岩土塑性力学原理-广义塑性力学(郑颖人)知识分享186页PPT
岩土塑性力学原理—广义塑性力学(郑颖人)
2 zx
I
3
x
y
z
2
xy
yz zx
x
2 yz
2
y zx
2
z xy
II121(12
3 2
2
3
3
1
)
I31 2 3
应力张量第一 不变量 I1 ,是平均应力p的三倍。
26
应力张量分解及其不变量
应力张量
岩土材料的稳定性、应变软化、损伤、应变局部化
(应力集中)与剪切带等问题
11
岩土材料的试验结果
土的单向或三向固结压缩试验:土有塑性体变
初始加载:
卸载与再加载:
e e0 ln p
e ek k ln p
12
岩土材料的试验结果
土的三轴剪切试验结果:
(1)常规三轴
土有剪胀(缩)性; 土有应变软化现象;
3
第1章 概 论
岩土塑性力学的提出 岩土塑性力学及其本构模型发展方向 岩土材料的试验结果 岩土材料的基本力学特点 岩土塑性力学与传统塑性力学不同点 岩土本构模型的建立
4
岩土塑性力学的提出
材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
19世纪40年代末,提出Drucker塑性公论,经典塑性 力学完善;
1773年Coulomb提出的土质破坏条件,其后推广为 莫尔—库仑准则;
1957年Drucker提出考虑岩土体积屈服的帽子屈服面;
1958年Roscoe等人提出临界状态土力学,1963年提出 剑桥模型。岩土塑性力学建立。
岩土塑性力学简介(3)
p p p d1 dv , d2 d q , d3 d
f v f v ( ij , vp ) 等向硬化模型时 p f q f q ( ij , q ) f f ( ij , p )
vp f v ij f v ( p, q, ) qp f q ij f q ( p, q, ) p f ij f ( p, q, )
(1)塑性应变增量方向与应力增量的方向有关,因 而无法用一个塑性势函数确定塑性应变总量的方向,
5
岩土塑性力学简介
3 塑性位势理论(续)
但可确定三个分量的方向,即以三个分量作势面; (2)采用三个线性无关的分量塑性势函数; (3)dk不要求都大于等于零; (4)塑性势面可任取,一般取p、q、 ,也可取 σ1、σ2、σ3 ;屈服面不可任取,必须与塑性势面相应, 特殊情况相同; (5)三个屈服面各自独立,体积屈服面只与塑性体 变有关,而与塑性剪变无关; (6)广义塑性力学不能采用正交流动法则。
n H ( p ) F ( p, q, ) p 2 1 p k
子午平面上不封闭,π平面上封闭
(2)体积屈服面类型 ①压缩型:右图(a)②压缩剪胀型: 右图(b)③软化型
4.4 硬化定律的一般形式
硬化定律是给定应力增量条件下会引起多大塑性应变的一
条准则,也是从某屈服面如何进入后继屈服面的一条准则, 目的为求d(A或h)
13
岩土塑性力学简介
4 加载条件与硬化定律(续)
d hd h 1 d ij d ij ij A ij
硬化定律以引用何种硬化参量而命名 A的一般公式:混合硬化模型 ( ij ij , H ) 0
岩土塑性力学教学课件
岩土塑性力学教学课件岩土塑性力学教学课件岩土塑性力学①岩土的抗剪强度和刚度随压应力的增大而增大,其抗剪强度不仅由粘结力产生,而且由内摩擦角产生。
②岩土为多相材料,在各相等压作用下,岩土能产生塑性体积变化,称岩土的等压屈服特性。
③岩土材料在剪应力作用下可产生塑性体积应变,称岩土的剪胀性。
④由于岩体中存在软弱结构面和夹层,而抗拉和抗压强度明显不同,因而具有较强的各向异性性质。
①岩土的抗剪强度和刚度随压应力的增大而增大,其抗剪强度不仅由粘结力产生,而且由内摩擦角产生。
②岩土为多相材料,在各相等压作用下,岩土能产生塑性体积变化,称岩土的等压屈服特性。
③岩土材料在剪应力作用下可产生塑性体积应变,称岩土的剪胀性。
④由于岩体中存在软弱结构面和夹层,而抗拉和抗压强度明显不同,因而具有较强的各向异性性质。
2.1 岩土类材料的特点岩土类材料是由颗粒材料堆积或胶结而成,属摩擦型材料。
摩擦材料的特点是抗剪强度中含有摩擦力项,它的抗剪强度随压应力的增大而增大,因而岩土材料的屈服条件与金属材料明显不同。
我们称此为岩土的压硬性,即随压应力的增大岩土的抗剪强度与刚度增大。
岩土为多相材料,岩土颗粒间有孔隙,因而在各向等压作用下,岩土颗粒中的水、气排出,就能产生塑性体变,出现屈服。
而金属材料在各向等压作用下是不会产生塑性体变的。
