无机材料科学基础教程课件
合集下载
无机材料科学基础课件_ppt课件
![无机材料科学基础课件_ppt课件](https://img.taocdn.com/s3/m/46809a03aaea998fcc220e78.png)
Hari Bala
HPU
孟哈日巴拉
相律应用必须注意以下四点: 1.只能处理真实的热力学平衡体系。
2.相律表达式中的“2”是代表外界条件温度 和压力。如果研究的体系为固态物质,可以忽略
压力的影响,相律中的“2”应为“1”。 3.必须正确判断独立组分数、独立化学反应 式、相数以及限制条件数,才能正确应用相律。 4.自由度只取 0 或 0 以上的正值。
Hari Bala
HPU
孟哈日巴拉
相平衡的研究方法
相图即平衡状态图,反映的是体系所处的热力学平衡状态, 与达平衡所需的时间无关。 平衡态 一个不随时间而发生变化的状态。 相图是在实验结果的基础上制作的,所以测量方法、测试 的精度等都直接影响相图的准确性和可靠性。 研究凝聚系统相平衡,有二种基本方法:动态法和静态法。
相
系统中具有相同物理与化学性质的完全均匀部分的总和称为相。
特点: 1、相与相之间有界面。各相可以用机械方法
加以分离,越过界面时性质发生突变。 2、 一个相必须在物理性质和化学性质上都是均匀的, 这里的“均匀”是指一种微观尺度的均匀,但一个相不 一定只含有一种物质。 3、一种物质可以有几个相。同一个相不一定连续。
Hari Bala
HPU
孟哈日巴拉
相数(P):一个系统中所含相的数目,叫做相数,以P表示。 按照相数的不同,系统可分为: 单相系统(P=1) 二相系统(P=2) 三相系统(P=3)等等。 含有两个相以上的系统,统称为多相系统。
1、气体 不论有多少种气体都只可能有一个气相。 对于系统中的气体,因其能够以分子形式按任何比例互相均 匀混合。
##
注意:指的平衡不是在高压条件
Hari Bala
HPU
孟哈日巴拉
HPU
孟哈日巴拉
相律应用必须注意以下四点: 1.只能处理真实的热力学平衡体系。
2.相律表达式中的“2”是代表外界条件温度 和压力。如果研究的体系为固态物质,可以忽略
压力的影响,相律中的“2”应为“1”。 3.必须正确判断独立组分数、独立化学反应 式、相数以及限制条件数,才能正确应用相律。 4.自由度只取 0 或 0 以上的正值。
Hari Bala
HPU
孟哈日巴拉
相平衡的研究方法
相图即平衡状态图,反映的是体系所处的热力学平衡状态, 与达平衡所需的时间无关。 平衡态 一个不随时间而发生变化的状态。 相图是在实验结果的基础上制作的,所以测量方法、测试 的精度等都直接影响相图的准确性和可靠性。 研究凝聚系统相平衡,有二种基本方法:动态法和静态法。
相
系统中具有相同物理与化学性质的完全均匀部分的总和称为相。
特点: 1、相与相之间有界面。各相可以用机械方法
加以分离,越过界面时性质发生突变。 2、 一个相必须在物理性质和化学性质上都是均匀的, 这里的“均匀”是指一种微观尺度的均匀,但一个相不 一定只含有一种物质。 3、一种物质可以有几个相。同一个相不一定连续。
Hari Bala
HPU
孟哈日巴拉
相数(P):一个系统中所含相的数目,叫做相数,以P表示。 按照相数的不同,系统可分为: 单相系统(P=1) 二相系统(P=2) 三相系统(P=3)等等。 含有两个相以上的系统,统称为多相系统。
1、气体 不论有多少种气体都只可能有一个气相。 对于系统中的气体,因其能够以分子形式按任何比例互相均 匀混合。
##
注意:指的平衡不是在高压条件
Hari Bala
HPU
孟哈日巴拉
无机材料科学基础课件
![无机材料科学基础课件](https://img.taocdn.com/s3/m/33efa0f9c8d376eeaeaa31db.png)
放热峰
吸热峰
Hari Bala
HPU
孟哈日巴拉
产生放热效应一般有以下几种情况: 不稳定变体转变为稳定变体的多晶转变现象; 无定形物质变成结晶物质; 从不平衡介质中吸收气体(如氧化反应); 某些不产生气体的固相反应(或在产生气体的条件下放热 总结: 差热分析不仅可以用来准确地测出物质的相变温度,而 效应很大,因而超过气体的膨胀所吸收的热量时); 且也可以用来鉴定未知矿物,因为每一矿物都具有一定的 由熔融态转变成晶态; 差热分板特征曲线。在研究相图中如果采用差热分析、 X 微晶玻璃的核化过程。 光、显微镜等几种分析技术配合,将会获得更好的结果。
产生吸热效应一般有以下几种情况: 矿物受热分解放出二氧化碳、水蒸气或其它气体; 由晶态转变为熔融态; 可逆多晶转变等(一般是指从低温相转变成高温相)。
Hari Bala
HPU
孟哈日巴拉
(3)热膨胀曲线法 材料在相变时常常伴随着体积变化(或长度变化)。如果 测量试样长度 L随温度变化的膨胀曲线,就可以通过曲线上 的转折点找到相应的相变点。假如有一系列不同组成试样的 膨胀曲线,就可以根据曲线转折点找到相图上一系列对应点, 把相图上同类型的点连结起来就得到相图。
Hari Bala
HPU
孟哈日巴拉
相 律
