反比例函数 教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《反比例函数》教学设计

一、教学目标

(一)、知识与技能目标:

①了解反比例函数的意义,理解反比例函数的概念;

②会求简单实际问题中的反比例函数解析式。

(二)、过程与方法目标:

①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;

②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。

(三)、情感与价值观目标:

①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;

②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。

二、教学重点反比函数的概念

三、教学难点例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度。

四、教学设计

(①教学程序设计;②教法设计;③学法设计;④教材的处理与媒体。)

一、通过对两个变量之间的反比例关系的讨论和探究,使学生感受彼此之间特殊的一一对应关系,从而加深对函数概念的理解。

(创设情境)

写出下列各关系:

1.长方形的长为6,宽y和面积x之间有什么关系?

2、长方形的面积为6,一边长x和另一边长y之间要有什么关系?)

两个相关联的量,一个量变化,另一个量也随着变化,如果两个变量的积是一个不为零的常数,我们就说这两个变量成反比例.借助正比例关系与反比例关系的类比,为问题的后续探究构建感性的氛围。

(请看下面几个问题:

探究:

问题1:北京到杭州铁路线长为1661km。一列火车从北京开往杭州,记火车全程的行驶时间为x(h),火车行驶的平均速度为y(km/h), (1)你能完成下列表格吗?

(2) Y与x成什么比例关系?能用一个数学解析式表示吗?)

(问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.

设它的一边长为x(米),请写出另一边的长y(米)与x的关系式.

根据矩形面积可知

x y=24,

即……)

使学生在体验探究的过程中,感受知识的形成过程,从而为知识的内化和正迁移创造了条件。

二、引导学生尝试自主、合作的学习,使学生经历知识构建和发现的过程,借此提出反比例函数的概念,培养了学生建模的意识、也发展了数学建模的能力。

(挑战自我

1、某住宅小区要种植一个面积为1000 平方米的矩形草坪,草坪长为 y米,宽为 x 米,则 y关于 x 的关系式为______;

2、已知北京市的总面积为1.68×104 平方千米,全市总人口为n 人,人均占有土地面积为s 平方千米,则s关于n的关系式为______;

3、京沪线铁路全程为1463 km,某列车平均速度为v(km/h),全程运行时间为t(h),

则v关于t的关系式为______。)

构建互动、和谐的课堂教学氛围,使学生对反比例函数概念完成从感性体验到理性认知的过渡。

(发现:

一般地,若变量y与x反比例,则有xy=k(k为常数,k≠0 ),也就是y= 。

归纳:上述几个函数都具有 y=的形式,一般地形如 y=(k是常数,k≠0)的函数叫做反比例函数. k叫做反比例函数的比例系数,且反比例函数的自变量x的值不能为零。)(练习

1、下列函数中,哪些是反比例函数?说出反比例函数的比例系数

⑴y = -3x;⑵y = 2x+1;⑶y=;⑷y =3(x-1)2+1;⑸y=(s是常数,s≠0);⑹ xy= - ;

⑺ x=-5y ;)

利用学生对反比例函数概念的初步认识,引导学生借助自主练习,进一步加大学生对该概念的正迁移力度。

三、利用阿基米德的“撬动地球”的历史故事,结合了学生的心理发展特点,很好的激发了学生对问题探究的兴趣。我们常说,于其让学生“苦学”,不如让学生“乐学”。

创设一种欲罢不能的心理氛围,从而使学生形成了问题探究的动机。进一步培养学生分析问题、解决问题的数学建模能力。

(背景知识

给我一个支点,我可以撬动地球!——阿基米德)

(【例1】如图,阻力为1000N,

阻力臂长为5cm.

设动力y(N),动力臂为x(cm)

(图中杠杆本身所受重力略去不计。杠杆平衡时:动力动力臂=阻力阻力臂)(1)求y关于x的函数解析式。

这个函数是反比例函数吗?如果是,请说出比例系数;

(2)求当x=50时,函数y的值,并说明这个值的实际意义;

(3)利用y关于x的函数解析式,

说明当动力臂长扩大到原来的n倍时,

所需动力将怎样变化?)

例题1涉及较多的《科学》学科的知识,学生在理解问题的背景时

有一定的难度,是本节教学的难点,教师在给出例题以前,有必要介绍一下“杠杆原理”,借助多媒体的教学辅助作用,使问题的出示显得活泼、直观,增强了问题的趣味性,从而更好的促使学生对问题的体验、探究。

(回顾与思考

练1. 一个三角形,一边长为 x cm,这边上的高为 y cm,它的面积为 25 cm2.求 (1) y 关于x的函数关系式,并判断是什么函数?(2)自变量x的取值范围 (3) 当 y = 10 时 x 的值.

练2.一个矩形的面积是20cm2,相邻的两条边长为xcm和y cm,那么变量y是x的函数吗?是反比例函数吗?为什么?

练3.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?)

在一次引导学生通过对以上问题的回顾与思考,更有效的促使学生亲历知识发生和发展的过程。很好的紧扣了本课时的过程性教学目标。

(课内练习:

1、已知反比例函数 y=kx-,

⑴说出比例系数;

⑵求当x=-10时函数的值;

⑶求当y= 2时自变量x的值。

2、设面积为10cm的三角形的一边长为a(cm),这条边上的高为h(cm),

⑴求h关于a的函数解析式及自变量a的取值范围;

⑵ h关于a的函数是不是反比例函数?如果是,请说出它的比例系数

⑶求当边长a=25cm时,这条边上的高。)

应该说,本课时的教法设计能很好的结合学生的心理发展特点和规律、结合学生的认知水平和经验、结合学生发展的能力要求。应该真正确立“以人为本”的教学理念。课堂教学中情景、例题、互动练习的设计;及多媒体的应用无不体现了这样的要求。四,借助学生自主进行的课时及所学问题的小结,辅之以教师对反馈问题的设计,应该在培养学生良好的思维品质(反思),在培养学生对问题看法的自我校正、自我反馈的意识和能力有一定的作用。

(通过这节课的学习,你有什么收获?)

(交流反思:

本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如y=(k是常数,k ≠0)的函数叫做反比例函数(proportional function).

k叫做反比例函数的比例系数,其中反比例函数的自变量x的值不能为零。)

(检测反馈

相关文档
最新文档