一般称此为岩土的等压屈服特性。
由于岩土是摩擦材料,岩土的体应变还与剪应力有关,即在剪应力的作用下岩土会产生塑性体变(剪胀或剪缩),一般称为岩土的剪胀性(含剪缩)。
这在力学上表现为球张量与偏张量的交叉作用,即球应力会产生剪变(负值),这也是压硬性的一种表现;反之,剪应力会产生体变。
显然,纯塑性金属材料是不具有这一特性的。
基于岩土是摩擦材料,因而必须采用摩擦型屈服条件,并考虑体变与剪胀性。
现代岩土塑性力学必须反映这些特点,显示出岩土塑性的本色。
5.结论(1)广义塑性力学消除了经典塑性力学中的传统塑性势假设、正交流动法则假设与不考虑应力主轴旋转的假设,从固体力学原理直接导出了广义塑性位势理论。
塑性力学 ppt课件
或者
l l n ij i j S n ij l i 2 S n n
2 n
(求和约定的缩写形式)
一点的应力状态及应力张量
一点的应力状态:是指通过变形体内某点的单元体所有 截面上的应力的有无、大小、方向等情况。 一点的应力状态的描述: 数值表达:x=50MPa,xz=35MPa 图示表达:在单元体的三个正交面上标出(如图 1-2) 张量表达: (i,j=x,y,z) x xy xz
1 2 2 3 3 1
x
I3 . .
xy xz y yz . z
23 1
讨论:
1. 2. 3. 4. 5. 6. 可以证明,在应力空间,主应力平面是存在的; 三个主平面是相互正交的; 三个主应力均为实根,不可能为虚根; 应力特征方程的解是唯一的; 对于给定的应力状态,应力不变量也具有唯一性; 应力第一不变量I1反映变形体体积变形的剧烈程 度,与塑性变形无关;I3也与塑性变形无关; I2与塑性 变形有关。 7. 应力不变量不随坐标而改变,是点的确定性的判据。
弹性、塑性变形的力学特征
可逆性:弹性变形——可逆;塑性变形——不可逆 -关系:弹性变形——线性;塑性变形——非线性 与加载路径的关系:弹性——无关;塑性——有关 对组织和性能的影响:弹性变形——无影响;塑性变形—— 影响大(加工硬化、晶粒细化、位错密度增加、形成织构等) 变形机理:弹性变形——原子间距的变化; 塑性变形——位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变 形的发生必先经历弹性变形;在材料加工过程中,工件的塑 性变形与工模具的弹性变形共存。
金属塑性加工原理
弹塑性力学绪论ppt课件
14
1.2 弹塑性力ቤተ መጻሕፍቲ ባይዱ发展历史
• 1678年胡克(R. Hooke)提出弹性体的变形和所 受外力成正比的定律。
• 19世纪20年代,法国的纳维(C. I. M. H. Navier )、柯西(A. I. Cauchy)和圣维南(A. J. C. B. de Saint Venant)等建立了弹性理论
• 从1970年前后至今岩土本构模型的研究十分活跃, 建立的岩土本构模型也很多。
• 1982年Zienkiewicz提出广义塑性力学的概念,指出 岩土塑性力学是传统塑性力学的推广。
17
1.3 塑性力学的主要内容
• (1)建立屈服条件。 • 对于给定的应力状态和加载历史,确定材料是否超出
弹性界限而进入塑性状态,即材料是否屈服 • (2)判断加载、卸载。 • 加载和卸载中的应力应变规律不同,需要建立准则进
5
1.1 基本概念
• 弹塑性力学是固体力学的一个重要分支,是 研究弹性和弹塑性物体变形规律的一门科学。 应用于机械、土木、水利、冶金、采矿、建 筑、造船、航空航天等广泛的工程领域。
• 目的:(1)确定一般工程结构受外力作用时 的弹塑性变形与内力的分布规律;(2)确定 一般工程结构物的承载能力;(3)为进一步 研究工程结构物的振动、强度、稳定性等力 学问题打下必要的理论基础。
弹塑性力学
1
课程安排
• 授课方式:讲座,讨论,练习 • 考试方式:闭卷
2
参考书目
• ≤应用弹塑性力学≥,徐秉业、刘信声、著, 北京:清华大学出版社,1995
• ≤岩土塑性力学原理≥,郑颖人、沈珠江、龚 晓南著,北京:中国建筑工业出版社,2002
• ≤弹塑性力学引论≥,杨桂通编著,北京:清 华大学出版社,2004
岩土塑性力学原理_广义塑性力学_郑颖人_2004