相平衡的一般规律 吉布斯(W.Gibbs) 1876年导出了多相平衡系统的普遍规律— 相律。 相律的数学表达式为: f= C - P + n (6-1) 一般情况下,只考虑温度和压力对系统的平衡状态的影响, 即n=2,则相律表达式为: f= C - P + 2 (6-2) 凝聚系统的相律公式为: f= C - P + 1
Hari Bala
HPU
吸热峰
Hari Bala
HPU
孟哈日巴拉
产生放热效应一般有以下几种情况: 不稳定变体转变为稳定变体的多晶转变现象; 无定形物质变成结晶物质; 从不平衡介质中吸收气体(如氧化反应); 某些不产生气体的固相反应(或在产生气体的条件下放热 总结: 差热分析不仅可以用来准确地测出物质的相变温度,而 效应很大,因而超过气体的膨胀所吸收的热量时); 且也可以用来鉴定未知矿物,因为每一矿物都具有一定的 由熔融态转变成晶态; 差热分板特征曲线。在研究相图中如果采用差热分析、 X 微晶玻璃的核化过程。 光、显微镜等几种分析技术配合,将会获得更好的结果。
产生吸热效应一般有以下几种情况: 矿物受热分解放出二氧化碳、水蒸气或其它气体; 由晶态转变为熔融态; 可逆多晶转变等(一般是指从低温相转变成高温相)。
Hari Bala
HPU
孟哈日巴拉
(3)热膨胀曲线法 材料在相变时常常伴随着体积变化(或长度变化)。如果 测量试样长度 L随温度变化的膨胀曲线,就可以通过曲线上 的转折点找到相应的相变点。假如有一系列不同组成试样的 膨胀曲线,就可以根据曲线转折点找到相图上一系列对应点, 把相图上同类型的点连结起来就得到相图。
Hari Bala
HPU
孟哈日巴拉
相 律
相平衡的一般规律 吉布斯(W.Gibbs) 1876年导出了多相平衡系统的普遍规律— 相律。 相律的数学表达式为: f= C - P + n (6-1) 一般情况下,只考虑温度和压力对系统的平衡状态的影响, 即n=2,则相律表达式为: f= C - P + 2 (6-2) 凝聚系统的相律公式为: f= C - P + 1
Hari Bala
HPU
无机材料科学基础晶体结构缺陷PPT课件
![无机材料科学基础晶体结构缺陷PPT课件](https://img.taocdn.com/s3/m/dc9cdd6c680203d8cf2f2465.png)
16
第16页/共73页
表2-7为由理论公式计算的缺陷浓度。由表中数据可见,随⊿Gf升高,温度降 低,缺陷浓度急剧下降。
当⊿Gf不太大,温度较高时,晶体中热缺陷的浓度可达百分之几。
17
第17页/共73页
§4-2 非热力学平衡态点缺陷
热平衡态点缺陷:纯净和严格化学配比的晶体中,由于体系能量涨落而形
成的,浓度大小取决于温度和缺陷形成能。
注意:这种空位表示的是原子空位。对于象NaCl这样的离子晶体,仍然当作原子晶体处 理。Na+被取走时,一个电子同时被带走,留下一个Na原子空位;Cl-被取走时,仍然以Cl 原子的形态出去,并不把所获得的电子带走。这样的空位是不带电的。 2.填隙原子:Mi和Xi分别表示M和X原子处在间隙位置上。 3.错放位置:MX表示M原子被错放到X位置上。
P2 4
21
第21页/共73页
4.溶质原子:LM和SX分别表示L溶质处在M位置,S溶质处在 X位置。例如,CaCl2在KCl中的固溶体,CaK表示Ca处在K的 位置;若Ca处在间隙位置则表示为Cai。
5.自由电子及空穴:用e′和h· 分别表示自由电子和电子空穴。 “′”和“·”表示一个单位负电荷和一个单位正电荷。
※ 热缺陷的浓度随温度的上升而呈指数上升。一定温 度下,都有一定浓度的热缺陷。
10
第10页/共73页
三.平衡态热缺陷浓度
热缺陷是由于热起伏引起的,在一定温度下,当热缺陷的产生与复合过程达到热 力学平衡时,它们具有相同的速率。在热平衡条件下,热缺陷的数目和晶体所处 的温度有关。即:热缺陷浓度是温度的函数。 所以在一定温度下,热缺陷的数目可通过热力学中自由能的最小原理来进行计算。 推导过程如下:
陷——本征点缺陷。
第16页/共73页
表2-7为由理论公式计算的缺陷浓度。由表中数据可见,随⊿Gf升高,温度降 低,缺陷浓度急剧下降。
当⊿Gf不太大,温度较高时,晶体中热缺陷的浓度可达百分之几。
17
第17页/共73页
§4-2 非热力学平衡态点缺陷
热平衡态点缺陷:纯净和严格化学配比的晶体中,由于体系能量涨落而形
成的,浓度大小取决于温度和缺陷形成能。
注意:这种空位表示的是原子空位。对于象NaCl这样的离子晶体,仍然当作原子晶体处 理。Na+被取走时,一个电子同时被带走,留下一个Na原子空位;Cl-被取走时,仍然以Cl 原子的形态出去,并不把所获得的电子带走。这样的空位是不带电的。 2.填隙原子:Mi和Xi分别表示M和X原子处在间隙位置上。 3.错放位置:MX表示M原子被错放到X位置上。
P2 4
21
第21页/共73页
4.溶质原子:LM和SX分别表示L溶质处在M位置,S溶质处在 X位置。例如,CaCl2在KCl中的固溶体,CaK表示Ca处在K的 位置;若Ca处在间隙位置则表示为Cai。
5.自由电子及空穴:用e′和h· 分别表示自由电子和电子空穴。 “′”和“·”表示一个单位负电荷和一个单位正电荷。
