的并可重复使用的航天飞机机身材料。 空天飞机高速飞行时机身和机翼的温度也高达上千K,只能采 用热防护梯度材料解决热应力问题。 梯度功能材料也可用于普通飞机的喷气燃烧器。
3
什么是热稳定性?
热稳定性(抗热震性): 材料承受温度变化而不致破坏的能力。

无机材料性能教案及课件

无机材料性能教案及课件
单边切口梁技术
山形切口技术
其他形状切口试样
Knoop压痕三点弯曲梁法
3.5裂纹的起源与扩展
裂纹的起源
裂纹的快速扩展
影响裂纹扩展的因素
3.6静态疲劳【难点】
静态疲劳
1.复习上次课程重点内容,提问
2.由学生讲解,提问、点评、总结
3.举例,再讨论、讲解
4.幻灯演示,讨论、启发
思考、作业
参考文献:
1.《无机材料物理性能》王秀峰等主编化学工业出版社
应力场强度因子及几何形状因子
【重点】
临界应力场强度因子及断裂韧性
【重点】
裂纹扩展的动力与阻力
1.总结、复习上次课程重点内容,提 问
2.幻灯演示,推导公式
3.幻灯演示,讨论、启发
4.举例,再讨论、讲解
5.幻灯演示,讨论、启发
思考、作业
P107第4、6题
参考文献:
1.《无机材料物理性能》王秀峰等主编化学工业出版社
2.《无机材料性能》关振铎主编清华大学出版社
3.《材料性能学》张帆等主编上海交通大学出版社
课程章节
第3章无机材料的脆性断裂与强度
3.5裂纹的起源与扩展
3.6静态疲劳
3.7蠕变断裂
3.8显微结构对材料脆性断裂的影响
第6次课
授课时间2015年3月24日授课班级1220731、732
授课类型:J理论课讨论课实践课习题课
2.掌握应力和应变的概念、各向同性和各向异性广义虎克定律。
3.理解弹性形变的机理。
4.学会分析材料中某一点的应力和应变状态,学会使用应力-应变曲线分析实际问 题。
教学内容(注明重点、难点)
课堂教学设计与教学方法
2.1应力和应变【重点】

无机材料物理性能

无机材料物理性能

弹性模量:使物体产生伸长一倍变形量所需的应力上限弹性模量:两相通过并联组合得到混合系统的E 值称之~~下限弹性模量:两相通过串联组合得到混合系统的E 值称之~~粘弹性:某些非晶体或多晶体在应力较小时间时表现粘性弹性滞弹性:无机固体和金属的弹性模量依赖于时间的现象蠕变:当对粘弹性体施加恒定应力σ0时,其应变随时间而增加的现象弛豫:当施加恒定应变ε0在粘弹性体上,应力随时间而减小的现象。

影响蠕变的因素:1.温度2.应力3.显微结构的影响4.组成5.晶体结构塑性形变:指在一中外力移去后不能恢复的形变。

塑性形变的两种基本方式:滑移和孪晶声频支:相邻原子具有相同的振动方向光频支:相邻原子振动方向相反,形成了一个范围很小,频率很高的振动热膨胀:物体的体积或长度随温度的升高而增大的现象热传导:当固体材料一端的温度比另一端高时,热量会从热端自动的传向冷端,这个现象就称~~。

声子热导的机理:声子与声子的碰撞产生能量转移(声子:声频波的量子)介质损耗:电场作用下,单位时间内电介质因发热而损耗的电能抗热震断裂性:材料发生瞬时断裂,抵抗这种破坏的性能。

抗热震损伤性:在热冲击循环作用下,材料表面开裂、剥落并不断发展,最终碎裂或变质,抵抗这类破坏的性能。

热应力因子:由于材料热膨胀或收缩引起的内应力双碱效应(中和效应):当玻璃中碱金属离子总浓度较大时,碱离子总浓度相同的情况下,含两种碱金属离子比含一种碱金属离子的玻璃电导率要小。