⎧J1 = (σx −σm) +(σy −σm) +(σz −σm) = Sx + Sy + Sz = 0 ⎪ 1 2 2 2 J2 = 6 (σx −σy )2 +(σy −σz )2 +(σz −σx )2 +6(τxy +τyz +τzx) ⎪ ⎨ 1 2 2 2 = 6 (σx −σy ) +(σy −σz ) +(σz −σx ) = 1 SijSij (八面体剪应力倍 2 ⎪ ⎪J = S S S +2τ τ τ − S τ 2 − S τ 2 − S τ 2 = S S S数) xy yz zx x yz y zx z xy 1 2 3 (与剪应力方向有 ⎩3 x y z 关)
0⎤ ⎡σ m 0 ⎢0 σ 0 ⎥ = σ mδ ij m ⎥ ⎢ 0 σm⎥ ⎢0 ⎦ ⎣
⎡ S x τ xy τ xz ⎤ ⎥ ⎢ Sij = σ ij − σ mδ ij = ⎢τ yx S y τ yz ⎥ ⎢τ zx τ zy S z ⎥ ⎦ 27 ⎣
应力张量分解及其不变量
应力偏量Sij的不变量
则 2 2 rσ = x + y = :
= τ π = PQ
1 3
(
(σ 1 − σ 2 ) + (σ 2 − σ 3 ) + (σ 3 − σ 1 )
2 2
平面矢径大小)
2
π
y 1 2σ 2 − σ 1 − σ 3 1 tan θσ = = = µσ x 3 σ1 − σ 3 3
(
π
平面矢径方向)
⎧ I1 =σ 1 +σ 2 +σ 3 ⎪ ⎨ I 2 =−(σ 1σ 2 +σ 2σ 3 +σ 3σ 1 ) ⎪ I 3 =σ 1σ 2σ 3 ⎩
《岩土弹塑性力学》课件
02
数值模拟的精度和稳 定性
数值模拟的精度和稳定性是评价数值 模拟技术的重要指标,需要不断改进 数值方法和模型参数,提高模拟结果 的可靠性和精度。
03
数值模拟的可视化和 后处理
可视化技术和后处理技术是数值模拟 的重要组成部分,能够直观地展示模 拟结果和进行结果分析,需要不断改 进和完善相关技术。
THANKS
感谢您的观看
弹塑性力学的未来发展
随着科技的不断进步和应用领域的拓展,弹塑性力学将进 一步发展并应用于更广泛的领域,如新能源、环保、生物 医学等。
Part
02
岩土材料的弹塑性性质
岩土材料的弹性性质
弹性模量
表示岩土材料在弹性范围内抵抗变形的能力,是 材料刚度的度量。
泊松比
描述材料横向变形的量,表示材料在单向受拉或 受压时,横向变形的收缩量与纵向变形的关系。
各向同性假设
假设材料在各个方向上具 有相同的物理和力学性质 ,即材料性质不随方向变 化而变化。
弹塑性力学的历史与发展
弹塑性力学的起源
弹塑性力学起源于20世纪初,随着材料科学和工程技术的 不断发展,人们对材料在复杂应力状态下的行为有了更深 入的认识。
弹塑性力学的发展
弹塑性力学经过多年的发展,已经形成了较为完善的理论 体系和研究方法,为解决工程实际问题提供了重要的理论 支持。
《岩土弹塑性力学》 PPT课件
• 弹塑性力学基础 • 岩土材料的弹塑性性质 • 岩土弹塑性本构模型 • 岩土弹塑性力学的应用 • 岩土弹塑性力学的挑战与展望
目录
Part
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
是一门研究材料在弹性变形和塑性变形共同作用下的力学行为的学科。
11_岩土屈服条件2
郑颖人著,《岩土塑性力学原理》材料受力的三个阶段弹性→塑性→破坏弹性力学塑性力学破坏力学断裂力学等T 准则出现建立起经典塑性力学(岩土)塑性力学发展历史1864年Tresca 准则出现,建立起经典塑性力学;年代末提出塑性公论经典塑性19世纪40年代末,提出Drucker 塑性公论,经典塑性力学完善;1773年Coulomb 提出的土质破坏条件,其后推广为莫尔—库仑准则;1957年Drucker 提出考虑岩土体积屈服的帽子屈服面;1958年Roscoe 等人提出临界状态土力学,1963年提出剑桥模型。
岩土塑性力学建立。
❑岩土材料的基本力学特点岩土系颗粒体堆积或胶结而成的多相体,算多相体的摩擦型材料。
基本力学特性:压硬性等压屈服特性剪胀性应变软化特性与应力路径相关性考虑等向压缩屈服屈服准则要考虑剪切屈服与体积屈服,剪切屈服中要考虑平均应力;⎧q p ⎪⎪⎨+=s p v K K ε⎪⎪⎩+-=s p G qG p γ❑岩土塑性力学与传统塑性力学不同点考虑摩擦强度;考虑体积屈服;考虑应变软化;不存在塑性应变增量方向与应力唯一性;不存在塑性应变增量方向与应力唯一性不服从正交流动法则不服从正交流动法则;应考虑应力主轴旋转产生的塑性变形。