※ 热缺陷的浓度随温度的上升而呈指数上升。一定温 度下,都有一定浓度的热缺陷。
10
第10页/共73页
三.平衡态热缺陷浓度
热缺陷是由于热起伏引起的,在一定温度下,当热缺陷的产生与复合过程达到热 力学平衡时,它们具有相同的速率。在热平衡条件下,热缺陷的数目和晶体所处 的温度有关。即:热缺陷浓度是温度的函数。 所以在一定温度下,热缺陷的数目可通过热力学中自由能的最小原理来进行计算。 推导过程如下:
陷——本征点缺陷。
无机材料科学基础PPT课件
![无机材料科学基础PPT课件](https://img.taocdn.com/s3/m/f41bcdf1561252d381eb6e88.png)
第三章 晶体结构缺陷——3.4 非化学计量化合物
3.4 非化学计量化合物
资源加工与生物工程学院
非化学计量化合物:实际化合物中负离子与正离子 的比例不符合定比或倍比定律的化合物。
特点: 1)产生及缺陷浓度与气氛性质、压力有关; 2)可看作是本身高低氧化态之间的固溶体;
第三章 晶体结构缺陷——3.4 非化学计量化合物
根据质量物作是用P型定半律导体K。 [OiP'O']2[1h/2•]2
为什么TiO2-x是一种n型半导体?
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
色心、色心的产生及恢复
“色心”——由于电子补偿而引起的一种缺陷。
F-色心:负离子空位+电子
X、γ、中子或电子射线辐照某些晶体会产生颜色。 原因:由于辐照破坏晶格,产生了各类点缺陷。为在缺 陷区域保持电中性,过剩电子或电子空穴处于缺陷位置上。 点缺陷上的电荷具有一系列分离的允许能级,相当于在可见 光谱区域的光子能级,能吸收一定波长的光,使材料呈现某 种颜色。 把经辐照而变色的晶体加热,能使缺陷扩散掉,使辐照 破坏得到修复,晶体失去颜色。
[e]
P6 O2
1
PZn
P2 O2
1
Zn不完全电离时:
[e]
P4 O2
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
实测ZnO电导率与氧
-2.1
分压的关系支持了单电荷
间隙模型,即后一种是正
-2.3
确的。
logσ
-2.5
-2.7
0.6
1.0
1.4
1.8
2.2
Log PO2 (mmHg)
3.4 非化学计量化合物
资源加工与生物工程学院
非化学计量化合物:实际化合物中负离子与正离子 的比例不符合定比或倍比定律的化合物。
特点: 1)产生及缺陷浓度与气氛性质、压力有关; 2)可看作是本身高低氧化态之间的固溶体;
第三章 晶体结构缺陷——3.4 非化学计量化合物
根据质量物作是用P型定半律导体K。 [OiP'O']2[1h/2•]2
为什么TiO2-x是一种n型半导体?
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
色心、色心的产生及恢复
“色心”——由于电子补偿而引起的一种缺陷。
F-色心:负离子空位+电子
X、γ、中子或电子射线辐照某些晶体会产生颜色。 原因:由于辐照破坏晶格,产生了各类点缺陷。为在缺 陷区域保持电中性,过剩电子或电子空穴处于缺陷位置上。 点缺陷上的电荷具有一系列分离的允许能级,相当于在可见 光谱区域的光子能级,能吸收一定波长的光,使材料呈现某 种颜色。 把经辐照而变色的晶体加热,能使缺陷扩散掉,使辐照 破坏得到修复,晶体失去颜色。
[e]
P6 O2
1
PZn
P2 O2
1
Zn不完全电离时:
[e]
P4 O2
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
实测ZnO电导率与氧
-2.1
分压的关系支持了单电荷
间隙模型,即后一种是正
-2.3
确的。
logσ
-2.5
-2.7
0.6
1.0
1.4
1.8
2.2
Log PO2 (mmHg)
无机材料科学基础23页PPT
![无机材料科学基础23页PPT](https://img.taocdn.com/s3/m/cadb2cec84868762cbaed502.png)
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
无机材料科学基础
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢
无机材料科学基础
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢
无机材料科学基础表面与界面ppt学习教案
![无机材料科学基础表面与界面ppt学习教案](https://img.taocdn.com/s3/m/05ba034803020740be1e650e52ea551810a6c9b0.png)
提高自身专业素养以适应行业发展需求
深入学习无机材料科学知识
增强实践能力和创新能力
不断学习和掌握无机材料科学领域的新知 识、新技术和新方法。
通过参与科研项目、实验课程等实践活动 ,提高实践能力和创新能力。