当两种碱金属浓度比适当时,电导率可以降到很低。

压碱效应:含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃电导率降低热稳定性:材料在温度急剧变化而不被破坏的能力,也被称为抗热震性。

铁电体:能够自己极化的非线性介电材料,其电滞回路和铁磁体的磁滞回路形状相近似。

稳定传热:物体内温度分布不随时间改变。

载流子的迁移率:载流子在单位电场中的迁移速率。

移峰效应:在铁电体中引入某种添加物生成固溶体,改变原来的晶胞参数和离子间的相互关系,使居里点向低温或高温方向移动。

无机材料科学基础第五章 固溶体PPT课件

无机材料科学基础第五章 固溶体PPT课件
金属和金属形成的固溶体都是置换式的。如, Cu-Zn系中的α和η固溶体都是置换式固溶体。
在金属氧化物中,主要发生在金属离子位 置 上 的 置 换 , 如 : MgO-CaO , MgO-CoO , PbZrO3-PbTiO3,Al2O3-Cr2O3等。
C3S的固溶体C54S16MA2.相当于18个Si中有两个被置换。
可编辑课件PPT
18
实例
在面心立方结构中,例如MgO中,氧八面体间 隙都已被Mg离子占满,只有氧四面体间隙是空的。 在TiO2中,有二分之一的八面体空隙是空的。在萤 石结构中,氟离子作简单立方排列,而正离子Ca2+ 只占据了有立方体空隙的一半,在晶胞中有一个较 大的间隙位置。在沸石之类的具有网状结构的硅酸 盐结构中,间隙就更大,具有隧道型空隙。 因此, 对于同样的外来杂质原子,可以预料形成填隙式固 溶体的可能性或固溶度大小的顺序将是沸石>萤石 >TiO2>MgO。实验证明是符合的。
SrO、BaO,使他们形成正硅酸盐。或
添加B2O3、P2O5、Cr2O3为稳定剂,使他 们形成[BO4]、[PO4]、[CrO4]置换[SiO4] 而形成固溶体。
可编辑课件PPT
9
2、晶体结构类型的影响
若溶质与溶剂晶体结构类型相同,能形成连 续固溶体,这也是形成连续固溶体的必要条件,而 不是充分必要条件。
二、置换型固溶体
三、间隙型固溶体
四、形成固溶体后对晶体性质的影响
五、固溶体的研究方法
可编辑课件PPT
1
第一节 固溶体的分类
一、根据外来组元在主晶相中所处位置 ,可分 为置换固溶体和间隙固溶体。
二、按外来组元在主晶相中的固溶度,可分为 连续型(无限型)固溶体和有限型固溶体。

《无机材料物理性能》讲资料PPT课件

《无机材料物理性能》讲资料PPT课件

th/ c
5000 1540 3.3
3000 1300 2.3
材料
Al2O3宝石 BeO
2048 320 6.4 MgO
3480 —
240 14.5 Si3N4热压 10.5 — SiC
693
10.5 66.0 Si3N4烧结
400
10 40.0 AlN
5000 44.1 113
th
5000 3570 2450 3850 4900 3850 2800
端部的曲率半径而与孔洞的形状无关,依据弹性
理论:

A 1 2

c


考虑到:
c远大于,所以 A 2
c

考虑到裂纹尖端曲率半 径ρ与晶格常数 相当:
A 2
c a0
裂纹扩展的条件是: A th 故
Ac 2 c
c
a0
Er a0
th
断裂理论
p为裂纹扩展单位面积在塑性变形中所作的塑 性功,由于 p>> (约为的103量级)
CC


2E p 2 (1 2 )
C
2E p (1 2 )c
25
应力场强度因子和 平面应变断裂韧性
26
2002年11月19日,希腊“威望”号油轮在西班牙加 利西亚省所属海域触礁,断裂成两截,随后逐渐下沉。 据悉,这艘船上共装有7.7万吨燃料油。生态学家称这可 能是世界上最严重的燃油泄漏事件之一。
断裂理论
贡献:看到了缺陷、解释了实际强度远低于
理论强度的事实。
缺点:沿用了传统的强度理论,引用了现成
的弹性力学应力集中理论,并将缺陷 视为椭园孔,未能讨论裂纹型的缺陷。