应考虑应力主轴旋转产生的塑性变形岩土土材料料的各各种剪剪切屈屈服面面❑岩土材料的临界状态线通过分析粘土的三轴剪切试验结果可见排水和不排水两类试果,可见,排水和不排水两类试验的破坏点均落在一条直线上。
这条线表示了一种临界状态,称条线表示了种临界状称为临界状态线(Critical State Line)。
临界状态线的特点▪是一条破坏状态线,或叫极限状态线。
无论是排水与不排水试验,或通过任何种应力路径只要或通过任何一种应力路径,只要达到这一状态就发生破坏。
试样产生很大的剪切变形而▪试样产生很大的剪切变形,而p 、q ,体积(或比容和孔隙比)均不再发生变化。
对既有硬化又有软正常固结粘土排水与不排水试验的破坏线再发变化对既有硬化又有软化的岩土材料来说,是硬化面与软化面的分界线。
岩土塑性力学的理论基础
岩土塑性力学的理论基础——广义塑性力学原理郑颖人刘元雪( 解放军后勤工程学院,重庆400041)Theoretical Bases of Geotechnical Plastic Mechanic—s—Principle ofGeneralized Plastic MechanicsZheng Yingren,Liu Yuanxue(Logistical Engieering University of PLA, Chongqing 400041)摘要实验表明,经典塑性力学难以反映岩土材料的变形机制,究其原因在于经典塑性力学作了传统塑性势假设、关联流动法则假设与不考虑应力主轴旋转的假设。
广义塑性力学就是放弃这些假设,由固体力学原理直接导出塑性公式,它既适用于岩土材料,也适用于金属。
关键词塑性力学塑性势屈服面应力主轴旋转Abstract Experiments show, the classic plastic mechanics is difficult to reflect the real deformation mechanism of geometerials, the reason is that the classic plastic mechanics is based on the hypothesis of the traditional potential theory, the hypothesis of the associated flow rule and the hypothesis of not considering rotation of stress principal axes. The generalized plastic mechanics gives up all these hypothesises and gets all its plastic formulas from solid mechanics directly, so it can be used for both geomaterials and metal.Key words plastic mechanics plastic potential yield surface rotation of stress principal axes1 经典塑性力学与岩土变形机制的矛盾岩土属于摩擦材料,与金属有很大不同,除有塑性剪应变外,还有塑性体应变。
塑性力学基础知识ppt课件
• 根据不同应力路径所进行的实验,可 以定出从弹性阶段进入塑性阶段的各 个界限。这个分界面即称为屈服面, 而描述这个屈服面的数学表达式称为 屈服函数或称为屈服条件。
12
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
19
简单弹塑性力学问题 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
• 梁的弯曲 • 圆柱体的扭转 • 旋转圆盘 • 受内压或外压作用的厚壁筒和
厚壁球体
20
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
塑性力学的任务
• 当作用在物体上的外力取消后,物 体的变形不完全恢复,而产生一部 分永久变形时,我们称这种变形为 塑性变形,研究这种变形和作用力 之间的关系,以及在塑性变形后物 体内部应力分布规律的学科称为塑 性力学。
2
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
屈服条件的概念,
• 屈服条件又称塑性条件,它是判断 材料处于弹性阶段还是处于塑性阶 段的准则。.