关注行业发展趋势和前沿动态
提高跨学科综合素质
关注无机材料领域的最新研究成果和前沿 动态,了解行业发展趋势和市场需求。
透射电子显微镜(TEM)表征
原理
利用高能电子束穿透样品,通过检测透过样品的电子束或 衍射电子等信号,获得样品的内部结构和晶体信息。
应用
观察无机材料的晶体结构、晶格缺陷、位错和层错等,可 分析材料的晶体学性质和相变过程。
优点
分辨率极高,可揭示材料内部结构和晶体缺陷的详细信息 。
原子力显微镜(AFM)表征
学习相关学科知识,如物理学、化学、工程 学等,提高跨学科综合素质和解决问题的能 力。
THANKS
感谢观看
无机材料表面与界面表征技
05
术
扫描电子显微镜(SEM)表征
原理
利用高能电子束在样品表面扫描,通过检测样品发射的次级电子 或背散射电子等信号,获得样品表面形貌和组成信息。
应用
观察无机材料表面形貌、颗粒大小、分布和团聚情况等,可分析材 料表面的微观结构和缺陷。
优点
分辨率高、景深大、立体感强,可直观观察材料表面形貌。
原理
利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作 用力,从而达到检测的目的,具有原子级的分辨率。
应用
观察无机材料表面的原子排列、表面粗糙度、表面电势和摩擦力等 ,可分析材料表面的物理和化学性质。
优点
无需真空环境,可观察导体和非导体样品,提供三维表面形貌信息 。
《无机材料科学基础》绪论PPT课件
![《无机材料科学基础》绪论PPT课件](https://img.taocdn.com/s3/m/45d636c114791711cd79179e.png)
12
2021/3/12
13
2021/3/12
14
2021/3/12
15
• 飞机和材料
从莱特兄弟实现飞行的梦想以来,航空和航天器发生了巨变。为了飞得快 和远,就要采用强度高和比重小的材料,重视材料的比强度,即强度/比重 之比。因此,航空和航天器中铝、镁合金用量大。随着航空技术的进一步发 展,轻质和高比强度的钛合金、碳纤维高分子复合材料、硼纤维金属复合材 料等得到愈来愈多的采用。
6
材料结构关系
• 材料的结构包括不同晶体结构和非晶体,以及显微镜下的微观
结构,哪些主要因素能够影响和改变结构?只有了解了这些才
能实现控制结构的目的。
• 材料的性能包括物理性能、化学性能、力学性能。
• 其内部结构包括 四个层次:①原 子结构;②结合 键;③原子的排 列方式;④显微 组织
2021/3/12
• 材料科学和材料工程之间的区别主要在于着眼点的不同或者说
各自强调的中心不同,它们之间并没有一条明确的界线,因此,
后来人们常常将二者放在一起,采用一个复合名词-材料科学
2021/3/1与2 工程(MSE,Material Science and Engineering)
8
材料科学 :是一门科学,它从事与材料本质的发现、分析和了 解方面的研究,其目的在于提供材料结构的统一描绘或模型,以 及解释这种结构与性能之间的关系。它包括下面的三个环节,核 心是结构和性能。
实践中总结出来的共同规律而形成的一门课程。该课程是把基础科学理论,特别是物理 化学、无机化学、结构化学、结晶化学、固体物理中的基本理论,具体应用到无机非金 属材料的制备和性能研究上,成为介于基础科学和专业技术之间的一门重要的专业基础 理论课程。
2021/3/12
13
2021/3/12
14
2021/3/12
15
• 飞机和材料
从莱特兄弟实现飞行的梦想以来,航空和航天器发生了巨变。为了飞得快 和远,就要采用强度高和比重小的材料,重视材料的比强度,即强度/比重 之比。因此,航空和航天器中铝、镁合金用量大。随着航空技术的进一步发 展,轻质和高比强度的钛合金、碳纤维高分子复合材料、硼纤维金属复合材 料等得到愈来愈多的采用。
6
材料结构关系
• 材料的结构包括不同晶体结构和非晶体,以及显微镜下的微观
结构,哪些主要因素能够影响和改变结构?只有了解了这些才
能实现控制结构的目的。
• 材料的性能包括物理性能、化学性能、力学性能。
• 其内部结构包括 四个层次:①原 子结构;②结合 键;③原子的排 列方式;④显微 组织
2021/3/12
• 材料科学和材料工程之间的区别主要在于着眼点的不同或者说
各自强调的中心不同,它们之间并没有一条明确的界线,因此,
后来人们常常将二者放在一起,采用一个复合名词-材料科学
2021/3/1与2 工程(MSE,Material Science and Engineering)
8
材料科学 :是一门科学,它从事与材料本质的发现、分析和了 解方面的研究,其目的在于提供材料结构的统一描绘或模型,以 及解释这种结构与性能之间的关系。它包括下面的三个环节,核 心是结构和性能。
实践中总结出来的共同规律而形成的一门课程。该课程是把基础科学理论,特别是物理 化学、无机化学、结构化学、结晶化学、固体物理中的基本理论,具体应用到无机非金 属材料的制备和性能研究上,成为介于基础科学和专业技术之间的一门重要的专业基础 理论课程。
无机材料科学基础第二章PPT课件