《无机材料物理性能》课后习题答案.doc

《无机材料物理性能》课后习题答案.doc

解:&) 4.909x10 《材料物理馅能》第一章材料的力学性能1.1 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

F 4500 、—= ---------------- =995( MPa)A 4.524x1()2真应变勺=In上=In色=In 7 = 0.0816 1° A 2.42名义应力a = — = —- =917 (MP。

) —o名义应变 ^ = - = —-1=0.0851/。

A山计算结果町知:真应力大于名义应力,真应变小于名义应变。

1- 5 —陶瓷含体积百分比为95%的A12O3(E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令Ei=380GPa,E2=84GPa,Vi=0.95,V2=0.05。

则有上限弹性模量=E}V{ +E2V2 = 380 X 0.95 +84 X 0.05 =365.2(GF Q)下限弹性模量曲=(4 +生尸=(性 + 些广=323.1(。

「。

)E] E2 380 84当该陶瓷含有5%的气孔时,将P=0. 05代入经验计算公式E=E o(l-1.9P+O. 9P2)可得,其上、下限弹性模量分别变为331.3 GPa和293. 1 GPa。

1-11 一圆柱形MO]晶体受轴向拉力F,若其临界抗剪强度弓为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。

解:由题意得图示方向滑移系统的剪切强度可表示为:Feos 53。

T = -------- ;— x cos 600.00152〃r f xO.00152^- 2nFmin = ---------------- = 3.17 x 103 (N)m,n cos 53° X cos 60°此拉力下的法向应力为:(7 =317xI0_xcos60° = L12xl08(P€/) = 112(A/P6Z) 0.00152^/cos 60°0.0 应变蠕变曲线 =25.62 〜28.64GF“ 1-6试分别画出应力松弛利应变蠕变与时间的关系示意图,并算出t 二0, t=g 和L 二T 时的纵 坐标表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张开型
错开型
撕开型
裂纹扩展的判据
裂纹失稳扩展导致材料断裂的必要条件是:在裂纹扩展中, 系统的自由能必须下降。
2C
2(C+dC)
2(C+dC)
d
(a)
(b)
(c)
(d)
(a)平板受力状态 (b) 预先开有裂纹的平板受力状态 (c) 恒位移式裂纹扩展 (d) 恒应力式裂纹扩展
(c)、(d)与(b)状态相比,自由能发生了三项变化:
114.1
65
49.1 1030 3520
114.1
81
33.1 1030 1400
96.8
65
31.8 1030 2600
96.8
81
15.8 1050 1400
96.8
40
56.8 1100 2740
91.2
65
26.2 1030 3160
91.2
81
10.2 1050 1260
88.6
65
23.6 1030 2810
根据Griffith能量判据计算材料断裂强度 (临界应力) 外力作功,单位体积内储存弹性应变能:
W=UE/AL=(1/2)P L/A L =(1/2)=2/2E
设平板的厚度为1个单位,半径为C的裂纹 其弹性应变能为:
UE = W 裂纹的体积=W (C2×1) = C22/2E
将该式求导可得:
平面应力状态下扩展单位长度的微裂纹释放应变能为:
裂纹扩展弹性应变能的变化dUE; 裂纹扩展新生表面所增加的表面能dUS = 4dCs (产生的 新裂纹长度为2dC);
外力对平板作功dUW。 两个状态与(b) 相比自由能之差分别为:
UC-UB= dUE + dUS +dUW和UD-UB= dUE + dUS +dUW
应 力
2CJ
L 2(C+dC) 裂纹失稳而扩展的能量判据:
裂纹的形成
表面裂纹:一个硬质粒子(如研磨粒子)受到力P的作用 而穿入脆性固体的表面,可能引起局部屈服,塑性形变 造成的残余应力将激发出表面裂纹。
形成于表面加工(切割、研磨、抛光)或粒子冲刷过程。
残余应力
侧向裂纹 径向裂纹
材料表面受 研磨粒子损 伤后形成的 裂纹
工艺缺陷
工艺缺陷包括大孔洞、大晶粒、夹杂物等,形成于材料 制备过程中。与原料的纯度、颗粒尺寸、粒度的分布、 颗粒形貌等有关。
无机材料物理性能
第五讲
2020年6月12日
第二章 无机材料脆性断裂与强度
断裂行为 理论结合强度 断裂理论
§2-1 脆性断裂现象
断裂现象
脆性断裂的断裂面
垮塌后的彩虹桥 脆 性 断 裂
断裂现象
1999年1月4日,我国重庆市綦江县 彩虹桥发生垮塌,造成:
40人死亡; 14人受伤; 直接经济损失631万元。
脆性断裂现象
断裂现象分类:
– 金属类:先是弹性形变,然后塑性形变, 直至断裂
– 高分子类:先是弹性形变(很大),然 后塑性形变,直至断裂
– 无机材料:先是弹性形变(较小),然 后不发生塑性形变(或很小) 而直接脆性断裂
脆性断裂现象
脆性断裂的特点
断裂前无明显的预兆 断裂处往往存在一定的断裂源 由于断裂源的存在,实际断裂强度 远远小于理论强度
107.5
65
42.5 1030 3020
例2 : 由材料热膨胀或收缩受到限制 形成的热应力引起
(a)
T0 L0
自由膨胀
T L0+L
固定支座对膨胀的约束
(b)
有下列关系: =E(- L/L)=E(T-To)
T<To, 即在冷却过程,得0,则材料中的内 应力为张应力,这种应力易使杆件断裂。
例3 : 材料中存在温度梯度形成的热应力P152
c a0
A 1 2
c
cc
a0
裂纹扩展的条件是:
A th
2 c
c a0
Er a0