广义塑性力学课件
岩石的破裂分析
总结词
岩石的破裂分析涉及到岩石材料的强度 、断裂和损伤演化。
VS
详细描述
在岩石工程中,如隧道开挖、边坡稳定等 ,岩石的破裂分析至关重要。岩石在复杂 应力状态下会发生破裂和失稳,这需要利 用塑性力学的基本原理来描述其非线性行 为和损伤演化。研究岩石的破裂分析有助 于预测工程结构的稳定性和安全性。
02
材料科学
广义塑性力学为材料科学提供了更深入的理论基础,有助于理解材料的
微观结构和宏观行为之间的关系,为新材料的开发和现有材料的改进提
供了指导。
03
学科发展
广义塑性力学的发展推动了相关学科的发展,如计算力学、实验力学和
固体力学等。它为解决复杂工程问题提供了更有效的数值模拟和实验方
法。
广义塑性力学的发展历程
岩石破裂
岩石破裂是地质工程和采矿工程中的重要问题,广义塑性力学在岩石破裂的研究中 发挥了重要作用。
岩石是一种脆性材料,但在一定条件下可以表现出塑性行为。广义塑性力学可以帮 助研究岩石在复杂应力状态下的破裂和失稳行为。
通过建立岩石的广义塑性本构模型,可以模拟岩石在复杂应力场中的破裂过程,预 测岩石的稳定性,为地质工程和采矿工程提供安全性和经济性的保障。
广义塑性力学课件
REPORTING
• 广义塑性力学概述 • 广义塑性力学的基本理论 • 广义塑性力学的应用 • 广义塑性力学的挑战与展望 • 案例分析
目录
PART 01
广义塑性力学概述
REPORTING
定义与特性
定义
广义塑性力学是一门研究材料在塑性 状态下行为的学科。它考虑了更广泛 的材料行为,包括非线性、非均匀性 和时间依赖性等特性。
描述材料在塑性变形过程中硬化行为的模型。
2021塑性力学塑性本构关系.完整资料PPT
第二式也可以写成 Sij 2Geij ,把它代入应力强度的表达式
就可以得到下面的第二式, 然后有 Gi /3i 再代回上面第
一式得到下面的第二式.
• 所以也可写成如下形式
eij 23ii Sij
i 3Gi
• 当应力从加载面卸载, 也服从广义Hooke定律,写成增量形式
dii 1 E 2dii
d e ij2 1 G d S ij
塑性力学塑性本构关系
第三章 塑性本构关系—全量理论和增量理论
引言:塑性变形规律的复杂性, 到目前为止这个塑性本构关系 问题还没有得到满意的解决.现在广义采用的理论分为两大类:
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊 柳辛)理论.
力 p i , 在位移边界 S u 上给 定位移为 u i , 要求确定物 体内处于塑性变形状态的各
S : pi
z
V
Fi
点的应力 i j , 应变 i j 和位
移 u i .按照全量理论,确定这 O
些基本未知量的基本方程有
x
y
Su :ui
平衡方程 ij,j Fi 0
几何方程
ij
1 2
ui.j
E 2G 改变.
这就是Prandtl-Reuss流动法则.
我们来证明一下: 将上面得到的 代入Levy-Mises流动法则就得到弹塑性硬化材料的增量型本构方程:
其中
是卸载或中性变载,
是加载.
由应力和应变的分解式,即 下面我们来看一下这个系数等于什么?
现在定义应变增量强度为
ij S ij ij m , ij e ij ijm
塑性力学第五章本构关系ppt课件
(5-2)
将三个正应变相加,得:
kk
kk
2G
3
E
mkk
1 2
E
kk
记:平均正应变
m
1 3
kk
体积弹性模量 K E / 3(1 2 )
则平均正应力与平均正应变的关系:
m 3K m
(5-4)
(5-2)式用可用应力偏量 sij 和应变偏量 eij 表示为
1 eij 2G sij
(5-5)
包含5个独立方程
利用Mises屈服条件
J 2
2 s
2 s
3,
可以得到
本构关系
d dijdij d 3d
2 J 2
2 s 2 s
将(5-41)式代回(5-39)式,可求出
(5-41)
sij
d ij d
2 sdij d
2 sdij 3d
(5-44)
在(5-39)式中,给定 sij 后不能确定 dij ,但反之却可由 dij
确定 sij 如下:
J 2
1 2
sij sij
1
2(d)2
dijdij ,
将(5-38)式与(5-41)式加以比较就发现:
dW p s d s d
(5-45)
对于刚塑性材料 dW dW p
3、实验验证
本构关系
理想塑性材料与Mises条件相关连的流动法则:
d
p ij
d sij
对应于π平面上,d与p 二S 向量在由坐标原点发出的同一条射线上。
sij
(5-5)
We
1 2G
J 2
1
2
1 G 2
2
1
2
1