![无机材料科学基础第二章PPT课件](https://img.taocdn.com/s3/m/e36125178e9951e79b892776.png)
第一章 结晶学基础
晶胞 晶系和十四种布拉菲格子
晶向指数和晶面指数
晶格:阵点用一系列相互平行的 直线连接起来形成的空间格架
晶胞;构成晶格的基本单元
2.5.1单位平行六面体的划分
1、划分原则
(1)所选平行六面体的对称性应符合整个空 间点群的对称性。 (2)在(1)基础上,选棱间直角关系最多 的平行六面体。 (3)在(1)、(2)基础上选体积最小的。 (4)当棱间交角不为直角时,选结点间距小 的行列作为平行六面体的棱,且棱间交角接近 于直角的平行六面体。
(4)将u,v,w加方括号内就得到晶向指数[uvw]
几点说明:
• 一个晶向指数代表相互平行、方向一致的
所有晶向
• 两晶向相互平行且方向相反,则晶向指数
中的数字相同而符号相反。如[112] [112]
• 晶体中原子排列情况相同,但空间位向不
同的一组晶向称为晶向族,用<u v w>表示
立方晶系<111> : [111]、[111]、 [111]、 [111]、 [111]、 [111]、 [111]、 [111]
➢各晶系晶胞参数
a、立方晶系: a=b=c, α=β=γ=90o (简单立方、面心立方、体心立方)
b、四方晶系:a=bc,===90o (简单四方、体心四方)
c、正交晶系:abc,===90o
(简单正交、体心正交、底心正交、面心正交)
d、三方晶系:a=b=c,==90o
e、六方晶系: a=bc,==90o,=120o
1、等大球体的最紧密堆积及其空隙:
(2)立方最紧密堆积:ABCABC …… 紧密堆积方式,密排面平行于(111)。
(3)、等径球体堆积的空隙:
空隙有四面体空隙和八面体空隙,若 有n个等大球体作最紧密堆积时必有n个 八面体空隙和2n个四面体空隙。
晶胞 晶系和十四种布拉菲格子
晶向指数和晶面指数
晶格:阵点用一系列相互平行的 直线连接起来形成的空间格架
晶胞;构成晶格的基本单元
2.5.1单位平行六面体的划分
1、划分原则
(1)所选平行六面体的对称性应符合整个空 间点群的对称性。 (2)在(1)基础上,选棱间直角关系最多 的平行六面体。 (3)在(1)、(2)基础上选体积最小的。 (4)当棱间交角不为直角时,选结点间距小 的行列作为平行六面体的棱,且棱间交角接近 于直角的平行六面体。
(4)将u,v,w加方括号内就得到晶向指数[uvw]
几点说明:
• 一个晶向指数代表相互平行、方向一致的
所有晶向
• 两晶向相互平行且方向相反,则晶向指数
中的数字相同而符号相反。如[112] [112]
• 晶体中原子排列情况相同,但空间位向不
同的一组晶向称为晶向族,用<u v w>表示
立方晶系<111> : [111]、[111]、 [111]、 [111]、 [111]、 [111]、 [111]、 [111]
➢各晶系晶胞参数
a、立方晶系: a=b=c, α=β=γ=90o (简单立方、面心立方、体心立方)
b、四方晶系:a=bc,===90o (简单四方、体心四方)
c、正交晶系:abc,===90o
(简单正交、体心正交、底心正交、面心正交)
d、三方晶系:a=b=c,==90o
e、六方晶系: a=bc,==90o,=120o
1、等大球体的最紧密堆积及其空隙:
(2)立方最紧密堆积:ABCABC …… 紧密堆积方式,密排面平行于(111)。
(3)、等径球体堆积的空隙:
空隙有四面体空隙和八面体空隙,若 有n个等大球体作最紧密堆积时必有n个 八面体空隙和2n个四面体空隙。
无机材料科学基础第一章化学键与电子结构ppt课件
![无机材料科学基础第一章化学键与电子结构ppt课件](https://img.taocdn.com/s3/m/89c7743bb14e852459fb5701.png)
电子进入分子轨道后,假设体系能量降低,即能成键,反之, 那么不能成键。
分子轨道波函数
在组合构成的分子轨道中,比组合前原子轨道能量低的 称为成键分子轨道,用ψ1表示;能量高于组合前原子轨道的 称为反键分子轨道,用ψ2 表示。
成键分子轨道 (bonding)
反键分子轨道(antibonding)
以A+B→AB为例:
在金刚石中,C原子以sp³杂化轨道和相邻C原子一同构成按四面体 向排布的4个C—C单键,共同将C原子结合成无限的三维骨架,可以 说一粒金刚石晶体就是一个大分子。
1.2.2 共价键的极性
共价键极性构成缘由: 分子轨道是由原子前线轨道线性组合而成。假设A原子的电负
性比B原子大,那么其前线轨道能级比B原子前线轨道能级低。在 构成共价键过程中,能量低的成键轨道〔Bonding Orbital〕的能 级与先前的A原子前线轨道能级更接近,故此成键轨道主要由A原 子的前线轨道构成;而能量较高的反键轨道〔Anti-Bonding Orbital〕能级那么与原来的B原子前线轨道能级更接近,那么其 主要由B原子的前线轨道构成。由于电子优先分布于成键轨道,所 以,电负性较大的A原子那么占据了更多的电子,共价键的极性就 这样产生了。 实际推导:利用分子轨道波函数 和 可近似计算AB原子的电 离能,从而推断极性的存在。推导过A 程见b p9-10。