c
Er 4c
Griffith断裂理论
应力集中强度理论 应力集中
流 体 的 流 动
材料中的裂纹型缺陷:材料中的伤痕、裂 纹、气孔、杂质等宏观缺陷。
力线n
裂纹 长度2c
力管 平板弹性体的受力情况
为了传递力,力线一定穿过材料组织到达固定端
例1:由坯釉热膨胀系数不同引起。上釉陶瓷: 釉的 热膨胀系数:1 ;坯体的热膨胀系数:2
1 >2
1<2
釉受较大拉力的作用 发生龟裂或坯向内侧弯曲
坯受较强的拉力作 用釉被拉离坯面
陶瓷的无釉坯料与上釉坯料的抗弯强度
P130
陶瓷的种类
粘土质绝缘子
无釉坯料 (kg/cm2)
735
上釉坯料 (kg/cm2)
断裂理论
§2-2 理论结合强度
固体的强度——固体材料抵抗破坏的能力 – 按破坏形式分:屈服强度 断裂强度 – 按讨论方式分:理论强度 实际强度
能量守衡理论
固体在拉伸应力下,由于伸长而储存了弹性应 变能,断裂时,应变能提供了新生断面所需的 表面能。
即:
th x/2=2s
其中:th 为理论强度; x为平衡时原子间距 的增量; :表面能。
1300 2.3 320 6.4 240 14.5 10.5 — 10.5 66.0 10 40.0 44.1 113
材料
Al2O3宝石 BeO MgO Si3N4热压 SiC Si3N4烧结 AlN
th
5000 3570 2450 3850 4900 3850 2800
c
64.4 23.8 30.1 100 95 29.5 60~ 100
脆性断裂现象
脆性断裂的微观过程
突发性裂纹扩展 裂纹的缓慢生长
强度
多孔质材料 高温材料 结构材料
玻璃 水泥 耐火材料 复合材料
电子电器材料
断裂 强度
材料的 强度 强度理论
光学材料 生物材料
耐摩擦材料 耐磨损材料
工具材料
气孔、晶粒、杂质、晶界 (大小、形状、分布)等宏观 缺陷
晶体结构,单晶多晶和非 晶体中的微观缺陷
裂纹尖端的弹性应力
裂纹尖端的弹性应 力沿x分布通式:
Ln Ln
2c 0 x
Ln =q(c, , x)
用弹性理论计算得:
裂纹尖端处的弹性应力分

Ln = {[1+ /(2x+ )] c 1/2 / (2x+ )1/2 + /(2x+
)}
当 x=0, Ln = [ 2(c/ )1/2+1]
当c>> ,即裂纹为扁平的锐裂纹 Ln = 2 (c/ )1/2
断裂强度
c = ( s E / 4c )1/2
考虑裂纹尖端的曲率半径是一个变数,即不等
于r0 ,其一般式为:
c =y ( s E / c )1/2
y是裂纹的几何(形状)因子。
裂纹模型
裂纹模型根据固体的受力状态和形变方式,分为三种基 本的裂纹模型,其中最危险的是张开型,一般在计算 时,按最危险的计算。
断裂理论
Orowan
高强度的固体必须要求E、γ大,a小,
模 型
γ约为aE/100,故理论结合强度可写成:
th
E 10
断裂强度理论值和测定值
材料
Al2O3晶须 铁晶须 奥氏型钢 硼 硬木 玻璃 NaCl Al2O3刚玉
Th
c
Kg/m
m2
th/ c
5 693 400 5000
由裂纹扩展的条件: (UW - UE )/ C US /C
及UE = UW /2

UE / C US /C
结论:在恒应力状态下,弹性应变能的增量大于扩展 单位裂纹长度的表面能增量时,裂纹失稳扩展。
在恒位移状态下,外力不作功,所以, UW=0 得裂纹扩展的条件:- UE / C US /C
的弹性力学应力集中理论,并将缺陷 视为椭园孔,未能讨论裂纹型的缺陷。
Inglis断裂理论
断裂理论
c
2c
σ
微裂纹端部的曲率对应于原子间距
Inglis断裂理论
断裂理论
孔洞两个端部的应力几乎取决于孔洞
的长度和端部的曲率半径而与孔洞的
形状无关,即:
A 2
c
A 1 2 c
a0
a
2 0
c
近似为 A 2
910
滑石瓷绝缘子 1330
1715
粘土质化学瓷 840
925
锆英石质化学 1740 瓷
2100
瓷砖
672
861
硬质瓷
364
490
上釉NaO—BaO—Al2O3—SiO2系微晶玻璃的抗弯强度
热膨胀系数(0—3000oC) 热膨胀 上釉温 抗弯强度
×10-7/oC
系数差 度
(kg/cm2)
坯料

(oC)
玻璃
在373K的沸水中
表面 273K
内部 373K
在273K的冰水浴中,表 面层趋于T=100 收缩,内层的收缩为零。
控制强度的三个参数
弹性模量E:取决于材料的组分、晶体的结构、 气孔。对其他显微结构较不敏感。
断裂能 f :不仅取决于组分、结构,在很大 程度上受到微观缺陷、显微结构的影响,是一 种织构敏感参数,起着断裂过程的阻力作用。 裂纹半长度c:材料中最危险的缺陷,其作用 在于导致材料内部的局部应力集中,是断裂的 动力因素。
断裂能
热力学表面能:固体内部新生单位原子面所吸 收的能量。 塑性形变能:发生塑变所需的能量。 相变弹性能:晶粒弹性各向异性、第二弥散质 点的可逆相变等特性,在一定的温度下,引起 体内应变和相应的内应力。结果在材料内部储 存了弹性应变能。 微裂纹形成能:在非立方结构的多晶材料中, 由于弹性和热膨胀各向异性,产生失配应变, 在晶界处引起内应力。当应变能大于微裂纹形 成所需的表面能,在晶粒边界处形成微裂纹。
相关文档
最新文档