晶体几何构造有关的常数。
波恩-兰德公式的实践运用:当某一离子晶体的构造和离子
间距等参数经过构造分析确定后,可利用该公式计算结合能。
§ 1.2 共价键与分子轨道实际
§ 1.21 共价键的根本性质 共价键本质 两原子相互接近时,由于原 子轨道重叠,两原子共用自 旋相反的电子对,使体系能 量降低,而构成化学键。
分子轨道波函数
在组合构成的分子轨道中,比组合前原子轨道能量低的 称为成键分子轨道,用ψ1表示;能量高于组合前原子轨道的 称为反键分子轨道,用ψ2 表示。
成键分子轨道 (bonding)
反键分子轨道(antibonding)
以A+B→AB为例:
在金刚石中,C原子以sp³杂化轨道和相邻C原子一同构成按四面体 向排布的4个C—C单键,共同将C原子结合成无限的三维骨架,可以 说一粒金刚石晶体就是一个大分子。
1.2.2 共价键的极性
共价键极性构成缘由: 分子轨道是由原子前线轨道线性组合而成。假设A原子的电负
性比B原子大,那么其前线轨道能级比B原子前线轨道能级低。在 构成共价键过程中,能量低的成键轨道〔Bonding Orbital〕的能 级与先前的A原子前线轨道能级更接近,故此成键轨道主要由A原 子的前线轨道构成;而能量较高的反键轨道〔Anti-Bonding Orbital〕能级那么与原来的B原子前线轨道能级更接近,那么其 主要由B原子的前线轨道构成。由于电子优先分布于成键轨道,所 以,电负性较大的A原子那么占据了更多的电子,共价键的极性就 这样产生了。 实际推导:利用分子轨道波函数 和 可近似计算AB原子的电 离能,从而推断极性的存在。推导过A 程见b p9-10。
晶体几何构造有关的常数。
波恩-兰德公式的实践运用:当某一离子晶体的构造和离子
间距等参数经过构造分析确定后,可利用该公式计算结合能。
§ 1.2 共价键与分子轨道实际
§ 1.21 共价键的根本性质 共价键本质 两原子相互接近时,由于原 子轨道重叠,两原子共用自 旋相反的电子对,使体系能 量降低,而构成化学键。
无机材料科学基础第二章PPT课件
![无机材料科学基础第二章PPT课件](https://img.taocdn.com/s3/m/e36125178e9951e79b892776.png)
国际上通用的是密勒指数(Miller)
➢晶向指数:点阵中一维方向结点连线-行列:
行列平行方向-晶向(如:晶棱方向)
(1)建立坐标系,原点在待标晶向上
(2)选取该晶向上原点
以外的任一点P(xa,yb,zc)
zc
P
(3)将xa,yb,zc化简为互质
O
整数比u,v,w,且
yb
xa
u∶v∶w = xa∶yb∶zc
离子半径:离子中心到其作用力所及的有 效范围的距离。正、负离子都看成球体。离 子半径是衡量键性、键强、配位关系及极化 的重要数据。
2.6.2 球体紧密堆积原理
1、等大球体的最紧密堆积及其空隙:
【 紧密堆积结构】
Close-packed structures
ABABA.. packing
hcp & fcc
2、晶胞的分类
初级晶胞: 简单晶胞,只在平行六面体的八个角顶有阵点。
复合晶胞: 除角顶外,在其体心、面心或低心位置上也有 阵点。
3、描述晶胞的形状大小
晶胞的表示-晶胞参数
三条晶轴:a,b,c 轴间夹角:α,β,γ
4、晶系和布拉菲点阵
分类依据:棱长、夹角 七种类型:七大晶系 布拉菲点阵:14种
六方紧密堆积
hcp structure
(hexagonally-close packed)
ABCABC.. packing
立方紧密堆积
fcc structure
(face-centered cubic, 面心立方)
1、等大球体的最紧密堆积及其空隙:
(1)六方最紧密堆积:ABAB……紧密堆积 方式,密排面平行于(0001)。
• {100}=(100)+(010)+(001)
➢晶向指数:点阵中一维方向结点连线-行列:
行列平行方向-晶向(如:晶棱方向)
(1)建立坐标系,原点在待标晶向上
(2)选取该晶向上原点
以外的任一点P(xa,yb,zc)
zc
P
(3)将xa,yb,zc化简为互质
O
整数比u,v,w,且
yb
xa
u∶v∶w = xa∶yb∶zc
离子半径:离子中心到其作用力所及的有 效范围的距离。正、负离子都看成球体。离 子半径是衡量键性、键强、配位关系及极化 的重要数据。
2.6.2 球体紧密堆积原理
1、等大球体的最紧密堆积及其空隙:
【 紧密堆积结构】
Close-packed structures
ABABA.. packing
hcp & fcc
2、晶胞的分类
初级晶胞: 简单晶胞,只在平行六面体的八个角顶有阵点。
复合晶胞: 除角顶外,在其体心、面心或低心位置上也有 阵点。
3、描述晶胞的形状大小
晶胞的表示-晶胞参数
三条晶轴:a,b,c 轴间夹角:α,β,γ
4、晶系和布拉菲点阵
分类依据:棱长、夹角 七种类型:七大晶系 布拉菲点阵:14种
六方紧密堆积
hcp structure
(hexagonally-close packed)
ABCABC.. packing
立方紧密堆积
fcc structure
(face-centered cubic, 面心立方)
1、等大球体的最紧密堆积及其空隙:
(1)六方最紧密堆积:ABAB……紧密堆积 方式,密排面平行于(0001)。
• {100}=(100)+(010)+(001)
无机材料科学基础第五章 固溶体PPT课件
![无机材料科学基础第五章 固溶体PPT课件](https://img.taocdn.com/s3/m/0ebb41cc6edb6f1afe001f62.png)
金属和金属形成的固溶体都是置换式的。如, Cu-Zn系中的α和η固溶体都是置换式固溶体。
在金属氧化物中,主要发生在金属离子位 置 上 的 置 换 , 如 : MgO-CaO , MgO-CoO , PbZrO3-PbTiO3,Al2O3-Cr2O3等。
C3S的固溶体C54S16MA2.相当于18个Si中有两个被置换。
可编辑课件PPT
18
实例
在面心立方结构中,例如MgO中,氧八面体间 隙都已被Mg离子占满,只有氧四面体间隙是空的。 在TiO2中,有二分之一的八面体空隙是空的。在萤 石结构中,氟离子作简单立方排列,而正离子Ca2+ 只占据了有立方体空隙的一半,在晶胞中有一个较 大的间隙位置。在沸石之类的具有网状结构的硅酸 盐结构中,间隙就更大,具有隧道型空隙。 因此, 对于同样的外来杂质原子,可以预料形成填隙式固 溶体的可能性或固溶度大小的顺序将是沸石>萤石 >TiO2>MgO。实验证明是符合的。
SrO、BaO,使他们形成正硅酸盐。或
添加B2O3、P2O5、Cr2O3为稳定剂,使他 们形成[BO4]、[PO4]、[CrO4]置换[SiO4] 而形成固溶体。
可编辑课件PPT
9
2、晶体结构类型的影响
若溶质与溶剂晶体结构类型相同,能形成连 续固溶体,这也是形成连续固溶体的必要条件,而 不是充分必要条件。
二、置换型固溶体
三、间隙型固溶体
四、形成固溶体后对晶体性质的影响
五、固溶体的研究方法
可编辑课件PPT
1
第一节 固溶体的分类
一、根据外来组元在主晶相中所处位置 ,可分 为置换固溶体和间隙固溶体。
二、按外来组元在主晶相中的固溶度,可分为 连续型(无限型)固溶体和有限型固溶体。
在金属氧化物中,主要发生在金属离子位 置 上 的 置 换 , 如 : MgO-CaO , MgO-CoO , PbZrO3-PbTiO3,Al2O3-Cr2O3等。
C3S的固溶体C54S16MA2.相当于18个Si中有两个被置换。
可编辑课件PPT
18
实例
在面心立方结构中,例如MgO中,氧八面体间 隙都已被Mg离子占满,只有氧四面体间隙是空的。 在TiO2中,有二分之一的八面体空隙是空的。在萤 石结构中,氟离子作简单立方排列,而正离子Ca2+ 只占据了有立方体空隙的一半,在晶胞中有一个较 大的间隙位置。在沸石之类的具有网状结构的硅酸 盐结构中,间隙就更大,具有隧道型空隙。 因此, 对于同样的外来杂质原子,可以预料形成填隙式固 溶体的可能性或固溶度大小的顺序将是沸石>萤石 >TiO2>MgO。实验证明是符合的。
SrO、BaO,使他们形成正硅酸盐。或
添加B2O3、P2O5、Cr2O3为稳定剂,使他 们形成[BO4]、[PO4]、[CrO4]置换[SiO4] 而形成固溶体。
可编辑课件PPT
9
2、晶体结构类型的影响
若溶质与溶剂晶体结构类型相同,能形成连 续固溶体,这也是形成连续固溶体的必要条件,而 不是充分必要条件。
二、置换型固溶体
三、间隙型固溶体
四、形成固溶体后对晶体性质的影响
五、固溶体的研究方法
可编辑课件PPT
1
第一节 固溶体的分类
一、根据外来组元在主晶相中所处位置 ,可分 为置换固溶体和间隙固溶体。
二、按外来组元在主晶相中的固溶度,可分为 连续型(无限型)固溶体和有限型固溶体。
无机材料科学基础教程课件
![无机材料科学基础教程课件](https://img.taocdn.com/s3/m/44b0059351e79b89680226d5.png)
第一章 晶体几何基础
晶体与材料
组成材料的物质(包括天然的固态物质)按其 原子(分子)的聚集状态可分为晶体与非晶体。 晶体可以有单晶体和多晶体,其构成的材料分 别为单晶材料和多晶材料。 单晶材料有人造半导体材料单晶硅和锗、金刚 石、红宝石等,多晶材料包括金属及陶瓷等。 晶体固有的性质对材料的性质具有重要的决定 作用。
晶体与材料
金属和陶瓷等很大一部分材料主要是由晶体 组成的晶质材料。在晶质材料中,晶体本身的性 质是影响材料性质的最主要因素之一。 例如构成耐火材料的主晶相一般具有较高的 熔点;氮化铝陶瓷良好的导热性,是因为氮化铝 晶粒具有高的热导率,等等。Fra bibliotek晶体与材料
一般来讲,一种晶体具有一定的物质组成和一 定的内部结构,物质组成确定后,晶体的性质主要 与其内部结构(或者说内部质点的排列方式)有关。 例如,金刚石和石墨,都是由碳构成的,由于 碳的排列方式(内部结构)不同,金刚石具有很高 的硬度,而石墨则很软。当然,不同的物质成分, 也可具有相同的排列方式。 本章就是关于晶体内部质点排列规律性及由此 决定的晶体宏观形态规律性的认识。
晶体与材料
组成材料的物质(包括天然的固态物质)按其 原子(分子)的聚集状态可分为晶体与非晶体。 晶体可以有单晶体和多晶体,其构成的材料分 别为单晶材料和多晶材料。 单晶材料有人造半导体材料单晶硅和锗、金刚 石、红宝石等,多晶材料包括金属及陶瓷等。 晶体固有的性质对材料的性质具有重要的决定 作用。
晶体与材料
金属和陶瓷等很大一部分材料主要是由晶体 组成的晶质材料。在晶质材料中,晶体本身的性 质是影响材料性质的最主要因素之一。 例如构成耐火材料的主晶相一般具有较高的 熔点;氮化铝陶瓷良好的导热性,是因为氮化铝 晶粒具有高的热导率,等等。Fra bibliotek晶体与材料
一般来讲,一种晶体具有一定的物质组成和一 定的内部结构,物质组成确定后,晶体的性质主要 与其内部结构(或者说内部质点的排列方式)有关。 例如,金刚石和石墨,都是由碳构成的,由于 碳的排列方式(内部结构)不同,金刚石具有很高 的硬度,而石墨则很软。当然,不同的物质成分, 也可具有相同的排列方式。 本章就是关于晶体内部质点排列规律性及由此 决定的晶体宏观形态规律性的认识。
无机材料科学基础课件
![无机材料科学基础课件](https://img.taocdn.com/s3/m/0bee25bafd0a79563c1e722a.png)
L
v
S
图4.2.1沾湿过程
拉 开 固 液 界 面 , 外 界 对 体 系 做 的 功 为附着功,表示将单位截面积的液固界面拉开所作 的功。 注:生产中,通常采用化学性能相近的两相系统, 可以降低 γ SL ,以便提高粘附功。
3、铺展(图4.2.3) 置一液滴于一固体表面。恒温恒压下,若此液 滴在固体表面上自动展开形成液膜,则为铺展润 湿。 体系自由能的变化为:
3. 若θ=00,液体对毛细管完全润湿,液面是凹面。
P 2 γM 1 ⋅ ⇒ P凹 < P0 则 ln = − ρRT r P0
毛细管凝结:蒸汽压对平面液体未达饱和,但对管内凹 面液体已呈饱和,此蒸汽在毛细管内会凝聚成液体。
举例:陶瓷生坯中的水,水泥地面冻裂
4.开尔文公式适用于固体溶解度
2 γ SL M c ln = c0 dRTr
4.1.2 晶体表面结构 表面力的存在使固体表面处于较高能量状 态。系统总会通过各种途径来降低这部分过剩的 能量,这就导致表面质点的极化、变形、重排并 引起原来晶格的畸变。 威尔(Weyl)等人基于结晶化学原理,研究 了晶体表面结构,认为晶体质点间的相互作用, 键强是影响表面结构的重要因素,提出了晶体的 表面双电层模型,如图4.1.6、4.1.7所示。。
2. 弯曲液面上的饱和蒸气压
开尔文公式
P 2 γM 1 ln = ⋅ P0 ρ RT r
γM 1 1 P ln = ( + ) P0 ρRT r1 r2
讨论: 1.开尔文公式同样适用于不同曲率半径下固体 表面上蒸汽压的计算。 凸面蒸气压>平面>凹面;
2. 开尔文公式应用于毛细血管内液体:
P 2 γM 1 ln = − ⋅ cos θ ρRT r P0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(包括天然的固态物质)按其 原子(分子)的聚集状态可分为晶体与非晶体。 晶体可以有单晶体和多晶体,其构成的材料分 别为单晶材料和多晶材料。 单晶材料有人造半导体材料单晶硅和锗、金刚 石、红宝石等,多晶材料包括金属及陶瓷等。 晶体固有的性质对材料的性质具有重要的决定 作用。
晶体与材料
金属和陶瓷等很大一部分材料主要是由晶体 组成的晶质材料。在晶质材料中,晶体本身的性 质是影响材料性质的最主要因素之一。 例如构成耐火材料的主晶相一般具有较高的 熔点;氮化铝陶瓷良好的导热性,是因为氮化铝 晶粒具有高的热导率,等等。
晶体与材料
一般来讲,一种晶体具有一定的物质组成和一 定的内部结构,物质组成确定后,晶体的性质主要 与其内部结构(或者说内部质点的排列方式)有关。 例如,金刚石和石墨,都是由碳构成的,由于 碳的排列方式(内部结构)不同,金刚石具有很高 的硬度,而石墨则很软。当然,不同的物质成分, 也可具有相同的排列方式。 本章就是关于晶体内部质点排列规律性及由此 决定的晶体宏观形态规律性的认识。
晶体与材料
金属和陶瓷等很大一部分材料主要是由晶体 组成的晶质材料。在晶质材料中,晶体本身的性 质是影响材料性质的最主要因素之一。 例如构成耐火材料的主晶相一般具有较高的 熔点;氮化铝陶瓷良好的导热性,是因为氮化铝 晶粒具有高的热导率,等等。
晶体与材料
一般来讲,一种晶体具有一定的物质组成和一 定的内部结构,物质组成确定后,晶体的性质主要 与其内部结构(或者说内部质点的排列方式)有关。 例如,金刚石和石墨,都是由碳构成的,由于 碳的排列方式(内部结构)不同,金刚石具有很高 的硬度,而石墨则很软。当然,不同的物质成分, 也可具有相同的排列方式。 本章就是关于晶体内部质点排列规律性及由此 决定的晶体宏观形态规律性的认识。